LTI

Department of Applied Analysis
and Computer Science
Technical Report CSTR 1003
July, 1970

THE DIALATOR SYSTEM
GENERAL PROGRAMMER'S GUIDE

by
Doron J. Cohen, Paul M. Fawcett
Eric G. Manning & Larry Smith

Faculty of Mathematics

University of Waterloo

Waterloo, Ontario
Canada

Department of Applied Analysis
and Computer Science
Technical Report CSTR 1003
July, 1970

THE DIALATOR SYSTEM
GENERAL PROGRAMMER'S GUIDE

by

Doron J. Cohen, Paul M. Fawcett
Eric G. Manning & Larry Smith

We wish to thank the Defence Research Board of Canada,
the Northern Electric Research & Development Laboratories, Ottawa,
and the Faculty of Mathematics of the University of Waterloo for

financial, technical, and moral support which made this system of

programs possible.

Other manuals in this series

TRAIZE User's Guide
FAUST User's Guide
TRAIZE Programmer's Guide
FAUST Programmer's Guide
File System User's Guide

File System Programmer's Guide

are:

DIALATOR SYSTEM - GENERAL PROGRAMMER'S GUIDE

This is a programmer's overview for the DIALATOR system
of programs. Its purpose is to allow the programmer to look at the
'forest' before getting too close to the trees. Thus it provides a
panoramic overview of the whole DIALATOR system of programs.

It is recommended that SECTION 1) of this manual be read
by a programmer wishing to study any part of the system. The guide
is laid out as follows:

SECTION 1, Introduction

SECTION 2. Structure of the system

SECTION 3. PL1 Structures in the system

SECTION 4, Maintenance of the system

SECTION 5, Design Features of the DIALATOR

SECTION 1. Introduction.

This manual contains information necessary for the complete
understanding of the system and the other programmerfs guides.

Before the programmer tackles the programming of the system
he should be familiar with the system as a user. SECTION 2 should be
read before the other three programmer's guides are studied. The diagram
6f the program calling structure should be helpful during the study of
the other programmer's guides. SECTION 3 should be well understood
before starting any.of the programming manuals. The remainder of this
manual can be read either before or after the other guides have been
studied.

The FAUST and TRAIZE guides can be studied independently of
the FILE SYSTEM guide, if the file subroutines called in FAUST and
TRAIZE are viewed as 'magic' instructions. It may be more meaningful
and, certainly will be closer to the user's world if the FILE guide is
studied last.

It is helpful to study the called routines in FAUST and

TRAIZE guides before the main programs. In some cases it is necessary.

FAUST

l

ALLF

CCINT

CPUTIME

DIMUY

rciD

FET/

The underlined subroutines call others.

FLEV2

A\
INIFL

LDIR

y
LouP

LUPTA

PCID

RSTS

SDIR

v
SET

W
SETS

SORTRE

Their subtrees are listed below.

STORE

v
TRE]

1. ~ CCINT
SCAN
: y
ALLF FETCH REBL
N
/ J PCID
FLEV2 NECAR
l l l LOCATE \
FLST
FDIR
LOUP si?N -_—
f
RifL MOVE
NECAR
At/
FCID
LOLATE RELR
MOVE
v
SIZST
\' 4
FDIR
N
CLEAN
N
FETCH

T

LOCATE REDR

FDIR
MOVE

2. DIMUY
SET
RST
PIK
SETS
RSTS W
ANAS
ORAS W
COAS WV
STAR Vv
ANST v
ORST
EXST
3. FCID
LOCATE \L l J/
SIZST
FDIR REDR
CLEAN J FETCH
N7 I
MOVE LOCATE ~L REDR
FDIR RY
MOVE
4. FETCH
|
v \I/ J/
LOCATE '
FDIR Ri?R
MOVE
5. FLEV2
|
v 0%
Loup SCAN
v
REBL

NECAR

6. PCID
¥
FLST
7. PUTST
SIZST
8. STTRE
FDIR L WRTR
LOCATE v |
v
LIENTR MOVE ALOC
CNS
i SIZST FREER
LUPTA
CNS
v
LUPTA
9. SCAN
REBL

NECAR

-7 -

SECTION 3. PL/1 Structures of the system

The PL/1 structures are of two types, those which contain
information pertinent to single circuits, and those which contain
general information. Each structure has a record name associated,
which contains the name of the circuit if the structure is of the
first type.

STRUCTURE 1 is $COPT.

This structure holds the circuit operator table and function catalogue
with fault definitions. The information contained appears as follows:

CO# is the number of circuit operators.

CN# is the number of circuit functions.

CF# is the number of circuit functions.

COPTA is the circuit operator table (COPTA is shown below).
The circuit operators, COPR, are the valid keywords and lead functions
for TRAIZE. Along with each operator is given, an address, COAD. When
an operator is looked for in the table the corresponding address is
returned.

FCTLG is the functions catalogue. For each lead function it
gives: #IN, te number of allowed input references, #FL, the maximum
number of faults, FLT, a 1list of the faults, specifying the type. Notice,
in the diagram of $COPT below, the input faults are listed last. The:
other faults are referred to as basic faults.

FLD is a vector describing each type of fault.

SIZE:

$COPT
$COPT

STRUCTURE NO.

2610 BYTES, RECORD NAME:$COPT

.COft=
.CFi=

OPERATOR
AND
AND2
END
FBK
FBKS
FF

FFO
FF1
INP
INPS
INPUTS
NAND
NAND2
NOR
NOT

OR

OR2
ouP
OUPS
OUTPUTS
WOR
XOR2

CIRCUIT FUNCTIONS CATALOGUE

FUNC.NAME

INP
FBK
AND2
OR2
XOR2
NAND2
NOT
NAND
FF1
FFO
WOR
NOR
AND
OR

ADDRESS
13
3
64
2
36
37
10
9
1
34
34
8
6
12
7
14
4
33
35
35
11
5

#IN #FL
0 o0
1 0
2 4
2 4
2 4
2 4
1 3
5 7
5 8
5 8
5 0
5 7
5 7
5 7

FAULTS TYPES

R HOMRMERRHPERRNHOO

MNNMNMNMONNMNDNNNNNNNOO

WWwWOPFrPrUWLWWLWWWOO

WWLWWOoOWLWLWCWWLWWWoOo

LWWOWLWWODOODOoODOOO

$COPT.CN#=
60 0 0
0 0 o0
6 0 O
0 o0 ©
0 0 O
0 o0 O
0 0 O
3 3 O
3 3 3
3 3 3
0 0 O
3 3 0
3 3 0
3 3 0

14

1 OUTPUT STUCK AT ZERO
2 OUTPUT STUCK AT ONE
3 OPEN INPUT DIODE FROM
4 OPEN FEEDBACK DIODE

-9 -

STRUCTURE 2 is SCIDS. This structure holds the circuit
parameters. The information contained appears as follows:

N# is the number of leads in the circuit.

O# is the number of primary outputs in the circuit.

I# is the number of primary inputs in the circuit.

F# is the number of feedback loops in the circuit.

M# is the number of single faults in the circuit.

S# is the number of entries in the successors list. Note
that this is not the number of successors since the pointers are
included also.

T# is the number of terminals of the circuit.

E# is the number of lead names, which is not always equal to
the number of leads.

R# is the number of simulation runs (this variable is not
in use at the present time).

V# is the number of levels in the circuit.

Suppose we consider the following circuit description:

%RUN : TRAIZE CIRCUIT=CIRCUIT2,DISP=NO;

INPUTS (2)X1,X2;
OUTPUTS (1) d1;

X1: INP /A1;

X2: INP /AL, @15

Al: AND X1,X2/01;

@1:0UT: OR Al,X2;
END CIRCUIT2;

The values in $CIDS would be N#=4, @#=1, I#=2, F#=0, M#=9,

S#=8, T#=0, E=5, R#=0, V#=3.

- 10 -

STRUCTURE 3 is S$LDSC. This structure holds the leads
description of the circuit. The information contained appears as
follows:

N# is the number of leads in the circuit.

LEADS is a table with the lead function numbers, FNC, and
the level, LVL, in which the lead has been placed. The ordering in
which the lead information appears is the line ordering which has been
assigned to the leads. This is not necessarily the ordering given by
the user. Recall the mapping in TRAIZE. The input references, IR,
are given by lead number. A pointer, OR, to the successor's list, in
which the lead's output reference lead numbers are found, is given
(See $SUCS).

For CIRCUIT2 described above S$LDSC would be

N#=4, LEADS.FNC(1) 1, LEADS.LVL(1)=0

LEADS.FNC(2) = 1, LEADS.LVL(2)=0
LEADS.FNC(3) = 13, LEADS.LVL(3)=1
LEADS.FNC(4) = 14, LEADS.LVL(4)=2

LEADS.IR(3,1)=1, LEADS.IR(3,2)=2,
LEADS.IR(4,1)=2, LEADS.IR(4,2)=3.

All other values of the IR array are zero.
LEADS.OR(1)=1,LEADS.OR(2)=3,

LEADS.OR(3)=6,LEADS.OR(4)=0.

STRUCTURE 4 is $FMCS. This structure has all the single
faults for a specified circuit. The information appears as follows:
N# is the number of circuit leads.
FM is the faults table. Its dimensions are N# by eight.

Eight is used because there is a maximum of eight single faults per lead.

- 11 -

To fill in the table each lead is examined and the
associated faults are entered as numbers starting at one. The table,
then associates a fault number with a lead and a type of fault. For

CIRCUIT2 described above, FM would look 1like

X1 0o 0 o0 o0 o0 o0 o0 O
X2 6 o 6 o 0 o 0 o
Al 1 2 3 4 0 0 0 O
01 5 6 7 8 0 0 0 0O

STRUCTURE 5 is $SYMTA. This structure contains the lead
names of the circuit. Since there may be more than one lead name
per lead, back links are given for each lead name. The information
contained appears as follows;

E# is the number of lead names in the circuit.

N# is the number of leads in the circuit.

TAB is the symbol table or lead name table, NAﬁE. With each
lead name, a lead number, LNM, is associated. This is the same lead
number associated with the lead function of S$LDSC.

BLINK is a set of back links so that, given a lead number,
a lead name can be associated with it. (This lead name will be an
arbitrary one of the multiple names for a given lead).

For CIRCUIT2 described above, we have E#=5, Ni=4,

- 12 -

TAB.NAME (1)="A1"', TAB.LNM(1)=3
TAB.NAME (2)="0UT', TAB.LNM(2)=4
TAB.NAME (3)="g#1', TAB.LNM(3)=4
TAB.NAME(4)="X1', TAB.LNM(4)=1
TAB.NAME (5)="X2"', TAB.ILNM(5)=2

BLINK(1)=4, BLINK(2)=5, BLINK(3)=1, BLINK(4)=2

STRUCTURE 6 is SREFS. This structure contains input, output
and feedback references. The information coﬁtained appears as follows:

I# is the number of inputs in the circuit.

O# is the number of outputs in the circuit.

F# is the number of feedbacks in the circuit.

IL is a list of lead numbers of the inputs.

OL is a list of lead numbers of the outputs.

FL is a list of lead numbers of the feedback nodes.

For CIRCUITZ2, described above we have I#=2, O#=1, Fi=0,

IL(1)=1, IL(2)=2, OL(1)=4.

STRUCTURE 7 is $SUCS. This structure contains a list of
successors for a given circuit. The information contained appears as
follows:

S# is the number of entries in the successors list including
pointers.

SS is the successors list.

For CIRCUIT2 described above we have outlined the structure
$LDSC, STRUCTURE 3. For that structure the output reference pointers
were OR(1)=1, OR(2)=3, OR(3)=6, OR(4)=0. These are necessary in the

formation of $SUCS.

- 13 -

For CIRCUIT2, $SUCS would be:
S#=8,

$S(1)=1, 55(2)=3

$5(3)=2, 55(4)=3, 85(5)=4

8S(6)=1, SS(7)=4,
Diagramatically the successors list looks as follows:

SS(1) SS(2) SS(3) SS(4) SS(5) SS(6) SS(7)

OR (1) OR(2) OR(3)

$LDSC OUTPUT REFERENCE POINTERS

Pointer OR(I) points to the beginning of the list of successors
for the Ith lead in $LDSC. The information contained in the elements
of $SUCS pointed to, (above they are SS(1), SS(3), and SS(6)) is the
number of elements of $SUCS which follow as successors of the Ith leéd.
Above, the flrst lead has one successor and its lead number is 3 which
represents Al. The second lead has two successors and their lead
numbers are 3 and 4.

STRUCTURE 8 is STERM. This structure has not been implemented
yet. It will involve terminals.

STRUCTURE 9 is $SFMC. This structure contains the selected

faults for a given circuit. The information contained appears as follows:

- 14 -

N# is the number of leads of the circuit.

NF# is the number of faulty leads of the circuit.

M# is the number of faults selected.

FP is a vector of fault pointers. Each element of the
vector is a mapping from the lead number to the row in the fault
table with the faults of the lead. If a lead has no faults, its
pointer is zero.

Suppose in CIRCUIT2 we define the selected faults as
follows:

Al s @ 1/X1;

0Ols @1, s @0;
$SFMC would be:

Nit=4, NFit=2, M#=4,

FP(1)=0, FP(2)=0, FP(3)=1, FP(4)=2,

The S$SFMC.FM table would look as follows:

STRUCTURE 10 is $CTRES. This structure is yet to be
defined. At the present time, if the user commands that the LVBS
table and the diagnostic tree be saved, the recname of the structure
saved will include $CTRES. There is no information associated with

$CTRES.

- 15 -

STRUCTURE 11 is SDIATR. This structure contains the
diagnostic tree of some circuit as a result of a FAUST run on the
circuit. The information contained appears as follows:

M# is the number of faults in the circuit.

UB is the upper bound of the tree.

O# is the number of outputs of the circuit.

AV is a pointer to the first node in the available list
of unused nodes.

FALIST is the fault option assoclated with the run.

BR is the brother links of the nodes of the tree.

S0 is the son links of the nodes of the tree.

OU is the output vector associated with the nodes of the
tree.

Notice the son and output vector are absent for the first
M# nodes. The reason will become evident later. The output bit string
is rounded to the nearest byte with function CEIL. The reason is that
the assembler routines which handle the bit strings operate on strings
which ae byte multiples. |

STRUCTURE 12 is $TEDS. This structure has not been implemented
yet. It concerns the storing of test descriptions.

STRUCTURE 13 is $LVBS. This structure contains the LVBS
table which gives the value of every circuit lead under every possible
fault (which has been defined by the user). The information is as

follows:

- 16 -

N# is the number of leads of the circuit.

M# is the number of faults.

LVBS is the table containing the lead values under all
possible faults defined. The extra rows in the table are buffer
rows. LVBS (-4) indicates an unstable machine with a 'l' bit in
the appropriate column. LVBS (-3), LVBS (-2), and LVBS (-1) are
employed for the NAND flipflop only. LVBS(0) is a general buffer
row used in boolean operations performed on the rows from 1 to N#.

@ is an activity vector with a bit for each lead. This
vector enables the system to bypass leads that are not affected by
a circuit stimulation. The activity bits can also be manipulated by
the user. Each of the bit strings are rounded to the nearest byte
to be compatible with the assembler routines which manipulate the bit
strings.

STRUCTURE 14 is $OPTAB. This structure contains the general
purpose operator table. The information is as follows:

OP# is the number of operators in the table.

TABLE is the operator table with a list of operators, OPER,
and a list of addresses, ADDR, one to be associated with each operator.

In the DIALATOR system there are two $OPTAB's., One is
TRAIZE.$OPTAB, which holds all the keywords of the traize language and
the valid lead function names. The other is FAUST.S$OPTAB, which holds
all the instruction words in the FAUST language.

Of the above 14 structures, numbers 10 through 13 will not be

understood fully until the FAUST Programmer's Guide is studied.

- 17 =

In addition to the 14 structures there are two structures
CARDIN and JOBPARM which are discussed below.

CARDIN is stored in SYSLIB under the mame SD. This structure
contains variables necessary to read source cards for TRAIZE or FAUST
descriptions. The information contained is as follows:

SOCAR is a vector of length 72 containing the characters
from the first 72 columns of a card. The last 8 columns are ignored.

LINM is the line number of the card and 1is picked up from
the last 8columns of the card.

DELIS is a string of valid delimiters for the TRAIZE and
FAUST languages. It is initialized in SUBROUTINE CCINT.

QUT, QUP are the characters to be recognized as valid opening
and closing parenthesis respectively. Any collection of characters
found between these parentheses will be bypassed as comments.

EOD is a label switch indicating the action to be taken if
the data found dictates special action.

EOF is a label switch indicating the action to be taken if the
- data cards terminate prematurely. Also action for failure of the system
is contained in EOF.

SOUP is a pointer to the column of the card being ekamined at
present,

LEN holds the length of the current syntactic unit found in
NSU.

NC points to theposition of a delimiter in the string DELIS.

If the delimiter is not present in the string DELIS, NC is zero.

- 18 -

JOBPARM is stored in SYSLIB under the name JOBPARM. This
“structure contains the information given in the TRAIZE or FAUST
control card. The information contained is as follows:

CCC, STATUS, COMCODE, NPARM1, NPARM2, NPARM3 are not
implemented yet.

RUNAME is the runname, picked up as the first syntactic
unit after the Z sign.

OPR is the operation name. It will be 'TRAIZE' if the
control card is that of a circuit description. It will be 'SIMULATE'
if the control card is that of a FAUST run.

FLOP is the disposition of the run results. FLOP can have
values NO, YES, OLD or NEW. NO indicates the results are not to be
stored in the file system. YES indicates the results are to be stored
in the file system. OLD indicates that if a file with the same file
name is found it is to be rewritten. NEW indicates that if a file with
the same file name is not found the results are to be stored.

CNAME is the circuit name. This is the name used as part

of the file name when results are stored in the file system.

- 19 -

SECTION 4. Maintenance of the system.
The system consists of six partitioned data sets stored on
disc. Of these, two are load modules.

They are named as follows:

SLIB1 is a source library of external PL/1 subroutines.

LLIBl is a load module library of the programs from SLIBI.

SMAN2 is a source library of PL/1 mainline programs.

LMAN2 is a load module library of programs from SMAN2.

SYSUT is a source library of utility programs for the system.

SYSLIB is a source library of DCL statements for the external
subroutines and PL/1 structures to be included at compile time (via
the PL/1. % INCLUDE feature), plus three overlay structures for the
main programs.

Programs of SYSUT:

1. SYSUT has a program which copies the partitioned data
sets onto tapes. There are three data seté included 1n this program
which are mt available. They are SLIB2, SLIB3 and LLIB2. 1If they
are included in any of the SYSUT programs they should be deleted. Their
purpose was to aid the development of the DIALATOR system only. To run
submit source as an 0S job.

2. There are clean up programs provided, which condense the
data sets on the disc. They are:

CUPALL to clean up all data sets,
CUPLL1 to clean up LLIBI,
CUPLM2 to clean up LMAN2Z,
CUPSL]1 to clean up SLIB1,
CUPSM2 to clean up SMAN2,
CUPSYS to clean up SYSLIB.

- 20 -

3. There is a program, DELNODE, which deletes a node and
all its subset nodes from the tree. The node name must be specified
to the function DELETE. (To use refer to the File System User's Guide.)

4, There is a program which is called DIALTR which does a
combined TRAIZE - FAUST run. This program enables the user to describe
and simulate a circuit without first storing the circuit description in
the file system. To use see RUNDIAL of this section.

5. INICOPT is a program which will initialize $COPT. The
0ld $COPT must be deleted from the file system before the new one is
entered. This program is valuable if the present $COPT becomes obsolete
in any respect. To change fault definitions etc. consult the INICOPT
program source statements and the copy of $COPT in section 3) of this
manual,

6. LISTDIR is a program which executes the load module of
LISTDIR on LMAN2. This program lists the file directory. (To use
this program see the File System User's Guide.)

7. MEMBERS lists the members of each partitioned data set.
To run this program, submit the source as an 0S job (Through WITS type
'"RUN SYSUT (MEMBERS)').

8. PRINTEM prints all source libraries. To run submit source
as an 0OS job (Through WITS type 'RUN SYSUT{(PRINTEM)).

9. There is a program which will print or punch any specified

member. It is called PUNCH. For printing put

- 21 -

SYSUT2 DD SYSOUT=A,
for punching put

SYSUT2 DD SYSOUT=B.

To run the program submit as an OS job.

10. RUNDIAL is a program which will execute the load
module form of DIALTR on LMAN2. To run place your circuit description
followed by your faust statements after the card

//GO.SYSIN DD *
and submit this modified source as an 0S job.

11. RUNFAUST is a program which will execute the load
module of FAUST on IMAN2. To run this program consult the FAUST
User's Guide.

12. TRARUN is a program which executes the load module of
TRAIZE stored on IMAN2., To run this program consult the TRAIZE User's
Guide.

13. SETA is a program which will list, create or modify the

structure SOPTAB.

Description of variables:

TNAME is the name of the operator table.

OPR is the operatbr to be placed in, or delete from, the
table.

ACT 1is the act desired by the user. It can have the value
CREATE, MODIFY, or LIST depending on whether the user wishes to create,
modify or list SOPTAB. Also with respect to each operator in the

data ACT can have the value ALTER, REMOVE or END. ALTER indicates the

- 922 -

operator is to be changed. REMOVE indicates the operator is to be
removed. END must always appear before the last operator in the
data to signal the end of the data list.

DISP is the disposition associated with the data. It can
be YES, NO, NEW, or OLD.

TIT isbthe title associated with the structure.

SIZE is the size of the structure.

ADR is the address associated with the operator name.

L is the line number.

The included subroutines are ENTA, FETCH, STORE, FDIR,
SIR, and LDIR.
MOR:

The parameters are set to default wvalues. TNAME, DISP,
ACT and SIZE are read from the data. They are checked for conflicts.
" If the act is LIST go to LIST. If TNAME is blank go to FIN.

GLOOP:

The operators, their addresses and the assoclated act are
read while ACT is not 'END'. If ACT is not any of REMOVE, ALTER or
END, it is assumed that the operator is to be added to the téble. If
ACT is ALTER and the operator has been found it is altered. If it is
not found a message is printed. If ACT is REMOVE and the operator has
been found it is removed. If it is not found a message is printed. If
the act is none of these and the operator is found a message is printed.

If it is not found ENTA is called to enter it into the table.

- 23 -

If the DISP is appropriate the resulting table is stored.

LIST:

The table is listed. A transfer is done to MOR, to pick up
more information.
FIN:

The directory is printed.

In describing the data care must be taken to conform to
the format statements. Also each time the ﬁarameters TNAME etc.
are read. A card must follow (even if blank fo pick up TIT).

All programs described above are set up to run a system /360
computer under 0S/360. JCL must be changed for your specific installation

if it is not compatible.

- 24 -

SECTION 5. Design Features of the DIALATOR.

The DIALATOR system consists of a collection of PL/1 and
360 Assembler routines. Most of the routines are small PL/1 external
subroutines. By writing the system this way maintenance is much
easier. Debugging can be done quickly on the individual programs and
replacement by 360 Assembly coding or modification of subroutines is
a simpler task.

Execution time may suffer in some cases because of the many
subroutines. This is increased by overlaying, due to the manipulation
of subroutines during execution time. However, the greatly reduced
core requirement in using overlays is sufficient justification for their
use. Both FAUST and DIALTR have overlay structures.

The system was coded in PL/1 because of the ease in coding
and the many features available in the PL/1 languége.

The system has its own file system which is custom-tailored
to suit the DIALATOR needs. Thus the system is more independent than

it would be otherwise.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

