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ABSTRACT

The analytic solutions of many differential equations
. qix .
contain terms of the form e where each q; is a comnlex number

with negative real part. The system of differential equations

;' = B;, where B is a real square matrix all of whose eigenvalues

are in the left half plane provides an example of a class of
problems where these are the only terms in the solution. TIf x
is positive then these terms will approach zero. If the modulus
of at least one of the 9;> Say qq, is‘large as compared with the
others, then the differential equation is said to be stiff.

In attempting to solve such differential equations
numerically, the exponential terms are approximated in some way.
Let this approximation be denoted by E(qix). If h is the step
size of the method, then it is advisable that [E(q;h)| < 1 for
all i. 1If this condition is not satisfied the numerical approxi-
mation for eqix will grow instead of approaching zero and the
total numerical solution may fail to give a satisfactory approxi-
mation to the analytic solution of the differential equation;
Most numerical procedures restrict the step size h in order to
meet this restriction on the modulus of E(qih). Thus, for stiff
equations, a small step size must be used to keep ,E(qlh)| <1
while the absence of eqlx would allow a much larger h to be used.

In order to overcome this restriction on the step size,
numerical methods are needed which reduce to approximations of

the exponential which are bounded by one in the entire left half

plane. Such methods are commonly called A-stable methods. 1In



this thesis it is shown that two new classes of methods, of
arbitrarily high order, exist which reduce to the diagonal Pade
approximations, Pn n(z), of the exponential function. These are

3

A-stable since for all n, Pn n(z) is known to satisfy the condition
b

]Pn,n(z)l <1 for Re(z) < O.

Unfortunately the diagonal Pade approximations also
satisfy the property that |Pn’n(z)| + 1 as |z| > », so they do not
produce good approximations for |z[ large, Re(z) < 0. 1In an attempt
to solve this problem the subdiagonal Pade approximations to the
exponential function are studied. In particular, it is shown that
all the entries in the first and second subdiagonals of the Pade
table satisfy the condition that they are bounded by one in the
entire left half plane and also approach zero as the modulus of =z
becomes large. Examples of numerical methods which reduce to these
approximations are given. These methods are also clearly A-stable.

Since many of the methods which are shown to be A-stable
in this thesis are implicit, some consideration is given to showing
how one of these methods could be implemented with sufficient
efficiency to make it competitive with or superior to classical
explicit methods which require reduced step size. Several numerical
examples are included.

Finally it is shown that none of the entries in the third
subdiagonal of the Padé table of the exponential function are bounded
by one in the entire left half plane so methods which reduce to these

approximations to the exponential would not be A-stable.
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CHAPTER 1

THE PROBLEM

1.1 Introduction
The motivation for this thesis is the desire to obtain
numeric, rather than analytic, solutions for the initial value

problem

%% = f(x,y), y(a) = Ya (1.1.1)

as x ranges from a to b.

We might attempt to obtain an approximation to the
solution of (1.1.1) by replacing f(x,y) by its Taylor's series
expansion about (a,ya). Thus we obtain the equivalent initial
value problem

of af
— + (y-y )

dy _ -
f(a,va) + (x a)sX (a’ya) R (a,yq) + ...

dx ?

y(a) = Y- (1.1.2)

Neglecting all but the first three terms on the right in (1.1.2),

we obtain the initial value problem

dy -
e A + Bx + Cy, y(a) Yo (1.1.3)
where
- 3f _ af
A= (f a3x " Ya By) (a,ya) ’
of
B = o (a,y_) °
oo Of
Iy | (a,y,)



whose solution for x close enough to a is an approximation to
the solution of the original initial value problem (1.1.1).

Now the differential equation in (1.1.3) is a lincar
first order differential equation and assuming that C # 0 it
can be solved exactly [53, p. 56] giving the solution

y = - -+1—3—2—+§’5 + ¢ et¥ (1.1.4)

where Cl is the constant of integration which is chosen to

satisfy the initial condition y(a) = v,

1f instead of solving (1.1.3) exactly, we were to solve
it by some numerical method, we would want that method to produce
a solution which was in close agreement with the actual solution
given in (1.1.4). Restricting our attention for the moment to

Runge-Kutta methods, we would require that the Runge-Kutta method

give a satisfactory approximation to the linear term.

+ Bx

C

AL D
C

(@]

Of course, this term will be given exactly by any Runge-Kutta
process of order one or greater. Our Runge-Kutta pnrocess must

. . Cx .
also approximate Lle with sufficient accuracy to satisfy our

needs. Thus we are led to considering the special initial
value problem
- CY’ Y(O) = Cl = YO (l'l°5)

whose solution is y = C eCX. We now must study how well any
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particular numerical process solves this particular problem.
If we assume that x 2 0, then our investigation
naturally falls into two distinct parts, C > 0 and C < O,
Cilearly any numerical approximation, Em(x), to the exponential
function should satisfy at least certain basic requirements.

For example, for C > 0 and x real we would like

(a) Em(CX) - exp(cx) = O((CX)WH-]_) n

v
=

(b) Em(CX) =1 for x 2 0
(c) hm(Cx) > ® ag x - @

while for C < 0 we would like property (a) to again be satisifed

and we would also like

(d) [Em(Cx)[ <1 for x =2 0
(e) E (Cx) » 0 as x -+ o
m
We adopt the notation that x = nh and Y, is the
corresponding approximation to y(xn) produced by some numerical

procedure. Then, considering the classical 4th order Runge-Kutta

process

K, = f(xn,yn)

1
K, = f(x -+ lh y_ + 1hK )]
2 n 2 °n 271

(1.1.6)

1 1,
K3 = f(xn + Eh’yn + Eth)

K4 = r(xn + h,yn + th)

h
—yn+6(Kl+2K + 2K, + K

Y+l 2 3 4
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as an example, we obtain on solving (1.1.5) with a step size

9
of h that y(h) = Cle“h is approximated by vy = E4(Ch)y0, where

2 3 4
(Ch) (Ch) (Ch)
TR Y

E4(Ch) =1+ Ch +

Now for C > 0 we see that properties (a), (b), and (c)
are all satisfied. On the other hand, for C < 0 property (a)
is satisfied but propercy (d) is satisfied only if 0 > Ch > -2.8
(approx.) and property (e) is not satisfied at all.

If we were to make additional applications of the
Runge-Kutta process we obtain the result that y(nh) = ClenCh is
approximated by v, = Cl[E4(Ch)]nyO and hence for C < 0, Ch < ~-2.8
(approx.) the sequence {yn} does not converge to zero but instead
gets large without bound. We describe this unsatisfactory behavior
by saying that the 4th order Runge-Kutta process is unstable for
Ch < -2.8 (approx.).

As the above discussion would suggest, the classical
4th order Runge-Kutta process is not a very satisfactory procedure
for solving (1.1.5) for values of C which are negative and large
in absolute value since h must be chosen very small to satisfy
property (d). Unfortunately, this same problem will occur with
any explicit Runge-Kutta process because Em(Ch) will be a poly-
nomial of degree m or greater and hence for ]Ch] large enough,
]Em(Ch)} > 1 and both property (d) and (e) will not be satisfied.
Although we will not go into details here, 1t is noted that this

same problem is encountered when using almost all of the classical

one step and multistep methods for numerical solution of differential



equations, two exceptions being

It

h
+ b - -
Y1 = Yn t 3 Gy )+ £0e g5y 1)) (1.1.7)

and

=y +h f(x ) (1.1.8)

Ykl n+1° nt+l
as noted by Dahlquist [11, 12].
Since it is reasonable to expect that problems will
arise where C is negative and large in absolute value, a natural
course is to attempt to devise methods which will give approximate
solutions to (1.1.5) which do satisfy properties (d) and (e).
Rather than carry this discussion farther, however, we will
first generalize the problem and introduce some notation and

definitions which will be used throughout the remainder of this

thesis.

1.2 The Problem

In this thesis we will be interested in the obvious
generalization of the problem given in (1.1.5), that is, in

the numerical solution of the differential equation

1 > K .
& - By, v(0) = ;O (1.2.1)

where B is a real square matrix whose eigenvalues are distinct.

Since the solution of (1.2.1) is

>
y = exp(Bx) Yo
n
= 1 Al (1.2.2)
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where for cach i, a; is a column vector of coefficients and
Ay is the ith eigenvalue of the n by n matrix B, we have an
immediate generalization of the problem discussed in the
introduction. That is, we might wish to find a numerical
procedure which will approximate each of the exponential terms
in the sum satisfactorily.

If the eigenvalues were all real and negative and we
were, for example, to use the classical 4th order Runge-Kutta

process in its vector form, we would need to choose h so that

hi max £ 2.8 (approx.)

where

Thus, a very small step'size might be required simply to keep
errors in the computation of a term which was approaching zero
quickly from destroying the accuracy of the entire solution.
Having generalized the problem given in (1.1.5) to
the one given in (1.2.1) it is also natural to remove the
restriction that C (and hence the Xi) be real. 1In particular,
we will be most interested in the case where all the eigenvalues
of B have negative real parts and where the modulus of at least
one of these eigenvalues is large as compared with the rest.
Such a system of differential equations is said to be stiff [10].
Allowing complex eigenvalues requires a slight
reformulation of the conditions which we would like an approxi-

mation to the exponential function to satisfy. We include these



modifications in the following definitions.

Definition 1.1

An approximation Em(z) to the exponential function is
A-acceptable if and only if for any complex number z, such that
Re(z) < 0, we satisfy the following two properties:

Property (1)

E (2) - exp(z) = 0(z"™ D),

v
o

Property (2)

IA
o

Em(z)1 < 1 for Re(z)

Definition 1.2

An approximation Em(z) to the exponential function is
L-acceptable (left-acceptable) if and only if it is A-acceptable
and further it satisfies the following property:

Property (3)

[Em(z)f -+ 0 as Re(z) -+ —w,

It is also natural to generalize the idea of stability
which was introduced previously so that it also covers the entire
left half plane. We do this by introducing Dahlquist's definition

of A-stabilicy [11].

Definition 1.3

A k-step method is called A-stable, if all of its
solutions tend to zero, as n » w, when the method is applied with

fixed positive h to any differential equation of the form

1
é% = qy (1.2.3)



where g is a complex constant with negative real part.
Alchough Dahlquist introduced this definition in the
context of a study of the stability of the linear multistep

process

‘ + ..+ aoyn + hi(b ve. bOfn)

yn+k - ak—lyn+k—l kfn+k +

it can clearly be applied to any numerical method for solving
{1.2.3). In particular, any numerical method which reduces to
an A—accepﬁable or an L-acceptable approximation to the exponential
solution of (1.2.3) will be an A-stable method. On the other hand,
a numeric procedure which is A-stable will produce an A-acceptable
approximation but it need not reduce to an approximation which
satisfies Property (3) and hence A-stability does not imply
L-acceptability.

In this thesis it will be showa that there is a class
of A-acceptable approximations to the exponential (Chapter 2)
and that there [s also a class of L~acceptable approximations to
the exponential function (Chapter 5). Furcher, it will be shown
that numerical procedures exist which reduce to A-acceptable and
L-acceptable approximations to the exponential when solving
(1.2.3) (Chapter 4). Finally, some indications of the practical
application of these processes will be given (Chapter 5).

Before turning our attention to these items, some
additional definitions and theorems which will be needed in later

chapters of this thesis will be given.



1.3 Preliminary Definitions and Theorems

The following definitions and theorems are presented
for reference. They are, for the most part, well known ideas
and results which we shall require in later chapters of this
thesis. Because of this, the proofs will be omitted and instead
only a reference will be given where a proof of the theorem can
be found.

Definition 1.4

The neighborhood of a point z, is the set of points z

0

such that |z - z.] < &, & > 0,

ol

Definition 1.5

A set of points in the plane is called open if every
point, z, of the set has a neighborhood lving entirely within
the set.

Definition 1.6

A nonempty ovnen set in the plane is called a domain if
and only if any two points in the set can be joined by a polygon
which lies in the set.

Definition 1.7

A function f = f(2) is analytic at z = z, if and only

if its derivative, f'(z), exists not only at 2 but at every point

z in a neighborhood of 2y

Definition 1.8

Let f(z) = P(z)/Q(z) where P(zO) # 0 if Q(zo) = 0.

Then the zeros of Q(z) are called poles of f(z).
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Definition 1.9

A function f(z) which is analytic in a domain D, except
for poles, is said to be meromorphic in D.

A major problem which will confront us in the next two
chapters is finding the location of the zeros of a polynomial.
The first six theorems which are given deal with this problem.

Theorem 1.1 (Lucus)

All the critical points of a non-constant polynomial £
lie in the convex hull, H, of the set of zeros of f.
Proof: [47, p. 22]

Theorem 1.2 (Cauchy)

All the zeros of

f(z) = ag ta;z+ ... taz, a # 0,

lie in the circle
lz] = 1+ ™ KDy 20, (n-1)
i L k an s y s s ey .

Proof: {47, p. 123]
Theorem 1.3
All the zeros of f(z) = a. +a.z + ... + anzn lie

on or outside the circle

JZI"min———'j)—}—-— k=1, 2

= R =1, 2, ..., n.
20| * 2]

Proof: [47, p. 126]

Definition 1.10

A curve C is said to be a simple closed curve provided

it is representable in the form
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x = @(t), v = ¥(t), t, £t <t (1.3.1)

where @(t) and ¥(t) are continuous and z(t) = @) + i¥(r)

satisfies the conditions

z(a) = 2(8), o+ 8 £, <o < B < t,
and

z(tl) = z(tz), ty % ty-

Definition 1.11

If ¢(cr) and ¥(t) in (1.3.1) have continuous derivatives
in £, <t < t, then the curve z = z(t), ty <t < ty is said to

be smooth.

Definition 1.12

If a curve C is composed of a finite number of arcs,
each of which is smooth, we say that C is piecewise smooth.
Theorem 1.4

Let f(z) be meormorphic inside and on a simple closed
curve C which does not pass through any of the zeros or poles

of f(z). Then

1 £'(z) ~ ]
7t Jo TECzy 97 = No(B) - Po(E)

where Nc(f) and Pc(f) are respectively the number of zeros and
poles of f(z) inside C.

Proof: [1, p. 123], [15, p. 242]
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Theorem 1.5
T n

If f(z) = 2 akzk, 8 + n and all the zeros of f(z)
' 1
k=0
lie in a circular region C, then every zero Z of the polynomial

fl(z) = Blf(z) -z f'(2)

may be written in the form Z = z or 1In the form

where z is a point of C.
Proof: [47, p. 69]

Theorem 1.6

Let

P(z) = 2"+ a]zn-l + a zn_—2 + ... + a

be a polynomial with real coefficients and let
Q(z) = a.z + a

and

n n-2 1~
z -+ a,z + a 2! 4

R(z) 5 4

so that P(z) = R(z) + Q(z). Then all the zeros of P(z) have

negative real parts if and only if

Qlz) _ 1
R(z) c.z + 1
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where the coefficientcs €15 €y, »ew, C are all positive.
Prooi: [601, [61, pp. 174-178], [24]

Theorem 1.7 (Maximum Modulus Theorem)

If f(z) is analytic inside and on a simple closed curve
{ and is not identically equal to a constant, then the maximum
value of (f(z)‘ occurs on C.
Proof: [1, p. 108]

We next define whar we mean by the index of a point
with respect to a curve vy.

Definition 1.13

If a piecewise differentiable closed curve y does not
pass through the point a, then the index of a with respect to

v, na,y), is defined to be

n(a,y) = 5— [ -

Theorem 1.8
Let D be the domain bounded by a simple closed curve
C and Jlet y be any plecewise smooth curve in D. Then if
a 4 D, n{a,y; = 0.
Proof: [1, p. 116]
The next theorem states when and how we may change the
variable of integration in a complex integral.
Theorem 1.9
Let Cw be a piecewise smooth curve from vy to v, in the
w plane and let f(w) be continuous on CW. Let w = g(z) be analytic

in a domain D of the z plane and let Cz:



z = z(t), t., <t € ¢t

be a piecewise smooth curve from z, = z(t]) to z

1 = (t2) in D.

2

Let g(zl) = v, and 8(22) =y As z traces C2 once in the given

5
direction, let w = g(z) trace Cw once in the given direction.

Then

Y 2 dw

J flw)dw = J f(g(z))5dz.
LW . Z. dz
Cc 1 Gl

W z

Proof: [32, p. 5191, [15, p. 242]

Finally we give a result concerning the form of the
Padé approximations to the exponential function which we will
find very useful in subsequeat chapters.

Theorem 1.10

Let P_j 1'(z) be the unique Pade approximation to the
do i

exponential function with numerator N, l(z) of degree k and
Jsk

denominator Dj k(z) of degree j. Then

3

(§ +k - m)! k! m
i,k 0 (i + 1! m! (k- m)!&

Z
—~
N
~
it
o~

i (g +k -m?t j!

(- m
0 G+ m! (G - mt

1
~

1)) k(z)

: 2
Js )

Proof: [30}, [50]

An immediate Corollary to Theorem 1.10 is the following.
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Corollary 1.1

.(-2).

Dj,k(z) - Nk,J

This completes our list of preliminary theorems and
definitions and we can now turn our attention to the problem of
finding A-acceptable and L-acceptable approximations to the

exponential function.
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CHAPTER 2

PREVIOUSLY KNOWN RESULTS

2.1 Approximating the Exponential Function

Since the exponential function is encountered in a
wide variety of situations, it is quite natural that a great
deal of effort has becn cxpended on devising ways of producing
satisfactory numerical approximations for it under a wide variety
of circumstances [9], [25], [45]. Most of this effort, however,
has Been directed to the evaluation of the exponential function
for only real arguments. This is quite natural since exponentials
with complex arguments which occur explicitly can be rewritten

in terms of real arguments by employing the relation

Z - 0X+iy = ex(cos[y] + i sin{y]) (2.1.1)

where x and y are real [1]. While this reclation would be useful
when solving (1.2.3) by several of the techniques described in
the last section of this chapter (see equations (2.5.13) and
(2.5.16)), it would be of little use in solving the general
problem (1.2.1).

A second major difficulty with most of the approximations
which are considered is that they produce good approximations to
the exponential only in some restricted interval. For example, in
[9] the interval {[-In 2, In 2] is used. VFor explicit computation
on a binary machine this is quite satisfactory since by using the

fact that
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ex _ 2n2r - 2n(e1n 2)r - 2n(er In 2) (2.1.2)
where

X 1og2 e =n+ r, n integer, -1 <r <1 (2.1.3)
accurate values of e* can be easily produced if el In 2 can be

computed, since the factor 2" results in nothing more than a
simple shift in exponent. As suggested by Lawson [36], this
idea can be generalized to matrix problems through the use of
an argument reduction scheme of the form
m
-m,,\2
(exp(2 A)) = exp(A). (2.1.4)
We note that this technique, although allowing us to effectively
extend the stability region for the explicit computation of eA,
does not eliminate the need for A-acceptable and L-acceptable
. . z
approximations for e .
Now the most general representation of the exponential

function would be the Taylor's series

-1+ 1 = (2.1.5)
which is often used as its definition [29, p. 138]. If (2.1.5)
was used to compute ez, computational limitations would require
that we truncate the series expansion after a specified number
of terms. But then, as noted previously, we do not obtain
satisfactory values for e? for values of z which satisfy the
conditions; ]z] is large, Re(z) < 0. One method of partially

overcoming this shortcoming is to employ a numerical procedure
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which, when solving (1.1.5), reduces to the Taylor's series
expansion of the exponential to a specified number of terms plus
one or more corrective terms which extend the stability region.
Several papers by Lawson [35, 37] employ this feature. Thus,
for example, Lawson's 5th order Runge-Kutta method when solving

(1.1.5) gives

6
+ 0.5625 L&h) |

= o (2.1.6)

which agrees with the Taylor's series expansion to terms in h

but also contains one additional corrective term. As can be

seen in [35] the extra term allows the dimensions of the stability
region to be roughly doubled in size as compared with using only
the Taylor's series to h5.

Clearly methods which rely on such techniques can be
of only limited effectiveness because the high order terms in
z = (Ch) will eventually dominate if |z| is allowed to become
large enough. Thus, such methods will never produce either an
A-acceptable or an L-acceptable approximation to the exponential,
The way to overcome this problem is to introduce rational
approximations to the exponential.

Clearly some approximation criterion must be adopted
when we introduce rational approximations to the exponential
function. The order of the approximation is taken to be the
exponent of z on the highest power term to which we attain
agreement with the Taylor's series (2.1.4) when the indicated

division is performed. Thus, the rational approximation
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(1 + 2/2)/(1 - z/2) is of order 2 since

TN

z
2
while that of (1 + 2z)/(l + z) is of order 1 because

3
1 + 22 2 z
172" 1+ 2z+ 2" + T .

Naturally we would like to get the highest order of accuracy
possible with a given expenditure of effort, so we are led quite

naturally to the Pade approximations to the exponential.

2.2 Pade Approximations to the Exponential

The first few entries in the table of Pade approximations
to the exponential function are given in Table 2.1 while the form
of the general entry in the table was given previously in Theorem
1.10. As can be seen from the table, Pj k(z) has a numerator

]

Nj,k(z) of degree k and a denominator Di,k(z) of degree j.
The basic property of Pj,k(z) for all j = 0, k = 0, is
that each approximation is of order (j + k) [61, p. 394]. It
can also be shown that this is the highest order obtainable with
a rational approximation using polynomials of degree k and j
respectively for the numerator and denominator [61, p. 378].
Furthermore, it can be shown that each of these approximations
is unique except for a common constant factor which multiplies
both the numerator and denominator [61, p. 378]. Since we are

interested in finding A-acceptable and L-acceptable approximations

for the exponential, it is clear that only some of the Pade
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k
i 0 1 2
2
0 1 1+ z l+z+—§~
) 2
z z z
) 1 1+ 5 1+ 3t
z z
1- 2z 1 -5 1 - 3
z z 22
, 1 ]+‘3— 1+—2—+1—§
22 2z 22 z 22
L-z+3 l-73+g L-5+13
Table 2.1
P, k(z) - Pade Approximations to the Exponential

b

approximations will be of interest to us. In particular, only

those approximations Pj,k(z) for which j z k need be considered

in looking for A-acceptable approximations. This follows at

once from the fact that if the numerator is of higher power than

the denominator, then for some z, Iz] large, Re(z) < 0, the norm

of the numerator will be larger than the norm of the denominator

and Property (2), which is required for A-acceptablity, will not

hold. By the same type of argument it also follows that if there

are any Padé approximations to the exponential which are L-acceptable,

they must come from the set Pj k(z), i > k.
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2.3 A Set of A-acceptable Approximations

Studying the entries in Table 2.1, it is obvious at
once that there is at least one A-acceptable approximation to
the exponential, namely PO O(z). A little further investigation

b

and the computation of
2 2
IN, .(2)]° - |D. .(2)] (2.2.1)
Js] 353

for § = 1, 2, 3 will show that le 1_(z)[ <1 for Re(z) <0, j =1,

L

2, 3 and thus P (z), P2 2(2), and P (z) are also A-acceptable
3

1,1 3,3

approximations to the exponential function. Although this
procedure could be continued with other values of j, a more
general proof which establishes that P, ,(z), j =1, 2, 3,
>.

is A~acceptable can be given [3].

The basic idea of the proof is quite simple and is as
follows. Since P, .(z), for any j, is the quotient of two poly-

>

nomials, it will be analytic in the entire left half plane if
its denominator Dj’:(z) has no zeros in the left half plane.
Assuming that this is the case, by the Maximum Modulus Theorem
(Theorem 1.7) we would then have that the maximum value of
IPj,j(z)l occurs on the boundary of the semicircular region

bounded by the imaginary axis from -R to R and the semicircle

Iz’ = R, Re(z) - 0. TFrom the form of Pi i(Z) we have that
Jd 0

P, .(z)] » 1 as R » =
‘ J’J( )|
and by Corollary 1.1

le j(iy)l =1 for all real y



since Dj,j(iy) = Nj’j(—iy). Thus IPj,j(z)] < 1 for Re(z) < 0.
As a consequence of the above we have

For any j, Pj,j(z) is A-acceptable provided it is
analytic in the left half plane.

We must now determine which of the P, ,(z) are analytic

in the entire left half plane. By Corollary 1.1 and the discussion
preceding Lemma 2.1 this is equivalent to determining for which

values of j we satisfy the condition that all the zeros of N,  (z)

Js

are in the left half plane. We choose to work with N, 1.(z) rather

than Di 1.(z) because there are no changes of sign to keep track of

in Nj i(z). In particular, we shall ﬁrove
J
Theorem 2.1
For all j = 0, all the zeros of N, .(z) are in the open
Jdoy

left half plane.

Proof

This is a well known result from the theory of passive
networks [3]. Decomposing Nj j(z) into two polynomials ei(z) and
’ N
fj(z), which contain respectively only the even powered and odd

powered terms of Nj j(z) we have that

N. .(z) .
o = A3 Ty 0(|z!23+1)
N, .(-z)
353
e.(z) + f,(z) .
_ 3 i 23+1
STy T oy t o=l
i j
g.(z) +1 9
= j+l
= gj(z) — + O(]zl )

where gj(z) = ej(Z)/fj(Z)-
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Multiplying through by (gj(z) - 1) and collecting

terms, we obtain

eZ + 1
ez -1

gi(z) + 0(]zfzj)

coth(%) + O(]zlzj).

Now the function coth(z) has a continued fraction expansion

given by

a—

|

Coth(z) = — +

N
N
J—

SR
N |~
R

[62, p. 303] and it can be shown [58] that gj(2z) is the jth

continued fraction approximation to coth(z). Using the fact

that

fj(z) 1
ej(Z) - gj(Z)

we have that

e £
E 1= =2 + 1
z ei(ED ej(EO 3z + 1
‘ 5z +

5Dz

and thus by Theorem 1.6
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I NS IO PP 1,
() = 2N, () = 25 e ()]

has all of its zeros in the left half plane. But z" + 0 in the
left half plane, thus Nj,j(%) has all of its zeros in the left
half plane. But the mapping %-+ z maps the left half plane into
the left half plane so that it follows at once that Nj,j(z) also
has all of its zeros in the left half plane.

Combining the results of Theorem 2.1 with those of
Lemma 2.1 and Corollary 1.1 we now have
Theorem 2.2

For all j > O, Pj,j(z) is A-acceptable.

Having established that all the diagonal Padé approximations
to the exponential are A-acceptable, we quite naturally turn our

attention to looking for L-acceptable approximations in the below

diagonal entries in the Padé table.

2.4 Some Results on [-acceptable Approximations

Varga [59] has provided a preliminary lemma which might
be useful in our search for L-acceptable approximations. It says

Lemma 2.2

!Pj k(z)l < 1 for z real, 2 < 0 1f and only if j -~ k.

Proof
Since ]P_ (Z)I = O(Zk_j) for z » ]P, (z)l bounded
sk i,k
implies that j = k. Conversely, if j = k, then le k(z)l > INi k(z)l
if

( +k - m)! i . (1 +k - m)! k!
G+r+rramt (3 -m! G+ m (k-m!°

0 < m < k,

which is obviously true.
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This lemma suggests that all below diagonal entries in
the Pade table might be L-acceptable.

Looking again at the entries in Table 2.1 it is obvious
at once that Pl,O(z) is L-acceptable and hence also A-acceptable.
Continuing down the first column of the table we have by direct
O,j(z)’ i=1, 2,3, ..., 23, by
Iverson [31] and Corollary 1.1 that P

computation of the roots of N

(z), PB,O(Z) and P (z)

2,0 4,0

might be L-acceptable since they are analytic in the entire left
half plane and it might be possible to apply the Maximum Modulus
Theorem to them just as we did to P, ,(z).

Js.

Unfortunately P (z) cannot be elther L-acceptable o1

5,0

A-acceptable since N (z) has some of its zeros in the right hatfl

0,5

planc and thus D5 O(z) has zeros in the left half plane and thercfore
|P5 0(z)! is not bounded in the left half plane.

Since NO (z) = d

s ] ;{E N(),j+](Z) for all J - O’ it also

follows from Theorem 1.1 that for all j =z 5, N_. . (z) has zeros in

0,7

the right half plane and hence for j z 5, Di O(z) has zeros in the

g

left half plane. Thus we have
Lemma 2.3

For all j - 5, P (z) 1s neither L-acceptable nor

3,0

A-acceptable.
It scems natural to attempt to extend Lemma 2.3 by

considering P,1 k(z) for values of k other than zero. Using the

method of Routh [56, 57] as given in Wall [60] this author computed
the number of zeros in the left half plane for all D, k(z) of

interest for 0 < j = 20, 0 < k < 20. The results of these

computations are shown in Table 2.2
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i 0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
0 0
] 0 0
2 0 0 O

4 0 0 0 0 O

5 12 0 0 0 0 O

10 4 2 2 2 0 0 0O O O O O
11 4 2 2 2 2 0 0 O O 0 0 O
12 4 4 2 2 2 2 0 0 0 0 0 0 O

13 * 4 2 2 2 2 2 0 0 0 0 0 0 0

15 * % % 4 2 2 2 2 0 0 0 0 0 0 0 O
16 A % % % 2 2 2 2 2 0 0 0 0 0 0 0 0
17 * k& k% 2 2 2 2 2 0 0 0 0 0 0 0 0

18 * k& k * % 2 2 2 2 2 0 0 0 0 0 0 0 O

20 * % %k * kx * * % 2 9

N
[

6 0 06 0 0 0 0 0 0

Table 2.2

The number of zeros of Dj k(z) in the left half plane

(* indicates 2 or more zeros)
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From the results in Table 2.2 it would seem that we
might be safe in stating the following conjecture

Conjecture 2.1

All entries P

k(z) on or above the fourth subdiagnoal
3>

in the Padé table of rational approximations to the exponential
function are analytic in the entire left half plane.
From Table 2.2 this is seen to be true for j < 20, k < 20.
As a consequence we might suspect that the first four
subdiagonal sets of Pade approximations might be L-acceptable. 1In
the next chapter we will see that although this is not quite the
case, at least the first two sets of subdiagonal approximations
are L-acceptable. 1In establishing this result, we will also verify
the conjecture for at least all first and second subdiagonal

approximations.

2.5 Some A-stable Methods

The literature contains a number of examples of A-stable
methods. Probably the best known A-stable methods are (1.1.7)
which has an error of O(h3) and (1.1.8) which has an error of
O(h2) and which reduce to Pl,l(qh) and Pl,O(qh) respectively when
solving (1.2.3). If higher derivatives are allowed, then an obvious

generalization of (1.1.7) would be the method

2
= b_ ' ' h e K
which has an error of O(hS). Ralston [52, p. 212] has observed

that this method is A-stable and this is clearly the case since

it reduces to P2 2(qh) when solving (1.2.3).
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Davidson [13] has recently proposed a method

specifically designed for equations of the form
== A? + Z(X) (2.5.2)

which reduées to a form like that of (2.5.1), but with other
coefficients, when solving (1.2.3). It is also A-stable. Since
it requires third derivatives of y at X and X 41 and also has an
error of O(hs) it may not be as efficient as (2.5.1).

Both method (1.1.7) and (2.5.1) suffer from the unfortunate
feature that when solving (1.2.3) the approximation to eqh approaches
one in absolute value as h » «. (1.1.8) does not have this
unfortunate property but does suffer from a larger error term. In
an effort to overcome this difficulty, Makinson [46] considered the
generalization of (2.5.1) to the form
(), (D)

i
h i}
1 Cajy ] * By, ) g+ T (2.5.3)

<
|
<1
+

ntl ~ n

o<

where §n = y(nh) and T is the truncation error in the process.

With v = 2 he establishes that a one parameter family of the form

I il | _ ot
Y41 = Yy + h(uly + {1 al}yn)

n+l
(2.5.4)
+ —g— ({—]34 - al}_?;H + {—g- - a]}§;) + T
can be found where
T = - fj;;;iﬁiki h4 y(a)(e) (2.5.5)

24
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where x 27 0 X4 assuming that y is suitably differentiable.
n n+1 '

Setting o, = ( 1 + /3/3) Makinson then establishes that the

L
resulting process is A-stable and when solving (1.2.3) with
large h the exponential is approximated by (1 - /3) which is a
little better than either (1.1.7) or (2.5.1).

Repeating this process for v = 3, Makinson finds the

following two parameter family with error of O(hS).

== v 9! - .
Yopp = Yo F 0oy + {1 - agdy D)

2

_1:\___ ]l _ on
+ 5 (a2yn+].+ {1 - 2a1 uz]yn) (2.5.6)
h3 -~
e — _ " ' . _ St
+ 24({1 Aul 6a2}yn+l + {3 8al 6u2}yn )
+ T
where
T=-(2- 5a, -5 )h5 (5 () (2.5.7)
2 7 0% T P2%EY ' 2
Setting a = 3.205 {(approx.) and a, = -6.851 (approx.) he finds

that the resulting process is also A-gtable. Tn this case, for
large values of h, 9" is approximated by -.635.

Liniger and Willoughby [39] have also recently proposed
several new A-stable methods based on using (2.5.3) with oy # Bi.

A somewhat different implicit technique for solving
the differential equation - f(y) has been proposed by Rosenbrock
[541, [55, p. 180]. Letting A(;) denote the Jacobian matrix (%59

this method can be represented in the form
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i-1 i-1
> > . > -> . > >
K, = h[?(yn +ox binj) +aAly + 0o KOK)
j=1 j=1
1 =1, 2, ..., v (2.5.8)
v
¥ =y + T wk
yn+l yn . ii
i=1

where the a., bii’ Cii’ and wy are constants whose values are

determined by the accuracy desired in the process. In particular,

for .the two stage process

> . > >
K, = h[f(yn) + alA(yn)Kl]
> > > > S>>
= 2
K, h[?(yn + by KD + aA ey KK ] (2.5.9)

v =y + w.k + wkK
Yokl = Y Wit T Wy

Rosenbrock establishes that the following conditions must be
satisfied to attain agreement to the power of h indicated in the

Taylor's series:

h: wl -+ wz = 1
2 1
h™: mlal + ‘1)2(32 + b21) = "2‘
f a’ + w(a. + (a. + a)b..) = =
W1 T wolay 41 7 3091 6
h3:<

12 1
wylageyy + 5050 =%

N




- 31 -

3 3 2 2 _ 1
(@lal + wz(a2 + (al + a,a, + aZ)bZl) =57
2 1
woay(ayey + %bZl) =7
hal\
( v al + a,b + b2)——L
Waldy8rCo T @€ T 499011 T #1101 T 7%
3 1
| “2 2a2°21 + lb =0
e then shows that with
a; = 1+ /6/6
a, =1- /676
b21 = cyq = 0.173 (approx.) (2.5.10)
wy = -0.413 (approx.)
w, = 1.413 (approx.)

, . 4 .
we obtain a process with error of 0(h ') and the resulting process

approximates exp(qh) with the rational expression

2 2
1-gqh - 3-(qh)

E_ (gh) =
3 1 - 2qh + -?;(qh)2

Tt can be shown that IE3(qh)[ < 1 for all h if Re(q) - 0 and
hence the process given by (2.5.8) and (2.5.10) is A-stable.
qh

As h > < we also see that e is approximated by -0.8.

Calahan [8] has noted that letting
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2 + /3
a = a, = 3 = 0.788 (approx.)
b21 = -1.154 (approx.)
021 =0
Wy = 0.75
Wy = 0.25

another method with error of O(ha) is obtained which is also
A-stable. We note that the approximation to the exponential
which this choice of constants produces is identical to that
produced by Makinson's 3rd order method (2.5.3) with a, = 1+ /3/3
which was discussed previously.

Calahan implies that this process would be computationally
superior to other methods based on Rosenbrock's process because
his choice of constants requires the computation of only one

inverse matrix

(1 + aay N7

- -5
in order to compute Kl and K2 and produce a third order process

while other methods, such as (2.5.10) require computing the

above inverse as well as

->

, -1
(1 + azA(yn + c21k1))

At least one other A-stable process [8] can be based

on (2.5.8). It is given by letting
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al =a, = 0.5
b = c = 0.0
21 21 (2.5.12)
ml = 1.0
wy = 0.0

and can be seen to reduce to P1 l(qh) when solving (1.2.3).

b
Although it also requires the computation of only one inverse
matrix, it is only a second order process and thus is not as
attractive as (2.5.11).

As another example, Lawson [36] has shown that explicit
Runge-Kutta processes which can never be A-stable can be trans-
formed into A-stable processes while retaining their basic

>
o ' . dy + -
Runge-Kutta qualities. Lawson's method for solving v f(x,y)

is as follows.

r > >
Th o= f _ .
i f(xn,yn) Ay s
p* = exp(c.hA).y + higl ( hATK*
p¥ = exp(c, Y j;laijexp[ e, - cj) ;
‘ (2.5.13)
> - > >
* = * - * -G
Ki f(xn + Cih’pi) A.pi , i 1, 2, ..., v
Rd d v -
- : - 1 K%
Yokl exp(hA).yn + hii] biexp[(l ci)hAJ Ki

where the Cis aii’ bi are chosen to give a v stage Runge-Kutta

process of order <v when A = 0 and A is in general a real matrix

whose entries will depend in some way on g(x,;).
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For example, if
- -> > > -
fx,y) = BY + U(x,)

where B is a constant matrix having eigenvalues with negative
real parts and we assume that the spectral radius of B is much
larger than a Lipschitz constant for 3(x,§) then A would probably
be set equal to B. Under this assumption, it is clear that

solving (1.2.3) exactly using (2.5.13) we would obtain

n+l
Yor1 = [exp(qh) ] Yo - (2.5.14)

Now to carry out the steps in (2.5.13) numerically, an approxi-
mation E(z) to the exponential would be needed. Thus in place

of (2.5.14) we would actually have that

Yopy = [E@I™ oy (2.5.15)

It follows at once, as noted by Lawson, that if we use one of
the diagonal Padé approximations to the exponential, then we have
an A-stable process.

Finally, if we restrict ourselves to equations of the
form (2.5.2), then Pope [51], Kuo [33], Legras [38], and Calahan
[7] have all proposed methods based on the fact that (2.5.2) has

the exact solution

X
J(x) = M50) + I ACDT Ly e, (2.5.16)

The various methods proposed by the above authors result from
differing interpretations on how the integral on the right in

(2.5.16) should be evaluated. 1In each case, however, if an
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A-acceptable approximation to the exponential is used, the

resulting process will be A-stable.
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CHAPTER 3

NEW RESULTS

3.1 Introduction

In Chapter 2 we exhibited a class of functions (the
diagonal Padeé approximations to ez) which approximate e” and, in
particular, satisfy Properties (1) and (2). Unfortunately, these
diagonal Pade approximations do not satisfy Property (3). In
this chapter we shall prove that the first two subdiagonal Padé

. . z
>
approximations to e”, namely Pn+l,n(z) and Pn (z), n =z 0, not

+2,n

only satisfy Properties (1) and (2) but also satisfy Property (3).

3.2 Properties (1) and (3)

g4 . 1 ons
ince Pn+1,n(z) and Pn+2,n(z) are rational functions
of z both with polynomials of degree n as numerators and polynomials

of degree nt+l and nt2, respectively, as denominators it follows at

once that Property (3) will be satisfied. Since Pn+l,n(z) and

Pn+2 n(z) are Padé approximations to ez we also have at once that
bl
2z 2n+1
Pn+l,n(z) - e” =0(z )
and
(z) - ez - O(Z2n+2)

Pn+2,n
as z > 0. Hence Property (1) 1is satisfied.
We have only to establish Property (2) to complete the

proof.
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3.3 Establishing Property (2)

To establish that Property (2) holds for the first two
subdiagonal Pade approximations to e? we will proceed in a fashion
similar to that of the previous chapter, in that we will show

irs d
first that Pn+],n(z) and Pn+ ,n(z) are bounded by one on the

2
imaginary axis and second that they are analytic in the left
half plane. Then since they also satisfy Property (3) we can

apply the maximum principle as was done in Chapter 2 to finally

establish Property (2).

3.4 Some Preliminarv Theorems

We begln by establishing the boundedness of Pn+] n(z)
and Pn+2 n(z) on the imaginary axis. Unfortunately neither
Pn+l,n(z) nor Pn+2,n(z) exhibit the symmetry of Pn’n(z) S0 our

proof will require more effort that was the case for the diagonal
Pade approximations. In particular, several preliminary theorems
will be required.

Theorem 3.1

Let Nn n(z) be the numerator and D] n(z) be the denominator
T

3 3

of the nth diagonal Padé approximation Pn n(z) of e®. Then

_ 2

Non(® =Ny (@ + AN o o)
and

D (z) =D (z) + A 2% p (2)

n,n n-1,n-1 n-2,n-2
where

1 A
A = 1! (2n-4)! 1

T (20 (n-2)! © 4(2n-1) (2n-3)
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Proof
Since D (z) = N (-2z) for all n > 0 it suffices to
n,n n,n

prove the theorem only for Nn n(z).
b}

By Theorem 1.10

n
. (2n-k)! n! k
Moo T L T R (ot 2

n-1

_ 1 {(2n-k)! n! k n! n
R RN ¢ T TR = LR E T Nl
Also from Theorem 1.10 we have
N + 22 n! (2n-4)! N
n-1,n-1 (2n)! (n-2)! n-2,n-2
n_l 2 n“2 -
_ g (2n-2-L)! (n-1)! Zk + 2 n! y (2n-4-k)! (0297 (2n-4)! k
oo (20-2)1 k! (n-1-k)! (20)! | _, (a8 kI (n-2-K)! (a=2)!
n-1
1+ %4 1 (2n-2-1)! (n=1)! _ _n! (2n-2-1)! | k  _n!  n
27, o LT k! (a1 T ()t (k-2 (n—k)?fz (2n) !
But

(2n-2-k)! (n-1)! + n! (2n-2-k)!
(2n-2)! k! (n-1-k)! (2n)! (k-2)! (n-k)!

(2n-2-k)! n! {an—l)(Zn)(n—k)

T (20)! k! (n-k)! n + (k>(k—1?}

- ! 1
- (2§§? i'k%ﬁ—gj' {:4n2 - 4nk - 20 + 2k + K© - k}

) (21§)2?—13;k%r!1_{2;z {(ZH‘k*Uun—k)}

___(2n-k)! n!
T (2n)! k! (n-k)!
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But clearly this last equality completes the proof.
Lemma 3.1

Let Fn(z) = Nn’n(z)'Dn n(z). Then Fn(z) has no odd

s

terms.
Proof

Since, by Corollary 1.1, Dnn(z) = Nnn(—z), we have
at once that Fn(z) = Fn(—z). But since Fn is a polynomial

it then has only even powers of z.
Lemma 3.2

N (Z)Dn-l,n—l(z) = Dn’n(-—z)Nn n_1(—2) for all

n,n -1,

The proof follows at once from Corollary 1.1.
Theorem 3.2
For all n 2 1, the only term with an odd power of

z in the product Dn n(z)N (z) is the term of highest

n-1,n-1

power, namely,

D™ ! (n=1)! 22071
(2n)! (2n-2)!

Proof
The proof is by induction. For n = 1 we have
z
Dl,l(z)NO,O(z) = (1 - 5)(1)
and hence the theorem is true for n = 1. Now assume that the

only odd term in Dn—l,n—l(z)Nn—Z,n—2(z) is

-1 -1yt (n-2)t 22073

(2n-2)"!' (2n-4)!
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Then by Lemma 3.2 the only odd term in N (2)D

(z)

n-1,n-1 n-2,n-2
is

- =D (et (n-2)1 22073
(2n-2)! (2n-4)!

From Theorem 3.1

2
Z
DotV g (2 = [Dn—l,n—l Y =D (20-3) Dn~2,n—2} No-1,n-1

2
z

= D1,n-1"n-1,0-1 T 4(20-1) (2n-3)

P2, n-2Nn-1,n-1.

Now by Lemma 3.1 the first term on the right has no odd terms

hence by the induction hypothesis the product has only the odd

term

n(n-1) z° DD (- -2 223 M at (D! 2n-1
(Zn) (2n-2) (2n-1) (2n-3) (20-2)V (2n-4) ! T T (o= °

which was to be shown.

Corolliary 3.1

z
(2n-1) [Dnn(z)Nn—l,n-l(z) - Nnn(Z)Dn—l,n—l(z)]

equals

2
n [-(n—l)! 2"
-1 | (-1 J :

Proof

The result follows at once from Theorem 3.2 and
Lemma 3.2.

We next present four recurrence relations that hold

among various numerators and denominators of the Pade approximation
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to e’ and which have been noted before [52, p. 310].
Lemma 3.3
The following four recurrence relations hold for
the numerators and denominators of the Pade approximations of
i -k

Z . S . = =
e for j,k = 1 and A () (7k=1) and B (70 (4k-1)

(D) Nj,k(z) = Nj,k—l(z) + AZNj—l,k—l(z)
(2) Dj,k(Z) = Dj,k-—l(Z) + Asz_l’k_l(z)
(3) Nj,k(z) = Nj—l,k(z) + BZNj—l,k—l(z)

(4) Dj,k(z) = Dj—l,k(z) + BZDj—l,k—l(z)

Proof

The proof follows at once from the equations defining
D and N.
Lemma 3.4

If z = iy, y real, then Nnn(ly) = Dnn(ly) and
hence D (iy) = N (iy) for all n 2= O.

nn nn

Proof

The proof follows at once from the equations for
D and N.
Theorem 3.3

For all n = 1, if z = 1y, y real, then

2
2 2 (n-1)! 2n
!Dn,n—l(z)l - INn,n-l(z)| = [(Zn—l)!] Y = 0.
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Proof
Using properties (1) and (2) of Lemma 3.3 we have

that for any z

an,n—ll - 1 n,n-l| - Dn,n—an,n—l - Nn,n—an,n—l

z —_ P —
(Dnn ~ 2(2n-1) Dn—l,nelj)<Dnn T 2(2n-1) Dn—l,n—l >
<Nnn - 5T Yol n—£>(: - 3D Yae 1,n- 1J

- ID !2 ]Z]z l
nn 4(2n- 1)2 n-1,n-1

2 Z —
I " 2(2n-1) DnnDn—l,n—l

= e
2(20-1) DnnDn—l,n-—l}
2
2 Iz, 2 z —
- {annl * 72 Mot ae1! T T 270 Mannel,no1

= .
T 202n-D) NnnNn—l,n—l}

Now if z = iy by Corollary 1.1 we have that [N | = |D__|and
nn nn

IN Hence for z = iy we have

n—l,n—].l = an—l,n—ll'

2
an,n—l(iy)l - an,n—l(iy)I2

i

- 2(2n-1) {_ (Ly) N —1,n~l(iy) - Nnn(iy)Nn—]

aeq (1Y)

i

_ Dnn(iy) Dn~1,n_1(iY) + Dnn(iy)Dn_l,n_l(j_y)}
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Apnlying Lemma 3.4 to remove all complements we have

N CI ] L N CO T

n,n-1

B (2ril~1) {Dnn(iy)Nn—l,n—l(iy) B Nnn(iy>Dn~l,n—l(iy)}

Now by Corollary 3.1

12

. n
e =

n,n-1

{ (n-1)! 2n
L(Zn*l)!_

and the theorem is proved.

3.5 A Property of Pn+1 n(z)

2

An immediate consequence of Theorem 3.3 is one of

the results we wished to establish.

Corollary 3.2

The first subdiagonal Padé approximations Pn+l n(z) (n - 0)

z ; , .
of e” are bounded by one on the imaginary axis.

Proof
2 2 . . \
IDn,n—ll an,n—ll 2 0 for z = iy, y real, n 2z 1,
implies
N |
P ntl,n 1 for z = iy, y real, n - 0.
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We can now turn our attention to showing that the

second subdiagonal approximations Pn (n 2 0) are also bounded

+2,n
by 1 on the imaginary axis. To show this we will show that a
theorem analogous to Theorem 3.3 can be established for the

difference of the squares of the norms of Dn and Nn

,n—2 ,n—2
for n > 2. One preliminary theorem will be required.
Lemma 3.5
For all n = 2
1
(1) n,n_z(z) YD ! (4n—2)Nnn(z) - (2n+z)Nn—l,n-l(z)
[
and
o i
1
‘ = ——— - — i
(2) Dn,n—Z(Z) ICHS)) (4n 2)Dnn(z) (2n+z)Dn—l,n—l(z):

We begin by establishing (1). The proof of (2) will
follow by simply replacing N wherever it occurs in the following
proof by D. Using relation (1) of Lemma 3.3 with j = n and k = n-1

and solving for N we obtain
n,n-2

_ _ nz
Noon-2 = Nono1 7 nsD) (202 Mn-1,n-2°

Now applying (1) of Lemma 3.3 twice more, first with j = n and

k = n and then with j = n-1 and k = n-1 and solving for Nn -1

and Nn—l,n—Z we obtain

B _ nz _ nz
Nn,n—2 B [Nnn (2n) (2n-1) Nn-l,n—l} (2n-1) (2n-2) {Nn—],n—l

_ (n-1)z N
(2n-2)(2n-3) n-2,n-2

- AN + ns N
nn (2n-2) "n-1,n-1 2(2n-1) (2n-2)(2n-3) n-2,n-2.

= N
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Now by Theorem 3.1

n22 N __.n N - N
2(2n-1)(2n~-2)(2n-3) n-2,n-2 (n-1) nn n-1,n-1
hence

z n
Nn,n—Z - Nnn T 2(n-1) Nn—l,n—l + (n—l)‘:Nnn - Nn—l,n~1}

1
=-§(;:Iy [(4n—2)Nnn - (2n+z)Nn_l’n_1}

which establishes the lemma.

We now can prove the analog of Theorem 3.3 for the
second subdiagonal Pade approximations.

Theorem 3.4
For all n 2 2, if z = 1y, y real, then
ID 12 IN )|2 (H—Z)!— 2 2n N
S B | N 152 B Iy g Py vy 20.
Proof
Using Lemma 3.5 we have that for any z

2 2 —————
'Dn,n—Z(z)l - INn,n—Z(z)I - Dn,n—2Dn,n—2 - Nn,n—ZNn,n—Z

1

= Z?;:ESQ (4n—2)Dnn - (2n+z)Dn_l’n_l] (4n—2)Dnn - (2n+z)Dn_l’n_1}

L

-

- (4n—-2)Nnn - (2H+Z)Nn—l,n—lJ (4n—2)Nnn - (2nt+z) N

~
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1
4(n-1)2

) 2
- {@(2n-1)2|Dnn|2 + |20z 7D o g

2(2n—l)(2n+z)DnnDn_ - 2(2n—l)(2n+z)DnnD

1,n-1 n-1,n-1
2 2 2 2
- 4(2n-D)7 N |7 - |2ntz | ,Nn~l,n—1}
+ 2(2n—-l)(2n+z)NnnNn_l’n_l + 2(2n-1)(2n+z)NnnN

n-1,n-1 f

Now, just as in Theorem 3.3 we restrict z = iy and apply
Corollary 1.1 and then Lemma 3.4 and obtain

. 2 . 2
Dn,n—2(1Y)] L (iy) |

n,n—2

N
~
N
=
!
—

- D | _ . .
B -1)2 (2n—1y)DnnNn—1,n—l - (2n+1y)NnnDn—l,n—l

I~
~_~

!
o
~

+(2n_iy)NnnDn—1,n—l + (2n+1y)DnnNn_l’n_1]

_ SZE:&A&%XL -
- (n-1) [ DnnNn—l,n—l NnnDn—l,n—l ]

Finally by Corollary 3.1

. 2 . 2
IDn,n--Z(IY)I - ,Nn,n—Z(ly),

2
_@oop? e | et Gy)”
(n-1)2 (2n-1) 1

2
(n=-2)! 2n .
[(2n-2)!} y  ~0

and the theorem is proved.



- 47 -

3.6 A Property of Pn (2)

+2,n

An immediate consequence of Theorem 3.4 is the
second result we wished to establish.

Corollary 3.3

The second subdiagonal Padé approximations Pn

+2’n(z) (n = 0)
of e are bounded by one on the imaginary axis.

The proof is analogous to that of Corollary 3.2.

We might now ask, could we use the techniques employed
above, namely reducing each subdiagonal numerator and denominator
to a representatlion in terms of the diagonal numerators or
denominators, to show that all subdiagonal approximations
Pn+k,n (k = 1) are bounded by one on the imaginary axis? The
answer is no. TIn fact all subdiagonal Padé approximations are
not bounded by one on the imaginary axis as the following theorem
shows.

Lemma 3.6
The Pade approximation PB,O(Z) of e is not bounded

by one for z = iy, y real.

Proof

Since PB,O(Z) = 3 we have that

2 3 !
L R S {(1-{—)2 F oy + 1)) - [1}1
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2 2
Tt is clear that for - /3 <y < /3 }D3,O| - |N3,O' < 0

and hence

|N3,o(iy)|

301" Ty @]

Thus the theorem is proved.
If we apply the techniques used to show that Pn+l,n

and Pn+2,n were bounded on the imaginary axis to Pn+3,n we will
only succeed in generalizing the previous lemma as follows.
Theorem 3.5

For all n > 3,

In Gy |2 - N

n,n-3 (2n-3)!

2
n-1
Gy )% = % - n?+ 20 ‘:Sltiﬁj—il——~}

n,n-3

and hence Pn n_3(iy) is not bounded by one over the interval
b

-V n2 - 2n <y < //nz - 2n for n 2 3.

Proof
We will sketch only briefly the proof of this theorem
since it is proved in the same basic way that Theorem 3.3 and

Theorem 3.4 were proved. We begin by establishing that

_(n -2z -2) z(n + z)

Nn,n—3(z) - (n - 2) Nn—l,n—l(z) + 2(n-2)(2n-3) Nn—Z,n—2(Z)
and ‘
y o {n-z -~ 2) z(n + 2)

=33 = T o Pac1n-1® T T (a3 Pae2,n-2(%)

by using Lemma 3.3, Lemma 3.5 and Theorem 3.1. With these
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2 2
relations for Nn,n—B(z) and Dn,n—S(Z) we compute 'Dn,n—3l - INn,n-3] .
Applying Corollary 1.1, Lemma 3.4, and finally Corollary 3.1 as

we did in Theorem 3.3 we obtain the result given.

3.7 The Analyticity of Pn+1,n(2) and Pn+ (z)

2,n

We now turn our attention to the second result which
must be established if we are to prove that Property (2) holds.
Specifically we must show that Pn+l,n(z) and Pn+2,n(z) for all
n = 0 are analytic in the left half plane. This will require

showing, just as it did for Pn n(z), that the denominators of
3

Pn+1,n(z) and Pn+2,n(z) have no zeros in the left half plane or,

what is equivalent by Corollary 1.1, showing that the numerators

of Pn,n+l(z) and Pn,n+2(z) have all their zeros in the left half

plane. We choose to work with Nn,n+l(z) and Nn,n+2(z) because

(z)

all of their coefficients are positive while those of Dn+l n
b

and D . (z) alternate in sign.

2,n
The most obvious way to attempt to show that the zeros
of Nn,n+l(z) and Nn’n+2(z) are in the left half plane is to apply
the same technique which was used on Nn n(z) in Chapter 2 to show
b
that its zeros were all in the left half plane. Unfortunately, a
little investigation will show that the continued fractions

produced by N (z) and Nn n+2(z) using the technique of Chapter 2
1]

n,ntl

are not easily related to one another, as were those of N n(z),
b

and hence some other method of attack must be found. To this end

we begin by establishing the following theorems.
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Theorem 3.6

For all j = 0, k = 0,

= Gtk41) o
Nk = Tagny Ny (®
Proof
From Theorem 1.10 we have that
. () k;l (4+ktl-m) ! (t1)!
Jt1? oo GHED T ml (krl-m) !
Thus
” () - k;1 (4+krl-m) ! (D! m m-1
ik+1% T oo GHADT m! (kkl-m)!
_ k;1 (iHktl-m) ! (k+1)! m-1
T oy GHeED (me) 1t (kHl-m) !

i

(j+k-m) ! (k+1)! m
m=0 (J+k+D)! m! (k-m)! 2

Kk
_ _(k+1) ) (j+k-m)! k! M
T GHFD . GHOT m! (kem)!
m=0
(k+1)

(3+k+1) Nj,k(z)'

m

The theorem follows at once from this last result.
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Lemma 3.7
The following two relations hold between various
numerators of the Pade approximations of e”

for all j z 0O,

k =z 0.

z
DNy et = Ny 12 e Ny
= Jhk+2 gy - k1

Proof

For the first relation we have

Z
NJ+1 (2 T ) Nj’k(z)
k 3 m k . m
¥ (j+k+1-m)! k! z z (jHk-m)! k! z°
o GHRFD L ml Geem) b 5 Geblbl C o () m! (k) !
S 1e s [-(j+k+l'm)! ki 2 } + Ik;l Gremt k2™ g 26T i
P ] 1 - \ L B ; ; : —_—
nop| GHHD T mt (k-m) ! meg (GFFD Y mb (k-m) ! G T
=1+ ; (j+k+1-m)! k! zm N g (j+k+1-m) ! k! zm j' zk+l
L GHAD Tl Gemt TP GHAD T (D! (Rrlemy T (kD |
: o k+1
(Hk+1-m) ! k! ( \ . .
=1+ i - T
il (GHk+1) ! (m) ! (k+1-m)! LFk+l m) + (m)r z iy
= 1 + ;  (JtkHl-m) ! (k+1)! m 1 k+]
1 Gkt m! (k+l-m)! (J+k+l)‘
k+1 (Jtk+1-m) ! (k+1)! o

0 (F+k+1)! m! (k+1l-m)!

1,k+1(z)
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For the second relation we have

k42 _ ktl
1 Ve (P T 5T Va1 P
2 S Gaeemt G 20 kel B Gkt lem)! ()1 2"
_ i G

3 o 0 ' ' - ' - . . v - ' ' T —_ va‘;‘ t
j+1 =0 (i+k4+2) ! m! (k+1-m)! i+l 1=0 Gi+k+1) !t (e !

15 [ GHker2-m) 1 (eI ! (k- t (o)t | m
j+1 0 )

GHk+1) ! m! (ktl-m)!  (§rk+1) ! m! (k-m)!

i1 (kD! Kkl
(G+k+1) !

. i
I T (jrk+l-m) ! (k+1)! ) '’ a1 m
=T miO G D) 1wt Cerlomy 1 ) GFkdZ=m) = (etl-m)y 2

; it (k+1)! Zk+1
(F+k+1)!

(jtk+l-m) ! (k+1)! m - N
G+ ! m! (k#l-m)! ? i, k+1

(2)

Applying Theorem 3.6 to relation (2) of Lemma 3.7 we

have at once that

- Jtkt2 N
Ny k1 (2 31 Nj+1,k+1(z) AP FEIRWELC)

Noting that this equation is also trivially satisifed if k = -1
we have the following corollary.

Corollary 3.4

For all j =2 0, k 2 0,
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j+k+ )
Ny (2) = {: 341,k Ni k(z?}

Substitution of the result of Corollary 3.4 into the
first relation in Lemma 3.7 now gives a result which will be very
useful, namely,

Theorem 3.7

For all j =0, k 2 0,

z z ' ]
EREA {1 * <j+1>} Y@ T Gy e

In particular, we will use the fact that for j = n,

k = ntl, n 2 0, we have that

Z Z [} ,
Nn,n+2(z) = [} * (n+1)} Nn+l,n+l(z) - TEIET'Nn+1,n+1(“)'

1f we now define Gn(z) to be

6 (z) = Nn,n+2(z) _ { -(n+l) _i} + N1'1+1z +1(Z)
n ~Z (z) z Norl, +1(‘)

o1 Va1, n+1l?

clearly the only zeros of Nn (z) which are not zeros of On(z)

,n+2

are zeros of Nn+l,n+1(z)'

Thus, since all the zeros of en(z) are zeros of Nn,n+2<z)’
if we can show that all the zeros of en(z) are in the left half

plane and also show that all the zeros of N (z) are in the

n+l,n+1

left half plane we will have shown that all the zeros of Nn n+2(z)

are in the left half plane. The second condition has of course

been established in Chapter 2, Theorem 2.1.
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In order to study the zeros of Gn(z) we consider the

region S, bounded by the curve C, which is shown in Figure 3.1.

y
C
R
T
X
S
Figure 3.1
The boundary curve C is composed of the semicircle |z| = R,
Re(z) < 0, R chosen so that all the zeros of Nn+l,n+l(z) are
inside |z| = R, the semicircle |z] = r, r >0, Re(z) 20, r
chosen so that all the zeros of Nn n+2(z) are outside the circle
b
lz| = r, and the imaginary axis from -R €y < —-r and r < y < R.

That values of R < » and r > 0 can be found which satisfy these
conditions follows at once from Theorems 1.2 and 1.3 and the

known form of the polynomials Nn+l,n+l(z) and Nn,n+2(z)'

Applying Theorem 1.4 to Gn(z) and assuming that all

the zeros of Nn+l,n+l(z) are in the left half plane we have that
1 6, (2)
i lc 6 (2) dz = No(6 ) - P.(6)
-z
= NoON) (9D = NG Ny 144 (2))
=N, (Nn,n+2(2)) - (n+2)



- 55 -

Thus we have established the following.

Theorem 3.8

If all the zeros of Nn+l,n+l(z) are in the left half

plane then

1 8;(2)
2n1i IC Gn(z) dz

N (N (2)) = (n+2) +

¢ n,nt+2

where C is the curve in TFigure 3.1.

8!
n

Now, 1if we could show that fC 6-dz = (0 we would have
" n

estahlished that all the zeros of Nn n+2(z) are inside the region
b

S provided all the zeros of Nn+1,n+l(z) are in the left half

plane. But since all the zeros of N n+2(z) are outside the

circle of radius r, we would also be able to conclude that ~'1

the zeros of Nn n+2(z) are in the region §' given in Figure 3.2
b

Figure 3.2

But since S' is entirely in the left half plane we would have

shown that all the zeros of Nn n+2(z) are in the left half plane.
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0'

By Theorem 1.9, to evaluate IC 62~dz it is sufficient
" n

to determine the index of On(c), that is, the index of the curve
into which C is mapped by en(z), with respect to the origin.¥*
For convenience we shall call this new curve C*. We shall now
show that as we travel along C* we have that its real part is
always negative and hence by Theorem 1.8 its index with respect
to the origin is zero.
Lemma 3.8

For |z| = R, R sufficiently large, Re(en(z)) < 0.
Proof

For Iz] large enough, ﬁn(z) = -1+ 0(%), hence for
.sufficiently large R the result follows.

For |z| = r, r > 0, r sufficiently small, Re(z) > O,

Re(en(z)) < 0.

Proof
N' (z)
Since as ]z] -0, ﬁﬂiliﬁil(2§-+ %- we have that for
n+l,n+l -
N! (2)
r sufficiently small Re(*ﬂiilgilzzy' B %. Thus for r sufficiently
n+l,n+l

small we have

Re(0_(2)) {i’i%‘iﬁil -1} + 20,
r

I~

* (Dieudonné has used this idea [16] in establishing a result which
is similar in spirit to the result we are attempting to establish

[14], [47, p. 87].)
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The problem now remains to establish that for z = iy,
r<y <Rand -R <y < -r, that Re(en(z)) < 0. Looking at en(z)
we see that for z = iy, v # 0, we would have the result if we

could show that

1 .
Nn+ligfl(ly)
Nn+1,n+1(1y)

Re( < 1

To establish that this inequality does, in fact, hold, it will
be sufficient to establish the following theorem.
Theorem 3.9

n(z) is the complement
9

c _ - c
If Nn,n(z) = Nn,n(z)’ that is Nn

of Nn n(z), then for all n = 0 we have

(_l)n zZn(n!)Z )
[(20)1]°

2Re(Na’n(z)N§,n(z)) + Ql’éz)Ng’n(z)

when z = iy.

In order to establish Theorem 3.9 we will require two
preliminary results. The first of these is,
Lemma 3.10

For all n = 0 and all =z

c z c
{Nn,n(z)Nn,n(z) ~ 2(2n-1) Nn—l,n—l(z)Nn,n(z)'

o=

' c -
Nn,n(z)Nn,n(z) -

Proof
We begin by observing that for j = n, k = n, relation

(1) in Lemma 3.3 can be rewritten as

z
Nn,n—l(z) - Nn,n(z) T 2(2n-1) Nn—l,n—l(z)'
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Now by Theorem 3.6

N'
n

[t}
T
2z

(&
LN (2)

b

Z

1 c !
= Ej:Nn,n(z) " 2(2n-1) Nn~l,n—l(2{] Nn,n(z)

and the lemma is proved.
The second result is,
Lemma 3.11
For z = iy, y real and all n > 1 the product
C - . -
Nn—],n—l(z)Nn,n(z) has only real terms of even powers of y

except for its term of highest power which has the form

. n! (n-1)! 2n-1
(1) T (2ao2y 1 :

Proof

i ; 7 == 1 ¢ o = "
Observing that for z = iy, Nn,n(z) Dn n(z) we can

y
apply Theorem 3.2 and the result follows at once. We are now

ready to establish Theorem 3.9.

Proof (of Theorem 3.9)

By Lemma 3.10,

. c L. _ 1 , c ,
Rc(Nn,n(1y)Nn’n(1y)) =3 Re(Nn,n(ly)Nn,n(ly)) -

1 iy , c oo
2 Re<:2(2n—l) Nn_l,n_l(ly)Nn,n(ly)) .
But

Re(Nn’n(iy)Nﬁ,n(iy)) = Nn,n(iy>N§ LGy

and by Lemma 3.11
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iy X c .
Re (jZ(Zn—l) Nn—l,n—l(ly)Nn,n(ly{>

_ n! (n-1)! y2n _ (n!)2 2n

T 2(n=-1(2n)! (2n-2)!  [(2m1j2 Y

Thus,

(n!)2 251
(2112 7 f

Re(N! (iy)NT | (iy)) - 5 {Nn,n(iymg,n(iy) .

which establishes the theorem.

Corollary 3.5

For all n = 0, y real, vy + 0,

. )
Nn+l,n+l(ly)) < 1

Re(

n+l,n+l(ly) 2
Proof
From Theorem 3.9 we have
o (n')2 2n
| . . 2
2 Re(Nn+l,1r1+l(ly)Nn+1,n+],(iy)) * [(2n)!]2
. C . =
Nt 1 OV g e )
Thus
' ; c .
Re(Nn+l,n+](ly)Nn+l,n+l(1y)) < 1
c ) 2
Nn+l,n+1(iy)Nn+l,n+l(lY)
But
Re (N' n(z)NC L(2)) N' (z)
2 cn’ = Re( —2——) for all n = 0O
Nn,n(Z)Nn,n(z) Nn,n(z)

and hence the corollary is proved.
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Corollary 3.5 immediately proves the following lemma.

Lemma 3.12

o=

For z = iy, y real, r < ]y’ < R, Re(en(z)) < -
Lemmas 3.8, 3.9 and 3.10 now establish the result that,
Lemma 3.13

The index of C* with respect to the origin is zero.

Finally, from Theorem 3.8, Lemma 3.13 and the discussion
following Theorem 3.8 we have the following theorem.

Theorem 3.10

For any n = 0, if Nn,n(z) has all of its zeros in the
left half plane, then Nn,n+2(z) has all of its zeros in the left
half plane also.

Applying Theorem 2.1 to Theorem 3.10 results in ihe

following corollary.

Corollary 3.6

For alln - 0, N (z) has all of its zeros in the

n,nt2
left half plane.

As an immediate corollary to Corollary 3.6 we have

Corollary 3.7

For alln = 0, N (z) has all of its zeros in the

n,n+l
left half plane.

This result follows at once from Theorem 3.6 and
Theorem 1.1.

We are now in a position to establish that the second

condition which must be satisfied if we are to prove that Property

(2) holds for the first two rows of subdiagonal Pade approximations
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is satisfied.

Theorem 3.11

For alln =2 0, P

2’n(z) and Pn l,n(z)’ the first and

n+ +

second subdiagonal Padé approximations to the exponential function,
are analytic in the left half plane.
Proof

Since D (z) = N (-2) and Dn-

n+2,n n,nt2 (z) =N

+1,n n,n+l(—z)

by Corollary 3.6 and Corollary 3.7 we have that all the zeros of

the denominators of P n(z) and Pn+ (z) are in the right half

nt+2, 1,n

lane. 51 ¢ P Z) ¢ i s i
plane Thus, since Pn 2,n(z) and 0 n(4) are quotients of

+ +1,

polynomials and the only poles of the functions occur when the

denominator is zero, we have rthat Pn n(z) and P n(z) are by

+2, n+l,

definition analytic in the left half plane.

We note that Theorem 3.11 proves half of Conjecture 2.1.

3.8 The Fundamental Result

We can now establish the major results of this thesis
in the following two theorems.

Theorem 3.12

For all n = O, P 9 n(z) and Pn (z) satisfy Property
>

n+ +1,n

(2).
Proof

The proof follows at once from Theorem 3.11, Corollary 3.2,
Corollary 3.3, and Theorem 1.7.

It follows at once from Theorem 3.12 and from the

discussion in Section 3.2 that we also have
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Theorem 3.13

r l’n(z) and Pn+

(z) are L-acceptable approximations
n+ ,

2
to the exponential function for all n 2= O.

Thus we have found that in addition to the diagonal
Pade approximations to the exponential, the first two subdiagonal
sets of Padé approximations to the exponential satisfy properties
which make them of interest in methods involving stiff equations.

In the next chapter it will be shown that there are
several different numerical methods which correspond to the
various Pade approximations to the exponential. In particular,
there are methods which correspond to the set of diagonal and
first two sets of subdiagonal Pade approximations. Before
turning our attention to applications of these results, however,
we shall show that an alternative proof can be given that
Property (2) holds which does not rely upon Theorem 2.1. To do
this, two additional theorems will be required.
Lemma 3.14

For all j - 0, k 2 0O,

= - Z '
T e oy S

Proof
The above result follows at once from Property (3) of
Lemma 3.3 and Theorem 3.6.

Theorem 3.14

If for some j,k =z O, Nj (z) has all of its zeros in

k

H

the open left half plane, then for all m = j, Nm k(z) has all of
3

its zeros in the open left half plane also.



- 63 -

Proof

By the assumption of the theorem we have that it is
trivially true for m = j.

Now assume that for some m all of the zeros of Nm 1{(k)

are in the open left half plane. Then all of the zeros of

Nm k(z) are contained in a circular region C which lies entirely
>

in the left half plane. Defining (z) to be

mt+1,k

(z) = (m+k+l)Nm,k(z) - zN'  (2)

Qm+l,k m,k

we have on applying Theorem 1.5, noting that Bj = mtj+l and n = k,

that all the zeros of Qm+1 k(z) are contained in a circular regi. .
-

in the left half plane. But by Lemma 3. 14

(z) = (mt+k+1)N (z)

2ok, k w1,k

thus all the zeros of Noii l_(z) are in the open left half olane
9 N

and the theorem i1s proved by induction.

3.9 An Alternative Proof of the Fundamental Result

Using Theorem 3.14 it is now possible to give an
alternative proof of Corollaries 3.6 and 3.7 without using
Theorem 2.1 which snecified the location of the zeros of the
diagonal terms. In fact, this alternative proof gives a second
proof of Theorem 2.1 which does not rely on continued fractions.
The basis of the argument is suggested by the schematic diagroem

given in Figure 3.3.
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That is, by inspection N (z) has all of its zeros in

1,1

the left half plane. Thus by Theorem 3.10, N O(Z) has all of

0

its zeros in the left half plane. Then by applying Theorem 3.14

with j =0, k = 2, and m = 2 we have that N2 2(z) has all of its
b

zeros in the left half plane. An application of Theorem 3.10

now establishes that N (z) has all of its zeros in the left

1,3
half plane. The induction step is obvious and hence we have
that both Theorem 2.1 and Corollary 3.6 are true for all n.

Corollary 3.7 follows from Corollary 3.6 as before. The

fundamental result, Theorem 3.13, also follows as before.

3.10 Conclusions

In conclusion we note that we have shown that all the
entries on the diagonal and first two subdiagonals of the Pade
table of the exponential function are A-acceptable approximations

to the exponential and furthermore the first two sets of subdiagonal
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entries satisfy the stronger condition of being L-acceptable
approximations. We have also shown that no entry in the third
subdiagonal can satisfy either of these properties. Since no
above ?iagonal entry in the Padé table can be A-acceptable, we
can conclude our discussion of the Padé approximations to the

exponential with the following conjecture.

Conjecture 3.1

The diagonal and first two subdiagonal sets of entries
in the Padé table are the only A-acceptable Pade approximations

to the exponential function.
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CHAPTER 4

Some Examples of High Order A-stable Numerical Methods

4.1 Introduction

In this chapter we will show that there are at least

two classes of one step methods of arbitrarily high order which

satisfy Dahlquist's definition of A-stability (Definition 1.3).

Examples of methods which reduce to A-acceptable and L-acceptable

approximations will be given. Although most of these methods

appear at the moment to be largely of theoretical interest,

several examples of their practical application will be given

in the chapter which follows.

4.2 Some Results of Butcher

In a series of papers [4], [5], [6], Butcher has

studied a generalization of the well known v stage Runge-Kutta

process given by the equations

> > o> i-1 5
K].‘=f(yn+h.z B,, K))
j=1

by allowing the summation in (4.2.1) to be carried from 1 to v

-

for each Ki and assuming that not all the Bij (3

2

.y V)

(4.2.2)

The resulting Runge-Kutta processes are called semi-explicit

if B,, =0 (j > 1) and implicit if Bij $ 0 for at least one

ij

i o> 4.

(4.2.1)

i) are zero.
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Using an v stage (implicit) Runge-Kutta process,
Butcher was able to show that it is possible to obtain Runge-
Kutta processes of order 2v, 2v - 1, and 2v - 2. The values
of Bij and bi (i, =1, 2, ..., v) for all three cases for
v £ 5, 3, and 7 respectively are given in {5] and {6]. 1In

particular, for v = 2, the unique 4th order process is given

by
% —_:1; B —-i_ @
17 7% 12°% 7 %
1. /3 1
321 =% + 3 822 =% (4.2.3)
1 1
) bz )

The two possible third order processes considered by Butcher

for v = 2 are given by

Byy =0 Bip =0
_ 1 _ 1

Brp =3 Bap =3 (4.2.4)
_ 1 -3

by 7% by =%

and

A _

By 73 1o =0

By = 1 Byy = O (4.2.5)
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while the second order process corresponding to v = 2 is given

by
Byp =0 B12 =0
Byy = 1 Byy = O (4.2.6)
by =3 by =3

and is seen to be just the improved Euler (or Heun) method

[26, p. 67]. Clearly [26, p. 67] a wide variety of other second
order 2 stage Runge-Kutta processes could have been included but
were not since Butcher was basing his v stage, order 2v - 2,

process on Lobatto quadrature formulas [52, p. 108].

4.3 Butcher's A-stable Methods

Now, it is not difficult to show that when Butcher's v
stage method is applied to (1.2.3) we obtain simply the vth
diagonal Pade approximation va(z) of exp(z) [20]. This follows
from the fact that Butcher's v stage method applied to (1.2.3)
reduces to the quotient of two polynomials of degree v in qh
and since this rational function must be an approximation of
order 2v of the exponential function it follows (Section 2.2)
that it is the diagonal Padé approximation va(qh) of exp(qh).

For example, when Butcher's 2 stage method (4.2.3)

is applied to (1.2.3) we have that
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h 1 /3,
Ky = aly, 3 K+ (G- g Ky,

/3. h
) hK +ZK2).

1
Ky =aly, + G+ @ 0y

Solving for K, and K, using Cramer's rule [2, p. 306] gives

1 2
- _ gh /3,
- qh V3,
K, = qy (1 + ) /s,
where
1 (qn)?
A= (1 —AE(qh) + 17 ).
Finally,

Yy + h(b,K, + b,K

15 9 2) (4.3.1)

yn+1

2
1 (qh)
_ 1+ 5(qh) + 35 ,
2 n
1 (qh)
1 - 5(qh) + 55
= P22(qh) Y, -

Clearly this same procedure can be applied to any of
Butcher's v stage processes of order 2v and so we have in general

that for any of Butcher's v stage processes of order 2v that

Yn+1 va(qh) Y
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when solving (1.2.3). Now, by Theorem 2.2, it follows that all

of Butcher's v stage processes of order 2v are A-stable.

4.4 Methods of Butcher Which Are Not A-stable

Tt is natural to ask next if Butcher's v stage methods
of order 2v -~ 1 and 2v ~ 2 are also A-stable. If they reduce
té entries in either the diagonal or first two subdiagonals of
the Padé table when solving (1.2.3) then the answer would be yes.
Looking first at solving (1.2.3) with (4.2.4) we see

that

K1 A

h h
—-q(yn+3K1+§K2).

~
|

If we solve for K1 and K2 using Cramer's rule, which at the moment

may seem like opening a peanut with a sledge hammer, we see that

- _gh
Ky =qy, (1 -75) /2
K, = qy_ (1 + ﬂhﬁ /] A
2 RAAN 3
where
1 0
A = =(1-9§h_)
_gll_ _ﬂb_

Substituting into (4.3.1) with the appropriate values of bi we

obtain
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2
1+ 2(qn) + 44
Yn+1 = 1 - qh Y (4.4.1)

1t

}1’2(qh) Yn *

Unfortunately, 1 (z) is an above diagonal Padé approximation

1,2
to the exponential and hence by our previous discussion method
(4.2.4) is not A-stable.

Now method (4.2.4) is typical of a class of v stage
solutions of order 2v - 1 proposed by Butcher which are based on
Radau quadrature [52, p. 108] with the left end fixed. 1In
developing this whole class of methods, called type I methods
by Butcher in [6], the assumption is made that Blj 0 for
j=1,2, ..., v. Thus, for all type I methods the highest
power of (qh) which can occur in the expansion of A in Cramer's
rule is (qh)vnl since all terms involving (gh) are linear and

the first row of A contains no terms in (qh). It follows that

for all v stage methods of type I we will have that

Yol = Rv_l,v(qh) Y,
where Rv—l v(qh) is a rational function of two polynomials in
(qh) where the denominator is of degree at most v - 1 and the

numerator is of degree at most v. But since Rv v(z) must be a

_.1’

2v - 1 order approximation to the exponential we have that

for all v = 1
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and hence none of Butcher's type I methods are A-stable.

Now turning our attention to (4.2.5) we solve (1.2.3).

This gives

~
]

h
1 = alyy, + 3K

~
i

2 Q(yn + h Kl)

Again using Cramer's rule we obtain

~
1l

1 qyn/A

= 2qh
K, =qy (1L+= /4
where
_ qh
1 3 0
h
LA = = _gh
1 3 -
-gh 1

Substituting into (4.3.1) with the appropriate bi we again obtain
(4.4.1) and thus method (4.2.5) is not A-stable.

Now method (4.2.5) is typical of a class of v stage
methods of order 2v - 1 proposed by Butcher which are based on
Radau quadrature with the right end fixed. In developing this
whole class of methods, called type II methods by Butcher in [6],
the assumption was made that B',v =0 for =1, 2, ..., v. Thus,
in a manner similar to that of type I methods we have that 4 can
be of degree at most v - 1 in (gh) and thus all of Butcher's tyne

IT methods reduce to above diagonal approximations to the

exponential and therefore are also not A-stable.
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Finally we have method (4.2.6). By inspection we

see that this reduces to
Yo+l = Po,p0am) vy,

when solving (1.2.3) and thus is not A-stable. As noted earlier,
method (4.2.6) is based on Lobatto quadrature and it is typical
of a class of v stage methods or order 2v - 2, called type [IT
methods by Butcher in [6]. All type ITl methods satisfy the
property that 81’: = 0 and Bj,v =0 for =1, 2, ..., v. It
follows that when solving by Cramer's rule that A can be at most

of degree 2v - 2 in (qh) and hence a type IIT, v stage, process

reduces to

Y+l = Pv—2,v(qh) Yn

and none of the type III processes of Butcher are A-stable.

We conclude this section by noting that although none
of the methods based on Radau or Lobatto quadrature which were
proposed by Butcher are A-stable they may still have considerably
better stability properties than explicit processes of comparable
or greater accuracy. To illustrate this, we plot in Figure 4.1
the stability regions for the improved Euler method, the classical
4th order Runge-Kutta process (1.1.6) and Lawson's Sth order process
with extended region of stability [35] and the stability region for
both of Butcher's 2 stage, 3rd order, processes (4.2.4) and (4.2.5).
Except for values of q whose imaginary part is more than three
times larger in absolute value than its real part, Butcher's method

would give the best stability bounds.
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4.5 A-stable Methods Based on Radau and Lobatto Quadrature

Since the methods based on Radau and Lobatto quadrature
which were proposed by Butcher are not A-stable, it is natural
to investigate whether methods based on these quadrature formulas
can be found which are A-stable. The key to‘the search is to

= 0 and/or 8. =0 for § =1,

remove the assumptions that B. .
lsJ JsV

2, ..., v which Butcher imposed to obtain explicit computations
for Kl and/or Kv in his v stage processes.

Tt is clear that when we solve (1.2.3) by a v stage

implicit Runge-Kutta process we obtain the relation

Yorl = RK,n(qh) Y (4.5.1)

where R.K n(z) is the quotient of two polynomials with numerator

’
of degree n and denominator of degree k. Now the form of A
when we solve for the Ki by Cramer's rule implies that ¥ < v.
Thus if we demand that n = v - 1 when using a v stage process
of order 2v - 1 or that n = v - 2 when using a v stage process
of order 2v - 2, v must equal v in order to obtain the demanded
,u—Z(Z)

depending on the order of the process. By the results of

>

accurac d R z St 1 either P P
uracy an . n( ) mu equal e v,v—l(z) or P

Chapter 3 we would then have A-stable processes.
The problem then is to see if by eliminating Butcher's

assumptions about certain of the B's, can we find a v stage

process of order 2v - 1 such that n v - 1 and also a v stage

process of order 2v - 2 for which n

v~ 2 in (4.5.1). In order

to determine if this 1is possible we will need to state the complete
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set of conditions which must be satisfied by the v2 - Vv parameters
at our disposal in a v stage implicit Runge-Kutta process.

In order to do this we first introduce several
abbreviations to denote certain relationships which will be
needed. These are patterned after the notation of Butcher [5].
The letters k and m are understood to be positive integers. For

a v stage Runge-Kutta process we then have letting

v
Ci = L Bi'
j=1 M
A(p): The Runge-Kutta process is of order p,
v
B(p): ) b.cl.‘“1 =1 for atik < o,
X ii k
i=1
v ck
C(p): z ..Ck—l =+ fori-= 1, 2, .., vand k < p ,
. ij i k
j=1
v -1 b.(l—ck)
D(p): L b.c, g, =-——J for =1, 2, vy v
. i71i ij k
i=1
and k < p ,
v v
E(p,E): % z k-1 m-1 1
T R

for k <p andm < £

In [5] Butcher then establishes the following theorems about any
v stage Runge-Kutta process.
Theorem 4, 1

If ACz), then B(g).
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Theorem 4.2
Tf A(£ + n), then E(£,n).
Theorem 4.3
If B(¢ + n) and C(n), then E(£,n).
Theorem 4.4
If B(¢ + n) and D(£), then E(&,n).
Theorem 4.5
If B(v + n) and E(v,n), then C(n).
Theorem 4.6
Tf B(¢ + v) and E(¢,v), then D(£).
Theorem 4.7
If B(p), C(n), and D(£), where p < ¢ +n + 1, p s 2n + 2,
then A(p).
We note that the following theorems are immediate
consequences of Theorems 4.3 to 4.7.
Theorem 4.8

If B(2v

1) and C(v), then D(v

1

1), A(2v - 1).

Theorem 4.9

If B(2v 1) and D(v), then C(v - 1), A(2v 1).

Theorem 4.10

If B(2v

2) and C(v), then D(v - 2), A(2v - 2).

Theorem 4.11

If B(2v

2) and D(v), then C(v - 2), A(2v - 2).
Now it can be seen in [6] that Butcher's type T methods

are designed to satisfy a theorem which is equivalent to Theorem 4.8
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but not to satisfy Theorem 4.9. Similarly Butcher's type II
methods were designed to satisfy a theorem equivalent to
Theorem 4.9 but not Theorem 4.8. The obvious approach is then
to switch theorems and attempt to find a type I process satisfying
Theorem 4.9 and a type II process satisfying Theorem 4.8.

To show the feasibility of this approach we consider
the case v = 2 for a type T process. We must then solve the

set of equations specified by D(2) given that

2
cl =0 C2 = §
(4.5.2)
1 3
b1 =73 by =%
imply B(3).
The equations D(2) are
0 0 1
bycyByy + bycpByy = by (1~ cp) (4.5.9)
2
b,(1 - ¢))
1 1, P 1
byeyByg T bycybyy = 5
0 1
byegBig T bgeyByy = byl - c))
, (4.5.4)
1 by(1 = cy)
b1e1B1a T bycyBy, = 5

and for the conditions given in (4.5.2) reduce to

o
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1 3 1
PR LTY a
1 1
2 By =g
1 3 1
% P12 T % B T3
1, .5
7 Boy = o7 -

These equations are easily solved and we obtain

1 -1

TR fl2 " %
(4.5.5)

1 _ 2

Bo1 =% Byp = 12

Comparing these values of Bi with those given by Butcher

h|
(equations (4.2.4)) for his type I process we see that we have

a different method. Furthermore, if we solve (1.2.3) using

the Bij in (4.5.5) and the bi in (4.5.2) we find that

gh
1+ 3

]
]

y
n+l 2 n
1_%qh+ﬂl

h
6

Pz,l(qh) Y,

and we have that (4.5.5) is the basis for a 2 stage A-stable

impliecit Runge-Kutta process of order 3.
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Noting that for the Radau quadrature none of the bi'S
arc zero and all the Ci'S are distinct, it follows that for any
v there 1s a unique set of Bij's determined by D(v). This can
be seen by observing that the determinant of the coefficients
for each set of equations (grouped by values of j, as are those
in (4.5.3) and (4.5.4)) can be written as a product of the bi's
times a Vandermonde determinant [52, p. 74] whose value is not
zero. Thus Cramer's rule can be applied to solve for the Bij'
We shall denote v stage implicit Runge-Kutta processes which are
based on Radau quadrature with left end fixed and which satisfy
D(v) as type TA processes.

Table 4.1 gives the values of cs Sij’ and bi for v = 2, 3

for type I, processes. Values for v =z 4 are not given since exact

A
values of c, are not known. It is also noted that there is no
one stage type IA process since C(1) must be satisfied for all
Runge-Kutta processes and this cannot be done with a one stage

type 1, process.

A
By direct computation the case v = 3 can also be shown
to reduce to a below diagonal Pade approximation to the exponential

when solving (1.2.3.). Thus we have the following conjecture.

Conjecture 4.1

Each type IA implicit Runge-Kutta process is A-stable.
Proof
Although this theorem has been proved for v = 2, 3

no proof of its general truth has as yet been found.
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1 -1
v = 2 Z 'Z 0
1 2 2
4 12 3
1 3
4 4
_ 3 1 -1-/6 -1+/6 0
VT 9 18 18
1 88+7/6 88-43/6 | 6-/6
9 360 360 10
1 88+43/6 88-7/6 6+/6
9 360 360 10
1 16+/6 16-/6
9 36 36
Table 4.1

Type IA Processes
Repeating the same arguments with the Radau quadrature
with right end fixed but requiring the C(v) be satisfied instead
of D(v) we find the type IIA processes listed in Table 4.2, By
direct computation each of these processes can also be shown to
reduce to a below diagonal Padé approximation to the exponential

and hence each is an A-stable process. The following conjecture

is suggested.
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1 1
1
S -1 1
12 12 3
3 1
4 7 1
3 1
4 4
88-7v/6 296-169v6 -2+3/6 4-/6
360 1.800 225 10
29641696 88+7/6 -2-3/6 4+V6
1800 360 225 10
16-/6 16+v6 1 1
36 36 9
16~v6 16+/6 1
36 36 9
Table 4.2

Type IIA Processes
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Conjecture 4.2

Each type IIA process is A-stable.

Although this theorem has been verified for v = 1, 2, 3
no proof of its general truth has as yet been found.

Turning our attention to Butcher's type 111 methods we
observe that the Bij which he finds satisfy neither Theorem 4.10
or 4.11 but do satisfy the condition that given B(2v - 2), C(v - 1)
if and only if D(v - 1) and either implies A(2v - 2) [6]. Thus
Theorem 4.10 and 4.11 give us the basis of finding other methods
hased on Lobatto quadrature.

We define a v stage Runge-Kutta process which is based
on Lobatto quadrature and which satisfies C(v) as a type [IIA
process and one which satisfies D(v) as a type IIIB process.

Table 4.3 shows type TII, processes for v = 2, 3, 4 while Table 4.4

A
shows type IIIB processes for v = 3, 4. There is no type IIIB
process for v = 2.
An inspection of the Bii for each type IIIA and IITB

process shows that there is either a row or a column of zeros
and this will be true in general. It follows that a v stage
type IIIA or type IIIB process must reduce to an approximation
of the exponential with denominator of power at most v - 1 and
thus cannot produce a below diagonal Padé approximation to the
exponential because of its required accuracy.

Direct computation shows that type TIL, and type T1I1

A B

processes do in fact reduct to diagonal Pade approximations

( (gh)) for v

N

Pv 1.1 4, Thus we have the following conjecture.
-1,v-1
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0 0 0
1 1
) 2 1
1 1
2 2
0 0 0 0
3 1 -1 1
24 3 24 2
1 2 1 1
6 3 6 -
1 2 1
6 3 6
0 0 0 0 0
11+/5 25-V/5 25-13/5 -1+/5 5-V5
120 120 120 120 10
11-V5 25+13/5 25+/5 -1-/5 5+/5
120 120 120 120 10
1 2 S 1 1
12 12 12 12
1 3 N 1
12 12 12 12
Table 4.3
Type I1I, Processes

A
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1 -1

1 1 1

6 3 0 2

1 5

% 3 0 1

1 2 1

6 3 6
1 -1-/5 -1+/5 0 0
12 24 24
1 25+/5 25-137/5 0 5-v/5
12 120 120 10
1 25+13/5 25-v5 0 5+/5
12 120 120 10
1 11-/5 11+/5 1 ]
12 24 24
1 2 2 1

12 12 12 12

Table 4.4

Type IIIB Processes
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Conjecture 4.3

Each type III, and IIIB process is A-stable.

A

Although this theorem has been verified for v < 4,
no proof of its general truth has as yet been found.

It should be expected that since there are type III
processes which reduce to above diagonal Pade approximations to
the exponential and type III processes which reduce to diagonal
Padé approximations that there should also be type III processes
which reduce to below diagonal Padeé approximations to the
exponential. 1In Table 4.5 we give several examples of type IIIC
processes which satisfy the conditions that they are v stage,
order 2v - 2, and reduce to Pv,v—Z(qh) when solving (1.2.3).

The key to finding type IIL , processes is noting that

C
Theorem 4.7 allows other conditions besides those given in
Theorems 4.10 and 4.11 to produce a v stage process of order
2v - 2. The examples given in Table 4.5 satisfy both D(v - 1)
and C(v - 1) and are therefore similar to Butcher's type III
methods in many respects. No effort has been made to find a
general set of conditions which will produce a type IIIC
process.

This completes our discussion of A-stable methods

based on implicit Runge-Kutta methods.
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1 -1

2 2 0

1 1

7 7 1

1 1

2 2

1 -1 1

3 3 6 0
1 2 -1 1
6 12 12 2
1 2 1

6 3 6 !
1 2 1

6 3 6

Table 4.5
Type III_, Processes

C
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4.6  Additional A-stable Methods

If one is willing to allow the introduction of second
and higher derivatives into the equations being used then a
generalized class of linear one step methods first given by
Hermite [27], usually credited to Obrechkoff [49] (see Hildebrand
[28, p. 231], Henrici {26, p. 106], Milne [48, p. 79}) and which

are also derived by Lanczos {34, p. 419] of the form

(4.6.1)

also exists which are of order 2v when a is the ith coefficient
in the numerator of the vth diagonal Padé approximation va(z)
of e®. Thus for (1.2.3), (4.6.1) reduces to Youl = va(qh)yn
and (4.6.1) is A-stable for all v [17], [20]. We note that for
v =11n (4.6.1) we have simply Dahlquist's result and for v = 2
we have method (2.5.1) which we already observed was A-stable.
Milne [48, p. 78] has also considered (4.6.1) for the case v = 3
but no proof of stability appears to have been previously made
for the cases v = 3. We note that Loscalzo [40, p. 79] says that
he has proved that (4.6.1) is A-stable for v - 3 but the arguments
leading to this statement are not complete. It is clear that he
has considered only the case q real in (1.2.3) when we look at
his remark on page 98 of [40].

Now (4.6.1) is a special case of the following more

general result of Hermite [27], Obrechkoff [49], and Hummel and
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Seebeck [30].

Theorem 4.12

Assume y(t) has continuous derivatives for a < t < x
up to and including the derivative of order (j+k+l). Let the
binomial coefficients p!/(q! (p-q)!) be denoted by qu with the

understanding that qu = 0 if q is greater than p. Then

yGo = y(a) + ¢ AL [kc ™ (a)

Y1
m=1 (k+i)! m
(4.6.2)
m (m) m
- (~1) ijy (X)] (x-a) + R
where
R = (o1yn KL (x-a) T (D) (o

) (FHk) ! (GHk+1) !
6 between a and x.

For the case j = k, a = X, X=X ,.0=x + h (4.6.2)

reduces to (4.6.1). For the case k = j - 1 we see that the
coefficients are just those of the subdiagonal Pade approximation

to the exponential, P, (x). For the case k = j - 2 it is also

N ’j_l

seen that the coefficients in (4.6.2) are just those of the Pade

approximation to the exponential Pi j_2(x). Since we have already
Jdo

established that both of these classes of approximation are

L-acceptable we have the followlng result.

Theorem 4.13

The quadrature formulas based on derivatives given by
(4.6.2) for k =j, j -1, and j - 2 and any j 20, j 21, j = 2

respectively, are all A-stable.
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Loscalzo [40], [41], [42], [43], and [44] has recently
done considerable work in the implementation of methods based
on (4.6.1) which include the generation of spline functions sn(x)
which give polynomial interpolations to the solution of the

)

differential equation between the points (xn,yn) and (xn+l’yn+l
produced by (4.6.1). The polynomials are such that Sn—l(xn) = Sn(xn)
and sﬁEi(xn) = sék)(xn) for k =1, 2, ..., v. Several examples
of solving stiff equations are given in [40].

Very little work seems to have been done with the
methods corresponding to k = j - 1 and k = § - 2. No previous
discussion could be found in the literature about the stability
of methods based on k = j - 1 except for the case j = 1 as noted
previously in Chapter 1, equation (1.1.8). No literature at all
could be found for methods where k = j - 2.

Recalling Makinson's results given in Chapter 2, we see
that k = § - 1, j = 2 in (4.6.2) corresponds to 4y = 2/3 in (2.5.4).

Comparing truncation errors, given by (2.5.5), we see that a; = 2/3

gives a truncation error of
A4 (4)
while ay = 1 + 3/3 (Makinson's value) gives a truncation error of

3+ 243

This would suggest that the third order method based on (4.6.2)
would give better results. 1In addition, as h > =« we observe

that the approximation to the exponential given by the method
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based on (4.6.2) approaches zero which Makinson's does not.
Corresponding to Makinson's Ath order method (2.5.6)

we would have k = j - 2, j = 3 in (4.6.2). It is easily seen

= 3/4 and o

that this implies o = -1/2. Equation (2.5.7) then

1 2

gives that the truncation error would be

5
-0.25 %T v (6).

Using Makinson's values of ay and a, we obtain that the truncation

error would be

h5

19.73 ST'Y(S)(S)'

These Qalues would suggest that (4.6.2) might be considerably
better than the approximation proposed by Makinson. In addition
the approximation based on (4.6.2) again goes to zero for large
h while the approximation proposed by Makinson does not.

Turning our attention to Rosenbrock's method we observe

that if we set

o 2-421
a; = 6
2+ V7 d
3 = 6
=1 (4.6.3)
21 3
Ch, = il-(Z + /2 1)
21 18
W, = W, = 1
1 22

we will produce a method with error of O(ha). Rosenbrock also

gives an example using complex coefficients in [54] but it is
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only of order 2. Solving (1.2.3) with (2.5.9) and (4.6.3) we
obtain
Vb1 = Pg,1(a0) vy

and hence (2.5.9) with (4.6.3) produces an A-stable process where
the approximation of the exponential approaches zero as h » «.
This disproves a statement made by Rosenbrock [54] that it is not
possible to have a third order process based on (2.5.9) with
these properties.

Because of the complex coefficients, the method based
on (4.6.3) is probably not as attractive as the method proposed
by Calahan, (2.5.11), which was considered earlier.

Finally we note that both the method proposed by Lawson,
(2.5.13), and those proposed by Pope, Kuo, Legras, and Calahan
based on (2.5.16) can now be implemented in a wide variety of new
ways using one of the L-acceptable approximations to the exponential

given in Chapter 3 of this thesis.
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CHAPTER 5

Numerical Examples Employing High Order A-stable Methods

5.1 Introduction

In this Chapter we consider the problem of implementing
the implicit Runge-Kutta methods which were shown to be A-stable
in Chapter 4. While not claiming that what follows constitutes
a complete study of such processes, it is shown that through the
use of proper starting values the method based on (4.2.3) can be
as efficient as the classical 4th order Runge-Kutta process, (1.1.6),
for small step sizes and retains this efficiencv for step sizes
where the classical 4th order Runge~Kutta process would be unstable.
Also inherent in the process is a prediction of the truncation
error which has occurred at each step. Examples involving the

solution of linear and nonlinear systems of equations are given.

5.2 Problems in Implementing Implicit R. K. Processes

Because of their impliclt nature, several problems face
the prospective user of an implicit Runge-Kutta process. First
+
he must solve for the Ki's. If a constant coefficient system of

equations 1is involved, such as (1.2.1), this can be done directly
s

by solving the resulting system of linear equations for the Ki'S.
>

In most cases of interest, however, direct solution for the Ki's

B
would probably not be possible. Finding the K,'s by iteration

i

would seem to be the only practical method in most cases.

If we define § as the greatest of
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|

(81 1185y [+18 5 1 s By [¥IB L By

p as the greatest of

lB]_ll+lBlzl+ eee F lBl\)”"jZZ,—i_‘BZBI + ... + ’62\)’, ...,l[’) !

AYAV)

and 0 as § + y and for a vector ; = (vl, Vos sees vn) we denote
by llvll the greatest of |vll,[v2|, e |vn| we have the following

result of Butcher's [5] concerning the convergence of the iterative

technique
> > > i-1 > v >
KgN)==f(y +hlo0 B kW 4y ei,K€N4D ) (5.2.1)
: n j=1 I jop M
(N h M
where K§ ) is the Nt iterate of Ki'
Theorem 5.1
If f(;) satisfies a Lipschitz condition
> > > > > -
[1£(y) - f(2)]|]| < Llly - z]|] (5.2.2)
> > >
and |h| < 1/(Lo), then the equations defining Kys Kyy e K,
- > ->
have a unique solution and KiN), KéN), ey KSN) defined by

(5.2.1) tend to this solution as N tends to infinity.
Although the above theorem does provide sufficient
conditions for convergence, it is not of much help to us. For

example, in solving (1.2.1), (5.2.2) becomes

1By - Bz|] = [[B]

ly - 2|l .

Thus the Lipschitz constant would be just ||B||. But the norm
of B is at least as large as the spectral radius of B and by

assumption the spectral radius of B is large. Thus Butcher's
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result would say that to guarantee convergence using (5.2.1) we
would require that h be very small which is just what we are trying
to avoid.

Recognizing that Butcher's theorem may imply severe
limitations on the step size, we will attempt to develop an

>
iterative method for finding the Ki's. This, of course, leads
to another problem in that if very many iterations are required
it would be less costly (in the sense of the number of function
evaluations required) to simply solve the system of differential
equations using an explicit Runge-Kutta process with a smaller
step size. This problem can be largely overcome if a good initial
>

guess for the Ki'S can be obtalned. As with predictor-corrector
methods we could also reduce the number of function evaluations
required if we were to stop the iteration when the iteration
error was less than the truncation error of the method. Since
we are working with Runge-Kutta methods, it would appear at first
glance that the truncation error of the method is not easily
obtainable. 1In the next three sections we will show how these
difficulties can be handled.

To be specific in the discussion which follows, we will
assume we are attempting to solve ;' = f(;) using the 4th order

implicit Runge-Kutta process given by (4.2.3). The generalization

to other implicit Runge-Kutta methods should be obvious.

5.3 Predicting the ﬁg's

An inspection of the B's suggests that good initial
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> > )
guesses of Kl and K2 would be given by computing the values of ;

corresponding to X + 6,h and x_ + 6

5 1 n 2
1 3
= (§-+ 7;) and X =X

1 _
h, where 6, = (f - 7;0,

62 0 + nh, and evaluating f at these points.

>

>
If the resulting values of K. and KO are good enough, only one

1 2

iteration will be required to establish their accuracy. A procedure
=

which can be used to produce approximations to the required y values

will now be given. The procedure depends upon whether we are

taking our first step with a given step of h or our kth step

(k = 2).
(a) Step 1
Approximations to the values of ; at X, + Olh and

%q + 02h are obtained by employing a second order explicit Runge-

Kutta process twice. Once to go from X, to X, + elh and again

to go from X, + Glh to X + ezh. The resulting values of»y are

; > >
substituted into f to produce Kg and K2 for the first step.

(b) Step k (k > 2)

-
When an acceptable value of Y (n = k - 1) has been
z, . . t "

found at x = x we compute f(yn). We note that this is an "extra
derivative evaluation not required directly by the Runge-Kutta
process but the information galned will be very useful in later
steps.

The values of ; at X, + .h and x + 0,h are now

1 n 2

estimated using the quadrature formula

y(x_+ 6h) = y(x_ ) +1 ' ( +v.h)  (5.3.1)
y(x AN 1 W,y X 1 Yy ) L3

1

™

i

where Yy = 0, Yy = Gl, Yy = 02, and Y, = 1.
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If the weights given in Table 5.1 are used, (5.3.1)

will be a 4th order quadrature formula for 6§ = 81 and 6 = 62.

]
W, e1 e2
i
wy ~-.04419540711644071 ~-1.872471259550258
w, .5938203090566040 4.246669680947478
Wy .2533303190525340 -6.093820309056581
W, .4083696444124900 5.508297022254174
Table 5.1

Observing that the four derivative values used in (5.3.1)
> > > > > >
correspond to f(yn_]), Kl’ K2, and f(yn), all of which are known

from the previous step, we should be able to produce reasonably

good approximations to ; at X + 6.h and X, + 6,h using (5.3.1)

1 2

with these values in place of 5'(Xn—l + Yih)'

5.4 The Iteration Procedure

>
Having determined starting values for the Ki's we

+0
calling it vy using

->
compute an initial estimate for y at x ntl®

n+l’
5 .
(4.2.2). One iteration is done on the Ki's and a second value

-]

Yol is produced. Tf the maximum relative error
1 _.0
41,1 Tn+l,i
max
i 1
yn+l,i
th

td
where yn+l,i is the 1 component of y

n+l’
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is less than a previously specified allowable relative iteration
>1 . . -
error, then we accept Yo+p 25 being satisfactory. If the condition

is not satisfied we continue to jterate until two successive values
>i +i+1l
Yo+l and Yot have a relative error less than the allowable error.

->
The procedure used to iterate for the Ki's will depend

on the form of the system of equations being solved. Generally
an iteration procedure something like that of (5.2.1) would need
to be used. For the examples given in Section 5.6 of this thesis
we have that the jth function, fj, of ? is linear in the jth
variable, yi. Hence, defining
v
K..=f.(y +h % B, K)
ii ~ "i7n o Vie e
L=1
>

that is, Kij is the jth component in Ki’ we can solve for Kij

explicitly in terms of all the other K and obtain
mn

- <
™
=~
>,
e
w
=
~

f-(Y t 11
J n
I:-.

H 1~ ABh

where Aj is the coefficient of yi in fi° Letting Kiﬁ) be the Nth

iterate of K,. and defining

ij
\Y
- . (N-1)
f.(y +h I B, K )
i7i "n =1 if 2
to be
> v 13 (N)
+ —
£.(y h i 81,9, AiBys h Lo

where
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()
K2 if ¢ < 1 and all j,
(N) (N) (N) (N-1) (N-1)
ai_j = < (Kip7s Ko vves Kig™o Ko ge10 Ky qe20 o0 )
L
when 1 = £
S5
K,EN+1) if 2 > i and all j
—

the generalized Gauss-Seidel iteration which is used to solve

these problems is

vV -
f.(y +h I B, g(N-1)y
) 175 7n 0=1 i 2 '
Kyy'= TR E T , 3 =1, 2,3, ... (5.4.1)
1 1]
with i =1, 2, ..., v.

Clearly the above procedure of specifying the allowable
relative iteration error will not be satisfactory unless we have
some assurance that the actual relative truncation error of the
process is of about the same size. If the truncation error could
be estimated, we could from time to time change the step size so
that the truncation error and the iteration error were of about

the same magnitude.

5.5 Estimating the Truncation Error

As noted in [18], it is possible to combine multistep
processes with Runge-Kutta processes. In [18] it is shown that,
provided suitable conditions are satisfied, it is possible to
obtain asymtotic error estimates for the truncation error of the

Runge-Kutta process. In particular, in [18], it is shown that
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when a 4th order Runge-Kutta process is combined with

vy = {y(0) + 18y(h) - 9y(2h)}/10 + 3h{3y'(h) + 6y'(2h)

(5.5.1)

+ y'(3h)}/10
the result is a 5th order process after three Runge-Kutta steps.
The difference between the combined 5th order process and the
Runge-Kutta result is an asymtotic estimate of the truncation
error of the Runge~Kutta process.

The above idea is used to produce an estimate of the
truncation error after three Runge~Kutta setps. If the estimated

relative truncation error Et satisfies the conditions that

E, < |[E_| <50 E,
1 t 1

where Ei is the allowed relative iteration error then three more
steps are taken with the same step size and we repeat the checking
process. If at some point 1t becomes necessary to change the
step size, we must repeat step 1 in Section 5.3. If a change of
step does not occur very often, then the added function evaluations
required by this first step will not be significant. We note that
in the evaluation of (5.5.1) we also use the information obtained
from the "extra" derivative evaluation which is done at each step.
One small problem remains. What do we do over the first
three steps when no estimate of the truncation error is available?
It is recommended that an initial step size be specified which is

somewhat smaller than might be expected to be used for the entire

solution. This can be justified by the fact that the one or more



- 101 -

relatively large eigenvalues involved in the system of equations
being solved will probably cause one or more of the variables to
change rapidly near the start of the interval of solution and
accuracy will demand this smaller step size be used no matter

what method of solution was being employed.

5.6 Numerical Examples

To illustrate that the above procedure can be used

effectively, the following four problems are now considered.

Problem 1
LI =
yl - yl + 95}’2, Yl(O) l’
' = - — =
Problem 2
L =
v - = -
vy = -V 97y2, y2(0) 1/95.
Problem 3
2
| - [ —
vy = (LA yydy + (1 +y))y,, y,(0) 1,

2

Problem 4

2
yi = (=20 + l7y2)yl + (76 - 36y2 + 4y2)y2, yl(O)

i

2 2
= (10 - yy, + (=41 + 3y, + y)y,, ¥5(0)

~<
N
|

Treating each of these problems as if they were of the
form ;' = B;, where B is a real matrix, we have that Problems 1

and 2 both have eigenvalues of -2 and -96 and solutions of
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y, = (95672 — 48072%%) /47
v, = (48e_96x - e—zx)/47
and
-2x
Yl = e
y, = e 2% /95
respectively.

Treating Problem 3 as if it were also a linear problem
we see that it starts with eigenvalues of approximately ~.1 and
~19.9 and approaches the linear problem with eigenvalues of -1
and -19 as Yy and Yy 7 0. Treating problem 4 in the same way,
we see that it begins with eigenvalues of -1 and -25 and as Yy
and Yy + 0 it behaves like a linear problem with eigenvalues of
-1 and -60. Unfortunately this analysis for Problem 4 is not
correct since it happens that for the given initial conditions
vy 2 1.65070477312 (approx.) and Y, . 360385998230 (approx.)
as x > « and Problem 4 actually approaches the linear problem
with eigenvalues of 0 and -47. There is, of course, no way of
knowing this until the solution is computed.

Since neither Problem 3 or 4 has a known analytic
solution, "exact" solutions for these two problems were found by
using the classical 4th order Runge-Kutta process with a step
size of 1/212.

In Figure 5.1 we plot the dominant (larger) relative
error, which occurs at x = 10 in Problem 1, versus the number of
function evaluations per unit step in x which produced that

error. This is done for both the classical 4th order Runge-Kutta
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process and for the implicit method given by (4.2.3). Because of
the eigenvalue -96, the largest step size permitted for the
explicit Runge-Kutta process is ]./26 which means a minimum of
2”7 function evaluations per unit step in x are required to obtain
a solution. As can be seen from Figure 5.1, the implicit Runge-
Kutta process is not quite as efficient as the explicit process
for 28 and 29 function evaluations per unit step in x but produces
solutions with about 25 function evaluations per unit step in x
which the explicit process cannot do.

Figures 5.2, 5.3, and 5.4 give similar comparisons for
the explicit and implicit Runge-Kutta solutions of Problems 2,
3 and 4. As can be seen, the implicit Runge-Kutta process compares
favourably in those regions where the explicit Runge-Kutta process
can be applied and extends the solution region considerably. In
all four problems we note that the slope of the implicit Runge-
Kutta process appears to be more like that of a 5th order Runge-

Kutta process than that of the classical 4th order process.

5.7 Asymtotic Error Estimates

Since it is necessary to compute an approximation to
the truncation error in order to implement the above process
effectively, it seems natural to use this information in as many
ways as possible since it is available. 1In particular, if we
note that the approximation to the truncation error is also an
approximation to the principal error function it is natural to
compute an asymtotic error estimate by an Euler integration of

the principal error function as suggested by Henrici [26, p. 136].
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‘ 0
This requires a knowledge of the Jacobian matrix J = (559.
Because of the stability problems involved, we are forced to
use the first order implicit equivalent of Euler's formula,

namely

S>% -+
e

: of
(1= G &5, = ey (5.7.1)

to determine the propagation of the error eq at Xq to the point
Xa0+3" The error at Xq 43 18 then given by
e = & .+ (the estimated t e (5.7.2)
€343 = ©3n43 the estimate runcation 7.
error)
In (5.7.1), the Jacobian is evaluated at X3 43 and H = 3h where

h is the Runge-Kutta step.
Figures 5.5, 5.6, 5.7, and 5.8 show the actual error

and the asymtotic error based on (5.7.1) and (5.7.2) for the

four problems considered in this paper. As can be seen, the
asymtotic errors are generally in good agreement with the actual
error. The irregularities in the error curves are caused by

the automatic changing of the step size as the solution is being
computed so that the truncation and iteration errors are of about

the same magnitude.

5.8 Stability of the Combined Process

As noted above, the combination of the implicit Runge-
Kutta process being considered with equation (5.5.1) produces a
5th order process. As an alternative to the approach presented
above, the solution produced by the combined Runge-Kutta multistep

process might be used as the solution. 1In that event, the stability
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Figure 5.1

A graph of the efficiency of two methods of solving
Problem 1 over the interval 0 < x < 10. Relative
errors plotted at x = 10.
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Figure 5.2

A graph of the efficiency of two methods of solving
Problem 2 over the interval 0 < x < 10. Relative
errors plotted at x = 10.
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Figure 5.3

A graph of the efficiency of two methods of solving
Problem 3 over the interval 0 < x < 10. Relative
errors plotted at x = 10.



14

13

12

11

10

- 108 -

10

|
—
o]
aQ
—
o
=1
"
1

—————— Implicit

= — Explicit /

logZ[Eval/unit step in x]

¥ T T T i T 1 T

0 1 2 3 4 5 6 7 8

Figure 5.4

A graph of the efficiency of two methods of solving
Problem 4 over the interval 0 £ x < 10. Relative
errors plotted at x = 1 and x = 10.
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Figure 5.5

A comparison of the actual and predicted error for
Problem 1 for various relative iteration errors
for 1 < x < 10.
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Figure 5.6

A comparison of the actual and predicted error for
Problem 2 for various relative iteration errors for
1 < x <10.
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Figure 5.7

A comparison of the actual and predicted error for

Problem 3 for various relative iteration errors for
1 £ x < 10.
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Figure 5.8

A comparison of the actual and predicted error for
Problem 4 for various relative iteration errors for
1 < x < 10.



- 113 -

of the combined process must be considered.

As noted by Ralston [52, p. 188], (5.5.1) would not be
a stable corrector for a predictor-corrector process. In [18]
it is shown that (5.5.1) is absolutely stable when used with the
classical 4th order Runge-Kutta process provided the combined
process satisfies the restriction -6.6 < qH < 0 when solving
(1.2.3) where H = 3h.

In a similar way to that of [18)] we can show that
solving (1.2.3) using the exact solution given by the implicit

Runge-Kutta process in combination with (5.5.1) that

)
o]
[y
~
o)
jas]
~—
e

y*((n+1)H) = = y*(n) = E(qH)y*(aH) (5.8.1)

i j
. (lI’I

I OVl ™M~

[N
(=]

where the cy and dj are appropriate constants and y*(nH) is the
nth value produced by the combined process.

It is easily verified that |E(qH)| < 1 provided
-19.5 < qH < 0. The absolute stability constraint on the step
size of the implicit Runge-Kutta process is thus -6.5 < gh < O
if the combined process is used for the solution. We note that
this constraint compares favorably with the explicit Sth and

6th

order Runge-Kutta processes proposed by Lawson in [35] and
[37].
For the procedure given in this thesis, where the

combined process produces only a local error estimate, this

stability constraint does not apply. Instead, we observe that
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the technique we have described in the previous sections is in
fact a type of predictor-corrector process and its stability
should be analyzed on that basis. For example, if we assume that
only one iteration is done on the Ei's then the effect of the
predictor should be included in the stability analysis of the
total process, as noted by Fox [21, p. 55], since this can
noticably reduce the stability region.

Unfortunately, in using the predictor (5.3.1), which
allows us to make a 4th order prediction of y in only one step
of h, we use function values at irrationally spaced values of x.
This means that the resulting characteristic polynomial,

C(r) =0 [217, {52], [26] has terms involving r raised to powers
which are irrational as well as rational and hence the usual
theorems for the roots of C(r) = 0 do not apply. Thus, the usual
stability analysis is not possible. We note that the results of
the four problems considered suggests that stability is not a
major problem in the process.

One way of avoiding the above difficulty and obtaining
the usual stability analysis would be to use a predictor basedion
rationally spaced values of x. To do this would clearly lengthen
the starting interval of the process and might not produce any
better results. Additional study along these lines is possible
but will not be considered here since as was indicated at the
start of this chapter we were interested in showing that such
processes could be implemented and not in being exhaustive in

our study of them.
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>
5.9 Tmproving the Estimates for the Ki's

As suggested by Ralston [52, p. 186], when using
predictor-corrector methods it may be worthwhile to correct the
predictor by using information about how badly it was in error
on the previous prediction. This procedure was included in the
program used to produce the results shown in Figures 5.1, 5.2,
5.3, and 5.4, 1t resulted in a slight reduction (averaging
about 5%) in the number of function evaluations required per
unilt step in x as compared with a program which did not include

this feature.
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