Description of

oy

/360 WATFOR

A Fortran-1V Compiler

Faculty of Mathematics

University of Waterloo

Waterloo, Ontario
Canada

SN

N~

)

Department of Applied Analysis
&

Computer Science

Description of

©

/360 WATFOR

A Fortran-IV Compiler

P. H. Cress

P. H. Dirksen
M. S. Doyle

L. K. Kesselhut
W. C. Kindree
D. S. Meek

W. R. Milne

E. L. Schmidt
S. J. Ward

C. L. Williams

- Department of Applied Analysis
and Computer Science

- Computing Centre
University of Waterloo.

April, 1968.

CSTR-1000

@;‘Copyright 1968 University of Waterloo

Acknowledgements

This documentation is another result of the effort that
has gone into the production of the first version of the /360 WATFOR
Compiler. Many persons other than the authors of the compiler and
this documentation have contributed in some way but are too
numerous to mention by name., However, we must thank Miss Ann Cross
for her patience with us while carefully typing the complete
manuscript,

This project has been sponsored in part by the following

grants:

IBM Fellowship for 1966

NRC Grant No. A-2244

Chapter 1
1.1

1.2
1.3

Chapter 2

NN N
e s s e o
L whE-

2.6

NN
.« e
o0~

Chapter 3

3.2
3.3

Introduction

The WATFOR Project
The Project Personnel
This Manual

General Structure

Introduction

Logic Flow of WATFOR

Memory Layout

Symbol Table Entries for /360 WATFOR
Work Areas

2.5.1. ISN Coding

2.5.2. Handling of Undefined Variables
at Execution Time

2.5.3. Addressing of Simple Variables
in COMMON or EQUIVALENCE

Relocation Principle

General

Symbol Table Pointers
Temporary Pointers

Relocator Codes

Addressing of Complex Values

[NCT SR G (R)
e o e & »
aocno ooy
« e e o
(S I UL L

Intermediate Text Created by SCAN routine (STACK)
Conventions

.8.1. Register
.8.2. Prefix
.8.3. Programming

N NN

Communication Regions

3.1.1. Introduction
3.1.2 Constants and Switches in STARTA
and COMMR

Entry and Return Routines (CENT,CRET)
Symbol Table Lookup Routine

Page

(€, T Sy

(ol Vo RNe ol o)

=

19
20
22
22
22
23
24
24

26
28

28

30
31

32

35

38
39

wwww
~N oo b

-

DO 1= b b e et b b e e O OO

LWLWWWWWLWWwWWwWwWwWw
SQwoo~NOTUWMPM~WNREO

3.21

Chapter 4

4.1

I1

Introduction

Statement Number Lookup
Symbol Lookup

Library List Lookup

Constant Collector and Lookup
. Constant Lookup

W wwwwiw
wwwwww
(o) R s R Y R

Constant Collection

Object Code Output Routine (COUT)
Addressing Routines (CUSING,CBALR11)
Input Routine (CREAD)

.1. Constants and Switches
.2, Calling Sequence
3. Description of routine

.

w W w
~N o~

Output Initialization Routine (CPOINT)
Memory Overflow. Check Routine (CGETSYM)
Keyword Elimination Routine - CSETSTAK
Alignment Routines (CNOP's and CDSO's)
Entry and Return Routines (XENT,XRET)
Error Message Editor

Execution-Time Subscripting Routine (XAl,XAN)
Array Utility Routine (X1STELT)
Exponential Routines

Complex Multiply and Divide Routines

Fix and Float Routines

Undefined Variable Checking Routine (XROUT#*n)
Execution Input/Output (XIOINIT, XARRAY,
XSIMPELT, XSUBSELT)

Pre-Execution DATA Statement Processor -
XDATA, PDATA

Compiler Output Routine (XPRINT)
Execution-Time Interrupt Handling
Routine (XRUPT)

Run Time Operator Message Routines
(XSTOPN,XPAUSE)

Compile-Time Statement Processors

4.1.1 Introduction

4.1.2. Scanning a Statement

4.1.3. Transformation of Statement
4.1.4
4.1.5

Error Checking and Miscellaneous

. Determining the Statement Type (SFIND)

81
86

87

89

90

90
91
93
98
100

4.2

4.3

4.4

LINKR

b= = OO~ W N

PONDNHO-

~PrEeEAEAPRAPEAEEAPEAEEAEEAEEEEEAEES
NN NDNDNDNDNDNNDND N

w
ac}
=
a .
[92]

HWO o~ W N

[

Ll S S R R B S R S R o

LWWwWwWwLwwwwwww

ITI

Introduction

FUNCTION Statement Processor
SUBROUTINE Statement Processor
Argument List Processor

Type FUNCTION Statement Processors
ENTRY Statement Processor

RETURN Statement Processor

END Statement Processor

END Statement Simulator

Main Entry Point Processor

BLOCK DATA Statement Processor
Arithmetic Statement Function (ASF)
ASF Return Processor

Programme Segment Initialization

Introduction

Tables and Switches used in SPECS
Linking Operations in SPECS
Object Code

Detailed Description of Processor
EQUIVALENCE

COMMON Processor

IMPLICIT Processor

EXTERNAL Processor

Service Routines

General Description

Object Code Generated
Syntax-Checking and Lookup Routine
Code-Generating Phase

The Routine To Output Code for

an Operator

The Pieces of Dummy Object Code
Outputting Routines

Routines to Output Subscript,
Indirect Addressing and/or Undefined
Variable Checking Code for Operands
in ARITH ‘
Routine to Prepare An Argument or
Subscript in a List

Routine to Output a Function CALL
Contents of the Register Table

112

112
113
115
116
116
120
128
131
132
133

136

136
138
141
142

147
150
151

152

153
154
155

4.5

4.6

4.7

4.8

4.4.12,

ENIR SR
S

DODO

L S T A P S = S
Luhuvuvuhunhutt et n
O OONONUL P WN

H
2
(@}
[t
=

ISR OISR AN
(o)W« Wa) We) Be N« Yo e
O~ P~ WN

.13.
.14,
.15.
.16.
.17,

v

Routine to 'Detach' Subscript

List From Stack

Routine to Assign Temporary Storage
Routine to Output Subscript Coding
The End of Expression Routine

Error End-of-Statement Routine
Entry Points and Termination
Routines for Various Types of
Statements

Introduction

Compile GO TO

Assigned GO TO
Arithmetic IF Statement
ASSIGN Statement

DO Statement

End of DO loop coding
Common Routines
Switches

General Organization
CONTINUE

STOP

PAUSE

BACKSPACE, ENDFILE, REWIND
PUNCH, PRINT, WRITE, READ
DATA

INOUT Utility Routines

Introduction

Compile-Time Entry (FORMAT)
Execution-Time Entry (FORMATEX)
Specification Converter (FORSCAN)

Introduction

Phase One

Phase Two

Relocation Phase Three

155
156
157
158
158

158

163

163
163
165
166
166
167
174
175
175

176

176
178
178
179
180
181
186
192

203

203
203
204
204

208

208
208
216
220

Chapter 5 EXECUTION-TIME ROUTINES

5.

5.

5.

5

5.

Chapter 6

N ONOYONOY O
¢« o . . .

1

2

3

4

5

AL~ LN

FUNCTION

5.1.1. The Mathematical Functions
5.1.2. Macros Used by FUNCTION
5.2.3. The 'IN-LINE' Functions

EXECUTION FORMAT
FRIOSCAN

Introduction
Initialization

Scan of Input Field
Routines to Process the Input Data

wwww

[P S, IR C,]
ES N OVIR G I

FORMCONV

Introduction

Formatted Output

Formatted Input

Free Output

Free Input

Common Subroutines and Utility Routines
Important Variables and Switches
Non-Formatted (Binary) I/0

(INBINI, OUTBINI, INBIN, OUTBIN)

.

Eo R S S N A L S
ool P~ wWwN

(S, R, G, R, IR, N, |

FIOCS

Error Messages

Switches Added

Line and Page Control (PRITE)
Entry Coding Added

U U
(AR, I, ;]
rLONPE

MAIN

Introduction

Initial Batch Entry

End of Batch

Start of Compilation

End of Execution

Library Programme Processor

227

227
229
232

239
240

240
242
243
243

246

246
248
254
257
258
259
267

269
270

270
270
271
271

273

273
276
276
276
279
280

Chapter 7

Chapter 38

Appendix A

Vi

Debugging the Compiler

Improvements and Further Development

Subprogramme Linkage Conventions
in WATFOR

287

WWwwWwwwwww

= e W wWw
BN OO e

alE SNV

S RS

w
'—l
B~
()

3.14.3.

3.21.1.

ERELEE S S R

BRI S S S R S T S

o

. -

P .« . .
(Al Ne) N e IV, LU, B S s g)

M~ OOONRE

0o o 0 O

-

s s+ o s e
LV WNEFENNHSOWV S

W=

W WH R &

VII

Figures

Logic Flow of WATFOR

Memory Layout

Addressing Equivalenced Variables in Common
Blocks

Addressing of Complex Variables

Routine to Generate Pseudo Statement Number
Symbol Lookup

Library List Lookup

Logic of Constant Lookup Routine

Constant Collector

Stack Showing Keyword Elimination

Logic of CSETSTAK

Description to Type Code in Argument List
Subscripting Routine For Multiply Subscripted
Variables (XAN)

Subscripting Routine For Singly Subscripted
Variables (XAl)

Object Code and Dot Routine for a Subscripted
Variable

Flowchart for XDATA and PDATA

General Flow of SCAN Routine

Object Code for FUNCTION and SUBROUTINE
Linkage in Symbol Table to Dimension List
Examples of Equivalence Processing

General Flow Diagram for ARITH

Use of Registers in Object Code of ARITH
Flow Diagram of Syntax-Checking and Lookup
Phase of ARITH

Table of Routines for Operator Pairs

Routine to OQutput Code for An Operator
Example of Compilation of a Complete Statement
Routines Used in Code~Generating Scan

GO TO statements

DO Statement

Processing CONTINUE

Processing PUNCH, PRINT, WRITE, READ
Processing DATA Statement

I/0 List Compiler

Stack in Stages and Object Code as it appears
for a PRINT Statement with an implied DO-LOOP
END/ERR Processors

Equivalence List Processor in RELOC-1

Common Block Processor in RELOC-1

Combined Common-Equivalence List

21
25

41
43
44
48
54
61
62
65

73

74

75
84

92
105
119
125
137
140

144
146
148
161
162
163
167
178
182
190
197.1

198
201
210
213
214

[o 20N«) NN, RV, I S R S i o
N = Wi 00 m

Vi
WwwwwrE

WNEHENFE

oy U

VIII

Page
Equivalence List Processor in RELOC-3 222
Named Common Block Processor in RELOC-3 224
Common Block List Processor in RELOC-3 225
Function Dependency Table 228
Flowchart of FRIOSCAN 241
Linkage between COMMR, STARTA and MAIN 274
General Flow of MAIN 275

Tables

Page
Transformed Operator Table 91
CSECTS in SPECS 112
Entry Points in SPECS 113
Use of Registers in FRIOSCAN 242
Switches and counters in FRIOSCAN 243

Format of Incoming Data 244

CHAPTER 1

Introduction

1.1 The WATFOR Project

The /360 WATFOR compiler was not the first in-core compiler
ever written nor, probably for that matter, will it be the last. One
of the purposes of this manual is to attempt to make life simpler for
those of you who in the future might be faced with the task of producing
such a compiler and want to see how somebody else once did it.1

A few words might be said at this point about another in-core
compiler with which some of you might be familiar. 1In the summer of
1965 four undergraduate students at the University of Waterloo developed
a fast Fortran compiler2 for the IBM 7040 computer which the University
then had. This was the result of the first WATFOR compiler project and
its principle aims were fast compilation with good debugging facilities
for the non-professional programmer. The project was an enormous
success and proved at least the following points: a fast, useful load-
and-go compiler could be produced in a reasonable time by a few
relatively non-professional programmers.

Sometime during early 1966 the University decided to order am
IBM 360 computer to replace its 7040 and as the number of non-
professional programmers the Computing Centre was obliged to give
service to was increasing dramatically and as it was obvious from the
success of 7040 WATFOR that a replacement for it would be needed for
the new machine, another team was formed to produce another WATFOR
compiler. This team first started meeting in early May of 1966 and
consisted of three full-time employees of the University
(Mrs. Betty Schmidt, Paul Dirksen, Paul Cress) and three undergraduate
students (Lothar K. 'Ned' Kesselhut, Bill Kindree, Dereck Meek). The
team held a series of planning sessions and on May 27 a combined
meeting was held with other members of the Computing Centre. The
purpose of this meeting was to reveal the objectives of the /360
WATFOR Project that had been decided, in part, in the earlier planning
meetings and to seek further suggestions and criticism.

1. We were planning to carve this manual in stone but felt the
mailing costs would be prohibitive.

2. See Shantz, P.W. et. al. "WATFOR - The University of Waterloo
Fortran-IV Compiler" CACM v10, no. 1, January 1967.

10.

11.

12.

13.

14,

15.

16.
17.

The objectives agreed upon at that time are listed here:

To produce an in-core load-and-go compiler.

Its compilation speed to be as fast as our coding skill would

produce.

The compiler was to produce at least as good error diagnostics

as its forerunner 7040 WATFOR (which are excellent) at both

compile and execution time.

We were to implement as much of full /360 Fortran-IV as we felt

we could in a reasonable amount of time.
(Since the only manual we had available to us at the time
which described /360 Fortran-IV was '"IBM System/360 FORTRAN IV
Language', form C28-6515-0, we decided, for what we hoped
would be compatability reasons, that our compiler would
implement the language therein described, occasionally taking
educated guesses at points which were vague or missing).

A software check for undefined variables would be provided. (This

was done in 7040 WATFOR using a hardware feature.)

Under the limitation imposed by 5, produce as good execution speed

as possible from well designed object code.

Format—free READ and PRINT statements (e.g. READ,A,B) were to be

implemented since they are invaluable to learning programmers.

'FORMAT (' when used as the first seven characters of a statement

was to be the only 'reserved' character sequence.

The compiler was to work on a minimum 128K machine with standard

instruction set and floating point feature.

We would use some routines from IBM's run-time Fortran library

(e.g. I/0 interface, function approximation routines) to save

ourselves some work.

The compiler was to accept source decks punched on cards or stored

on a direct access library.

Infrequently used machine language run-time routines were to be

stored on direct access device and loaded into memory as required

by a compiled programme (cf. LOAD feature of 0.S.)

The compiler itself and the object code generated by it were to be

as independent of machine position as possible (i.e. no absolute

adcons were to be stored by the programmes). All adcons used or

constructed by the compiler would be relative to some standard

value which would be kept in an index register. Hence the origin

of our term 'offset addressing' and the frequent label START found

throughout the compiler. (This objective was imposed since at the

time we had vague plans of producing an operating system with

roll-out and scatter roll-in feature.)

The compiler was to be written in assembler language and be

modularly constructed to facilitate changing.

The result of the project was to be a package that would be

distributable since we felt other installations could use such

a processor as we were designing.

The package was to be well documented.

If nothing else, we were to gain experience and learn.

We were going to accept the following restrictions from the
outset:

1. No user written assembly language subprogrammes would be accepted
by the compiler i.e. FORTRAN programmes only.

2. No 'object decks' would be produced.

3. No overlay facility would be provided.

The objectives listed above were established in the face of
the following potential impediments:

- at that time none of the project membérs had ever seen
an IBM 360 computer.’

- none of the project team had ever written an assembly
language programme for the 360 (although we were busy
reading the Principles of Operations and Assembler Language
manuals).

- we had never even heard the words "DD card" at that time.3

- we didn't know if any IBM run~time library existed but
guessed it would by the time we would be ready to use it.

- we had no 360 Fortran compiler available to compare results
with or try test cases on. (The G compiler had not been
revealed by that time and the H compiler was still too big
to fit into any machine we would see for quite a while.)

We did however have the benefit of the documentation for
7040 WATFOR and association and discussion with the members of that
team.

WATFOR has been in use now for almost a year. In truth it
must be said that not all of the objectives listed above have been met
by the project. For example we dropped number 12 entirely; in
number 13 we have been only partially successful. However, if we may
take the liberty of saying so in our own manual, we feel that most
objectives have been met sufficiently to call the project successful.
We're damn proud of it at any rate.

3. Ignorance is bliss. (Anon.)

1.2 The Project Personnel

In September 1966 the three undergraduate students returned
to school but continued working on a part-time basis. Two other
members of the University staff (Mike Doyle, Rod Milne) began to assist
the project about that time by writing certain routines which had been
planned but not written.

It might be fitting to mention at this time some of the work
that each person did.

Betty Schmidt wrote the arithmetic compiler ARITH, part of
the relocator RELOC and converted almost all of IBM's function library
to WATFOR's use as well as writing some functions herself.

Lothar Kesselhut wrote the type statement compiler SPECS.

Der eck Meek wrote the control statement compiler DODO.
Bill Kindree wrote LINKR, RELOC-I, II and sections of MAIN,

Rod Milne wrote FORMCONV, the execution time data converter
and a Trace Programme which has been invaluable for debugging.

Mike Doyle wrote FRIOSCAN, the execution-time input-field
scanning routine.

Paul Dirksen wrote the SCAN routine, FORMAT compiler and
converted IBM's FIOCS and parts of IBCOM to our use. He also acted
as editor of this manual.

Paul Cress wrote the I/0 statement processor INOUT and
occassionally acted as project supervisor.

All project members contributed to the design of the compiler
and, as well as writing the above mentioned compiler modules,
contributed routines and macros too numerous to mention individually
e.g. routines in COMMR, STARTA, MAIN. The job of keypunching and
debugging routines was also the responsibility of the individual
members.

Since February 1967 Mrs. Sandra Ward has ably acted as our
chief correspondent, distribution agent and coordinator of updates.4

Mrs. Lynn Williams has lately assumed responsibility for

4. An autographed picture of this group, suitable for framing,may be
obtained by writing Mrs. Ward.

FRIOSCAN and has supplied the documentation of it for this manual since
Mike Doyle is busy as Supervisor of Systems for the Computing Centre.
All other project members supplied the documentation of their routines.

All persons mentioned above have aided in the continuing
maintenance of the compiler by very cooperatively fixing those bugs
which seem to have cropped up in their respective routines. They are
also involved in preparing Version 1 of the compiler for release later
this summer.

1.3 This Manual

One of the purposes of this manual has been mentioned earlier.
It is partly for that purpose and partly because this manual may be of
some use to persons wishing to add to or modify WATFOR that the manual
is very detailed. 1In fact some of the descriptions presented may become
meaningful only if the reader has access to listings of the compiler
modules and uses this manual as a guide to the listings. It is not a
particularly didactic manual although an attempt has been made to start
each chapter with an overview of the module described in that chapter,
with chapters 2 and 3 containing an overview of the compiler as a whole.

The reader is advised that a knowledge of both C28-6515 and
the WATFOR Implementation Guide is presupposed. This manual pertains
to Version 0 Level 5 of WATFOR.

Not the least of the objectives of the WATFOR project, and
this is particularly so in an academic enviromment, is the last listed:
experience and learning. We have learned considerably, even about
writing manuals.

Finally in keeping with what seems to be a well established
tradition for manuals of this sort, every attempt has been made to keep
it as dry and humourless as possible.

CHAPTER 2

General Structure

2.1 Introduction

A compiler, of course, has one main purpose; to translate a
programme (FORTRAN in our case) to machine language. To accomplish
this purpose the WATFOR compiler generates and uses two major tables.
The first and most obvious is the object code to execute the user
programme. The second, the symbol table, contains information about
variables, statement labels and constants used by the programmer. The
compiler's functions are basically built around these two tables.

The symbol tahle contains information about the elements used
by the programmer. Since many parts of the compiler use the symbol
table it is described in detail in this chapter. The object code is
dependent on the particular statement being processed. Hence most of
the object code is discussed in Chapter 4 where the statement
processors are presented. However, this chapter does present some of
the common code generated for each statement.

When writing a compiler many terms are used to make
communication between programmers easier and more precise. Some of
the common and frequently used terms are introduced now. Most of
them will be described in more detail later.

1. Stack

The FORTRAN source statement is transformed to an internal list
(stack) suitable for processing by the various statement processors.

2. Work area

Since the compiler is completely core resident an area is required
to generate object code and symbol table information.

3. Programme Segment

This is either a main programme or a subprogramme.

4, Local Data Area

Storage for any constants, statement numbers, address constants,
or simple variables in a Programme Segment comprise the local
data area for the segment.

5. Array Area

Any variables that are subscripted or appear in a COMMON or an
EQUIVALENCE statement are included jp the array area.

6. Symbol Table

A number of lists used by the compiler to retain information about
statement numbers, variables and constants.

7. Object Code

Machine instructions generated by the compiler to execute the user
programme,

8. Dot Routine

The manner in which WATFOR handles subscripts requires that each
subscripted variable have a routine containing the necessary
information to calculate subscripts. This routine is called the
dot routine (cf dope vector). (BAL R1l4,.A would be a way of
representing a call to the routine to perform subscripting for
the variable A).

9. Linked List

The first half-word of each entry of a table contains a wvalue that
is used to point to the next entry of the same type in the table.

Addrl 30

Addr2 10

e.g. Addrl + 30 = Addr2
where 30 is called the link.

Most of the major tables use this technique. The advantages
include:

1. Ease and speed in handling data of the same type. (Only 1 instruction
is required to get the next item in a table.)

2. Allows variable length entries in tables.

3. Creating many different tables is just a sequential operation as
long as the proper link is inserted.

4, Implementation on /360 computer is easy.

2.2, Logic Flow of WATFOR

WATFOPR is a batch processor of FORTRAN jobs. This allows
the installation to run a batch of FORTRAN jobs without any intervention
required from the operating system. Hence transition from one job to
the next is minimized and this allows speedy processing of the batch.
A second and more important reason for WATFOR's speed is that the compiler
is load-and-go. No I/0 utilities are required or used at compile time
and hence we can again gain some valuable time. (The user can of
course use I/0 utilities in the standard manner, as allowed by the
FORTRAN language, at execution time.)

The following diagram shows the basic relationship between
the various major steps of WATFOR's compilation and execution process.

0.5
Initialize
for batch
FSTOP Init%allze | Job Accounting
for job
errors

Initiali £ $SENTRY 1o error Execution
nitialize for Reloc.TII __“____,_—~§_;?

Programme Segment

3

END 71 Reloc.I r“—"“‘1Reloc.11

Figure 2.2.1,

SCAN - produces intermediate text and identifies statement
COMMON,DATA, etc. represent routines which compile the various statements.
The arrows at this level indicate that some of these
routines call one another. The larger arrowhead suggests
the call e.g. READ calls DO.
Reloc.I - Relocator Phase I - processes the symbol table and produces
programme segment local data areas. Missing statement
numbers are detected.

Reloc.II - Relocator Phase II - relocates object code using addresses
prepared by Phase I.

Reloc.III - Relocator Phase III ~ processes Global Symbol list and assigns
addresses to equivalenced variables, arrays, common blocks;
subprogramme cross references are resolved and missing
subprogrammes are detected.

2.3. Memory Layout

The following diagrams show the memory layout for the compiler.
The link-editor may re-arrange the order of the various modules.
However, the 'work area' will always occur following STARTB. The
work area consists of two tables at compile time. Object code is
produced from low to high addresses and symbol table entries are
generated from high to low addresses. This gives us two open ended
lists and we need only be concerned if the two lists meet.

Several rules have to be used with regard to the overflow
of the work area. If this area does overflow, the programme will not
execute under any circumstance. However, in the event of overflow
WATFOR will continue compiling the programme, subject to the following
rules:

1. If the object code area and symbol table area meet, no more object
code is generated. 3
2, The symbol table, however, still continues to grow downward until

it reaches the bottom of the work area. 1In this case compilation
is immediately terminated.

It should be noted that the symbol table is not retained at
execution time and hence this space can be used for assigning storage
for arrays, common blocks and equivalenced variables.

low
address

high
address

low

STARTA

STARTB

WORK AREA

COMMR

MAIN

COMPILER
ROUTINES

RUN TIME
ROUTINES

object code for
main programme

local data
for main

object code for
subprogramme A

local data for A

symbol table for A

symbol table for
main programme

- 10 -

Execution time switches, constants and routines

e.g. subprogramme entry and return routines, complex
arithmetic, subscripting.

Execution/Compile routines e.g. error message
editor, I/0 initializer, write-to-operator.

Object code and symbol table is generated in
this area.

Compile time switches, constants and routines
e.g. table lookup routines, constant converter
code output.

Entry point from 0.S., batch initializing, job
accounting.

SCAN and the various statement compilers

Routines to do I/0, FORMAT conversion and FORTRAN
library routines, e.g. SIN, ALOG, EXP, EXIT, etc.

Compile time . Execution
object code i
layout of work . time
for main
area for layout of
$JOB local data for main work area
Main Programme
END object code for
Subprogramme A | subprogramme A
END
. local data for A
$ENTRY

object code for
last subprogramme

local data for
last subprogramme

arrays

equivalenced

common blocks

unused

Figure 2.3.1.

- 11 -

2.4, Symboél Table Entries for /360 WATFOR

The symbol table consists of 6 linked lists which contain
information about the various elements used in the programme being
translated.

The various lists are:

1. Name List (VLIST) - This list contains all names which are used in
a programme segment. They may be of 3 modes:

(i) Variable names
(ii) Subprogramme names
(iii) Common block names

The various modes of names are put in one list to detect attempted
duplicate use.

2. Statement Number List (NLIST) - This list contains all statement
numbers mentioned in the segment as well as all pseudo-statement
numbers constructed by the DO-compiler for branching back in
DO~-loops.

3. Constant list (KLIST) -~ This list contains all integer, real,
complex and hexadecimal constants used in a segment.

4. Hollerith Constant list (HLIST) - This list contains references
to all hollerith constants not appearing in FORMAT statements.

The SCAN routine stores the constants in the object code and
prepares the entries in this list.

5. Library List (LLIST) - This list contains 1 entry for each common
block name, subprogramme or library function. (i.e. if a name
appears in a SUBROUTINE or FUNCTION statement or if a variable is
used as a subscripted variable and no "dimension" statement is
encountered for the variable, the variable is placed in the LLIST.
Entries, are placed in this list by Relocator Phase One for each
programme-segment when the END statement is encountered).

6. Relocator Phase Three List (GVLIST - global variable) - This list
is not a new type of list but rather consists of entries from the
VLIST's. It is basically a list of incompleted tasks of the
Relocator. It is started at the end of the first programme-
segmént, and grows at the end of each succeeding programme segment.
Processing of the list occurs in Relocator Phase Three at the end
of compilation and just prior to execution. This processing
includes programme segment linking and assignment of storage for
arrays and common or equivalenece variables.

Lists 1, 2, 3, 4 are produced on a programme-segment basis and lists
5 and 6 are prepared on a complete programme basis.

The symbol table is created in the work area from high to low
addresses. It is required only at compile time and at execution time can

be used as space for the array area.

-12 -

The symbol table as described contains 6 different lists.
In designing this table it was decided to use as little space as
possible for each type of entry. The constant entry can contain for
example from 2 - 5 words depending on the constant type. However,
to speed up processing time it was decided to make each type of entry
a multiple of full words. The various lists are also consistent in
that 1f a NAME appears in the list it always starts in the second word
and the attribute bytes always appear as the second half of the first
word. Hence obtaining information from the list is easy and processing
the list is relatively fast.

- 13 -

HONATVAINDHE 10 NOWWOD £q pasn - Hm
SUOTSUSWIP [EN3IOB — Hv
s934q ur Yyi8usal - Z(Q
S33T4s - 1d
019z 01 39S - o
S3ISTIqNnS
1STT uowmos 10 1 _] IONATVAINOE
oousTeAInbe STY1 UT JusWATS 3IXaU 03 sjurod JUFT 198330 d AT + a0 PUE NOWWOD
T z 1 3ISTTqRS
L>ST>T P oq te od P oq ca 10} #%#-d NOISNIWIC
¢—7v —P| ¢ 1
(1930ouered sweu-Aq-TTED B 10J UO pauin] 3ie SITq F % d Y304q) a
peousaTeaTInba=1 <(peousfearnbe jo0u = (POONATVAINOE — &
uowwod UI=] fuoWWOod UF 30U = PRNOWWOD - D
jusmelels adA] 10 VIVA UT PIZITRTITUT=T {PIZTTBTITUT J0U = (paZITeriTul - Ul
9TqeTIRA PINDISSV=T <IBA PONOISSY UB 30U = 9TqeTIBA INDISSV - SV
193oweied-Qq & AT3usaano=7 faed-pg ® LAT3usiand jou = (i9jsweied-Qq - Od
19roueied=7 $¢iojoueied ® jou = (JI939Weied Suwweidoadqng - g
(Z TVNSEIXd ‘Z XATIHOD °3°® 9AT0SS1 03 pasn)
poysSTIIqeIsa=] (poysIqelss 3jou = (paystiqease 23es -
pPOYSTITqeISa=T ‘poysI[qeisa 10U = (PoYSTITqEISa 3adLL -],
Teuorido=1 {paepuUBIS = () yidue ~ 11
xa7dmod - T
1831 - 0T
19893uT - TQ
T82130T - 00 adLg
s3ydtaosqns /-T 103 TTIT - T0O sydraosqng
FO Id2qunN - SS
T so1qeTava 27duUls 103 QT
sdAeiae 1037 TT v 103ed0Tpuy LweN - IN
o fur |sv |oaflafnji} 2dAL, SS # | Cas'a
()d * (0)d # (@d+ sweu ‘g g qUIT +
“mus —P— —P ¢ —> < 9 — 4 z P .ulwn
91

(ISTTIA) Fopavlacy

£1jue AIepPUOIDS=QT

(1 =

- 14 -

1
SS21ppe yisuag aueu ¢ _ Hm NUIT +
€ € 9 ! T [4
(ISITTI) 23STT KieiqT] UT oWey oO[g UOWWO)
onoqe se g g g
T
ssa21ppe aweu ¢ | Tg NUTT +
“— —P ¢ ¢ .Jv.An< 9 P +—=¢ P e— 7 —p

(ISIT1) 1ST] ouwmeigoidqng Aieaqr]

ISITT o1 1s3jurod pue T 103eO0T9yg Aq paudrsse (1)d

qutod £xjue Lxewrad=T7 $3utod

fuoTiouni JUSW21BIS=T() :UOIJDOUNF TEUIIIXD
(pe8uryd °q 3,ued/UBD §/J) PAYSTIqERISO=Q
d 37 ouweidoad SUTTTED UT Pa[RUIDIXD 9q IsSnuw) SI4A=]
I93ouwexed suweadoadqns se posn=T

‘ou
‘ou

fpaysTIgqelISS 30U
‘poysITqelS® 13194 jou adi]
Teuorido=7 : piepuels
x97dwoo
TE31
19893uT
1Ee°T30T
aurjnoiqns

(pe8ury> @q 3,uBd/UBD IN) POYSTTqEISOE=T
paystITqeasa 2dLy = 1

uorjouni=T ¢

saweu mEEmuwoum@:m 103 00

{poysIIgqeiISe 1o0u

OO +H0O
o

it

1
T
10
00
=0

O HO OO

28es -
pPoyYsSIIqelss °3es -
31q ADU231STSUO)

e

a
ND
0

PoT, TVNJHIXd - X4
1o3ouweieq oumeidoidqng - g

T

pauysIIqelse ades) -
paysITqeass 2dLL - 3
yidus - 11

- 2d{]

surjnoiqng/uofioung - §/4
= 103BOTpUT 2weN - IN

o lxs | "o 1% talfafal 1] #dx |s/a | 10] 0o ‘g5 Ig
1
(Dd + aweu 4 | g MUuTT +
¢ —V ¢ 9 » & {—Pp &— 7 —Pp
¢ A1 >

(1ST1A) seuweasoadqng

- 15 -

Saweu D0TY UOWWOD i10J

}O0Tq STY3
UT SJUSWOTS 3ISB] pue 3ISIATJ
03 siajurod 2i1e (I)d ‘(@)d

"0TO = 103EOTpUT QwEN - IN

\\
\\ (d = (wd =

7

sueu

‘e B AUTT +

——rt——DeE¢t—— ¢

‘r

> ¢ ¢ b ¢——»
»

(1STIIA) S3o0Tg uoumio)

16 -

1- s934q jJo aaqunu = YiZuoT]

aurInol NV)HS 4£q pe3eaao 3ISIT STyl -

JUB]SUOD Mm% Amww yai3usg NqUIT +
— 9T ‘g ‘4 ——P 4—7 P ¢ P
(LSI™DI) 3ISTT IUB3ISUO)
9STMIaYI0 ,00,X =

juswel®IS VYIVA A0 ASOVd UT ST Juelisuod 3JT ,08,X = 9PpOd

JUB]SUOD Pa1031S 92Ul JO UOFIBIO] = SS2IppE

(A1epunoq piom 03 syueTq Yitm sped IY3TI NYDS SB 4poW ¢=) T~ SIIIOBIBYD 3O Iaqunu = Yyj3uoT]
sSsoi1ppe yidua] 9poo NUTIT +
TP T TP D

44— 8

—_—

(ISITH) 3ISTT 3uelsuo) YITISTTOH
‘0@ ur saeadde = T ‘jusweilels Qg ' ur ieadde 3 ,ussop = Q
*939 0Q°0I0H UTI poouliajal = T ‘poouaisial jou Juswelels~QQq - (
isqunu JUSWIIBIS = () peoou91ajay - 3y
pougIsse SsaiIppe = T ‘pou8Tsse 10U = () pou8IsSsSe-ssSa1ppy - V
juduelels IVWE0d = 1 ‘IVWI04 ® 30U = Q Ivikdod - 4
9Tqe3INnd9xa = T ‘9TQBINDIXe TOU = () 91qeINO9X3 UON/2Tqe3Ind9xXy - N/X
viajiNx|da jagjojolo 18
poUTWID]SdP SSDAPPE TTIUN 20UaIajal NSI IS
NS1/ssaappe AIZeUIq UT J9qunu JUdWOIBIS 104697 18 AUTT +
&> Y < Y P T —PET &
4- T

AH_mH,HZv SIaqunn

ENENERLERT

17 -

(19VIS woxy 39s330) ISITI 2Y3 ur L1jue ayj o3 i193urog (T)d
BO91® BIBpP 9Y3 UT JUBISUOD SSIIPPE 9yl 03 I23utod ¢4
@TqeTieA X9Tdwod ® JOo yTeY puodes ay3 o3 isjurod - xordwoo pue oydwls ST oTqeTiBA JT ATUO pasn zd

aTduis 10

JUB31SUOD SS3IAPpE UB 03 I9juTod - UOWWOD I0 PodUITRAINDD
surinox jop o3 xavjurod - paoadtaosqns
ssaippe q/4 - aTdurs e9Ie elep 031 I=julod TId

2dKk3 o[qeTiep

(D4 - (H)d sweu 14 NUTT
4 SOWBN YO0Tg UOUmO?)
(T)d cd za | 19 xcﬂﬁtg
U3 me&muwouap:m
(1) d (0)d (D4 r_ T T 1d J“Nm Tq NUTT
z z z Z Z 7z z saTqeTieA

- 18 -

2.5. Work Areas

Figure 2.3.1. describes the basic core layout of the work
area at compile and execution time, Chapter 4 will describe the object
code that each of the statement processors will produce. This section
describes some of the more general features of the object code.

Object code is produced by the various processors. This
object code is in general, in a coded form. The various phases of
the relocator (Phase 1, 2, and 3) change this code from pointers to
the symbol table and special codes, to pointers to the data areas.
The principle of relocation is discussed in section 2.6.

Certain object code is pertinent to the whole programme and
other object code is required for each statement. This code plus
some other general facts will be described now.

2.5.1. ISN CODING

The following object code is generated before each executable
statement in the object code.

BAL R11,XISNRTN
DC H'ISN'

XISNRTN is a routine in the communications region STARTA which in
general returns to the instruction following the half word constant.
ISN is the source line number. This coding is used for three purposes.

1. If an error is detected in a statement, register 11 points to the
ISN which can be included as part of the error message.
2, Register 11 is used as the programme base register and the

BAL R11,XISNRTN guarantees a base register at any statement in
the programme. (Unless a statement takes more than 4095 bytes).

3. The routine XISNRTN merely branches back to the object code. If
a timer interrupt occurs at execution time, the timer routine

changes the branch at XISNRIN to a NOP and then continues processing

the FORTRAN statement. (This is done because the I/0 routine
IHCFIOSH is not serially reusable and hence if an interrupt
occurred during an I/0 operation all succeeding jobs in the batch
would hang.) Hence when we start to execute the next FORTRAN
statement control does not transfer back to the object code from
XISNRTN but rather issues an error message and terminates the job.
XISNRTIN is used as a common point through which each executable
statement must pass.

- 19 -

2.5.2. Handling of Undefined Variables at Execution Time

The user or installation has the option to allow the compiler
to detect undefined variables (variables which have not been assigned
a value). Since object code is generated to perform this check, the
method used and how this is implemented is now discussed.

The 7040 WATFOR compiler performed undefined variable checking
by setting all unassigned variables and arrays to 'bad parity' (i.e. An
instruction exists on the 7040 to set a word to bad parity. Any attempt
to 'read' this word will cause a machine interrupt and hence undefined
variables can be detected.) The /360 computers do not have this
facility. However, even if this were possible we decided that using
the parity trick was not suitable for a multi-programmed system.
Roll-out/roll-in for example would be awkward.

The solution decided upon was to choose a particular quantity
and insert it in all unassigned variables. Any routine generating
object code to access a particular variable outputs special code (call's
to routines in STARTA) to check for the undefined situation (if
RUN = FREE or CHECK.) For RUN = NOCHECK no such code is generated and
hence we have more efficient code for an experienced programmer or for
a bug-free programme. \

The particular value chosen is n * X'80' where n is the
number of bytes required for the particular variable type. This value
is usually not produced under normal calculation. For the four
variable types the value is:

floating point - a very small number - +4335017E-77
fixed point - a very large negative number - 2139062144
alphabetic - an invalid character

an invalid representation of either
.TRUE. or .FALSE.

logical

To date we have found only one way of generating this number easily.

e.g. DATA I1/4Hbbbb/
J=1I+1 J is now undefined

If problems arise as a result of our choice, the user can
always get around these by running under the option RUN = NOCHECK.

- In order to give the user as much information as possible
when he has an undefined variable, we also print out the variable name.
Therefore, the variable name must be available at execution time. (We
do not keep the symbol table at execution time.) The variable name is
stored immediately preceding the value of variable in the data area for
simple variables. For subscripted variables the variable name precedes
the dot routine for the particular variable.

- 20 -

e.g. IXXBC = 1

data area IXXBCHHD 00000001

DO~-loop parameters must be positive and hence, if they are
undefined, it is easy to determine since the undefined value is
negative number.

Not all cases of undefined variables can be detected by a
simple comparison against a funny bit pattern. In a certain obscure
case, we had to resort to other means to detect incorrect logic. The
FORTRAN subroutine following illustrates this case:

SUBROUTINE A(/X/)
RETURN

ENTRY B(/Y/)
X=X

RETURN

END

If this subroutine is invoked in the following manner,
everything is OK.

CALL A(R)
CALL B(S)

However, if we call it in the reverse order

CALL B(S)
CALL A(R)

we obviously have an error condition, and it is one which cannot be
detected by normal means. Subroutine parameters called by name are
handled like common or equivalenced simple variables. That is,

there is an address constant in the data area pointing to the storage
for the variable. In this case, it's the address of the variable which
appeared in the argument list of the latest call to subroutine A.
Clearly, if we do not call this routine in the correct order, we will
store the value R in some random location. This is an impossible
situation as we may clobber the compiler. The answer to this dilemma
is to force a programme interruption by initializing the address
constant to an illegal value. (Specification interrupts could not be
used as we might be addressing a logical *lvariable.) It was then
decided to force a protection or addressing interrupt by storing in
the initial value of the address, an address beyond the normal value
expected. Hence, we store or load at address 8M bytes unless this
address is initialized.

- 21 -

2.5.3. Addressing of Simple Variables Equivalenced or in
Common Blocks

The base/displacement addressing scheme of system /360 limits
the amount of data storage which can be directly addressed. As a result,
simple variables which are in common blocks or are equivalenced must be
addressed in a slightly more complex manner. This manner, quite
naturally,is to keep in the data area of the subprogramme an address
constant pointing to the storage area for the variable. Thus, manipulation
of the variable involves first loading its address into a work register
(R3) and then doing the required operations. For the sake of simplicity,
it was decided to defer assignment of storage space for all such variables
until the relocator phase three stage. The reason being that a simple
variable might be equivalenced to an array whose storage area is
assigned at that time.

e.g.

OBJECT CODE (BEFORE RELOCATION)

T

L 3 * . | OP | 3 0

SYMBOL TABLE created by
w” \ RELOC1

ZZ Figure 2.5.3.
DATA AREA é{///

T*

OBJECT CODEY(AFTER RELOCATION)
]

1
L 31 L4 OP
1

W
o

ARRAY AREA

- 22 -

2.6. RELOCATION PRINCIPLE
2.6.1. General

At a particular step in the generation of code we have no
knowledge of the storage locations that the variables will have
assigned to them. However, each variable has an entry in the symbol
table. Hence the object code generated contains pointers to the
symbol table. The relocator changes these pointers to actual addresses
pointing to the data area.

e.g. LE FO,pointer to symbol table
+ LE FO,Base/displacement address

The major design criterion which influences the form of
symbol table pointers is that the relocation phase, (the phase which
passes over the code which has been generated by the various
statement processors) must be able to decide just what addresses
in the code are or are not to be transformed. An examination of the
code generated reveals a set of addresses which are not to be relocated.
The complimentary set of addresses is used as a basis for the
processing of the object code by the relocator.

2.6.2. Symbol Table Pointers

The relocator first determines-the opcode of the instruction
it is scanning and does one of three classes of things accordingly

1. Ignores the operation (mostly RR instructions).
2. Relocates operand field (mostly RX instructiomns).
3. Performs special relocation functions.

If an operation falls into class two, the operand address
is examined and if it points to a symbol table entry, it replaces the
pointer with the base/displacement (B/D) address of the data. Since
we are replacing the pointer with a B/D address which occupies a half-
word, the pointer can take up no more than a half-word. An examination
of B/D address which appear in code not to be relocated reveals the
following set of '"constant" addresses:

Base register 0 is used in immediate operands

(i.e. LA instruction)

Base register 11 is used for local branching

(i.e. around logical IF statements, entry point code,
Hollerith constants or FORMAT statements)

- 23 -

Base register 12 is used to address routines and

data in the execution time communications region

(CSECT STARTA)

Base register 13 is used to address the programme
segment save area and temporary area.

This leaves base registers 1 through 10 and 14 and 15 unused in the
generated object code. Hence we adopt the convention that an address

in the object code with a base register number one through ten, is a

symbol table pointer. It shall be regarded as a 16 bit positive

integer. For each entry in the symbol table, its pointer is calculated

by subtracting from its address, a constant value (for each subprogramme)
stored in location CSYMBASE. This constant is used later in reconstructing
symbol table addresses. The pointers allow us to think of the symbol

table as running from addresses X'AFFF' through X'1000' (remember that

the symbol table is filled downwards).

2.6.3. Temporary Pointers

Early in the writing of the arithmetic statement compiler,
it was decided to separate the fixed and floating temporaries. This
was primarily because the registers are separate. Moreover,
temporaries would come from separate stacks simplifying the temporary
assignment algorithm. Both temporary stacks are addressed by register
13 at execution time. However, the full length of the fixed temporary
stack is not known until the END statement. So their addresses cannot
both be assigned at statement compile time as an offset from the
beginning of register R13. Register R14 (one of the still unused
registers) was picked to indicate the floating point temporary stack
and will be considered to be aligned on a double-word boundary. Note
that the fixed register stack is aligned on a word boundary. At
relocation time, if an address refers to the floating point temporary
stack, it is transformed into the B/D address by the simple subtraction
of a constant (calculated when the storage for the temporary stack
area is assigned). Its value then is register R13 plus some displacement.

- 24 -

2.6.4. Relocator Codes

Since the WATFOR compiler is based on a principle of partial
machine code, partial interpreted code, the relocator (phase two)
must be able to cope with both. As phase two takes its cue from the
opcode of the object code being scanned, a section of illegal /360
opcodes (henceforth called relocator codes) was set aside to represent
interpreted code. These opcodes start at X'AQ'.

For example, these opcodes are used in argument lists
generated by various statement processors: subroutine calls and the
corresponding model argument lists, calls to dimensioning routines,
and calls to input/output routines. Another example of the use of
a special relocator code appears in the code generated for an
internal statement number. Here the relocator must perform special
tasks upon scanning this code (to be explained later). We also
have a set of codes set aside for similar operations but which are
not "interpreted" at execution time. These will be explained in more
detail later. '

2.6.5. Addressing of Complex Values

In the production of object code handling complex simple
variables (not in common or equivalenced) and constants by the arithmetic
statement processor, we must be able to access at execution time both
the real and the imaginary parts of the value. It would be impractical
to set up two separate symbol table entries for each variable or
constant. An examination of the way that phase two of the relocator
works suggested an easy method of solving the above problem. Let us
suppose that we have an RX instruction with its operand field pointing
to the symbol table. Phase two uses this pointer to find the symbol
table entry. The pointer is then replaced by the half-word base
displacement address four bytes beyond the start of the symbol table
entry. Notice that not only does this address point to the whole
variable, but it also points to the real part of the variable. We
have only to do a similar operation for the imaginary part. This
second symbol table entry would be offset from the first by one half
word so that the base displacement addresses would not overlap.

Another way of saying this is: The pointer to the real part is the
pointer to the variable, the pointer to the imaginary part is the
pointer to the variable plus two bytes.

For example: Y = X where both are COMPLEX *8

OOOOOOOOOO

sy 1A

A, Ve

Y,

- 26 -

2.7. Intermediate Text Created by SCAN Routine (Stack)

All FORTRAN statements, with the exception of FORMAT
statements are transformed into a form that is more useable by the
various statement processors. The text is a linked list of operator-
operand pairs and is an internal representation of the original source
statement. For convenience we will refer to this list as the 'stack’.
The entries are link, delimiter (operator), code and operand, the last
of which may be omitted. Pictorially we have

< 2- 1—k— 1 0,4,8... —
link del code operand é ;

Following are two examples of FORTRAN statements and their corresponding
stack entries:

X = ABCDEF + Z*3.9

(a) 8 —~——f 01 Xbbb
12 = 02 ABCDEFbb
8 + 01 Zbbb
*)
8 81 l(3)2
8 81 <;(9)2
0 — 00
X = ((A+B**3 - 1234567890))
(b) 8 —] O1 Xbbb
4 = 00
4 (00
8 (01 Abbb
8 + 01 Bbbb
%
8 * 81 l(3)2
12 - 82 8(12345678)2 2(90)2
4) 00
) 00
0 — 1 00

- 27 -

The stack is located at the end of STARTA. For-a description of how
the stack is generated see section 4.1.

(a)
(b)

(c)

(d)

A detailed description of the various entries follows:

The link, a two byte constant, is added to the address of the
current entry to obtain the address of the next entry of the stack.
The operators appear in coded form as shown in table 4.1.1. Since
it is possible for two operands to follow each other the use of

a null operator is required. The operator requires 1 byte per
entry.

e.g. INTEGER *2 A, B, C,

0008 —] o2 INTEGERD
8 * 81 (2)g
8) 01 Abbb
etc.

The code consisting of 1 byte is subdivided into two 4 bit parts.
The first part is 0, 2, 4, or 8 corresponding to the operand

being a symbol, hollerith constant, logical constant or numeric
constant. The second part gives the length in words of the operand
field.

The operand field can contain one of five entities:

(i) Empty. Two consecutive operators appear in the source

statement.

(ii) Symbol. Any set of alphanumeric characters whose first
character is alphabetic is considered a symbol.
These are padded on the right with blanks to
make operand field a multiple of full words.

(iii) Numeric Constant. Any set of 8 or less consecutive digits
is converted to binary and placed in a word in
the operand field. The same rule is applied if
more digits follow and the result is appended in
the operand field (see example (b) above). The
five high order bits of each word so formed contain
the digit count for the particular constant.
e.g. 12345 - 5(12345)2

(iv) Hollerith Constant. These constants are removed from the
source text, stored in-line in the object area,
and a symbol table entry is generated. The
operand field contains a pointer to the symbol
table entry for the constant.

- 28 -

(v) Logical Constant. The operand field contains a pointer
to one of two cells containing the values of
.TRUE. and .FALSE. (These cells are located
in the communication region STARTA).

Notes:

(a) With the exception of Hollerith constants, all embedded blanks
are removed from the source text and do not appear in the stack.

(b) 1In the case of FORMAT statements the actual FORMAT source
statement is used by the processor.

2.8. Conventions

Various conventions were used when writing the compiler.
These were done so that changes and additions could be made easily.

2.8.1. Register Conventions

Most routines obey the following conventions for register
usage.

(a) Compile-Time

Register Use Value
RO work relative
Rl work absolute
R2 work relative
R3 work relative
R4 work relative
R5 ptr to object code relative
R6 ptr to symbol table relative
R7 work relative
R8 work relative
R9 work absolute
R10 ptr to compile communications area absolute
R11 programme base register absolute
R12 ptr to START area absolute
R13 ptr to current save area absolute
R14 return address and work absolute
R15 work absolute

At our initial planning of the compiler we wished to have
some register scheme that would allow us to relocate both the compiler

and the object code generated.

- 29 -

Hence, technically we need

the absolute registers to take care of the new load point.
certain other things (saveareas etc.) have to be modified.
attempting to obey the above rules several instances arose

programming became awkward and hence inefficient.
was decided to drop this idea.
the compiler obeys the above register rules.

(b)

" Execution Time

Register
RO
R1

‘R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

Fo
F2
F4
Fé

Use

arithmetic work register
(function result)
arithmetic work register
accumulator result
subscripting and work
work and subscripting
subscripting

pointer to data area
pointeg to data area
pointer to data area
pointer to data area
pointer to data area
pointer to data area
programme base register
pointer to START area
pointer to save area
linkage and indexing
work and dimension

At this

work register and function result
work register and result for complex

work register

change only
Obviously
After

where

time it

However, in general whenever possible

Value

relative

relative

relative
relative
relative
absolute
absolute
absolute
absolute
absolute
absolute
absolute
absolute
absolute
absolute
absolute

always set to zero on entry at execution time
(used for conversion to double precision)

- 30 -

2.8.2. Prefix Conventions

Most major routines of the compiler use a prefix naming
convention. (i.e. all labels are prefixed by a different letter.)
Several sections do not follow this rule vigorously. This resulted
from code being moved from one section of the compiler to another.

The reason for writing the compiler using the prefix
convention was to facilitate the possible merging of decks and to
minimize errors due to duplication of names. Following is the
convention used:

Arithmetic Statement Processor
Compile time communications region
DO-statement processor

GOTO statements processor

FORMAT statement processor
Input/Output statement processor
Linkage statement processor

MAIN - the supervisory programme
Relocator routine

SCAN routine

Type declaration processor
Execution time communications region
Macro generated symbols

Dsects and definitions

NnHH®NIIC-"OUOO

- 3] -

2.8.3. Programming Conventions

WATFOR uses the rule (0.S.) that register 13 points to a
"save-area'" for storing registers. Also as already mentioned it was
decided to use register 11 as a base register for processor routines.
Hence if the save area is placed approximately 4096 bytes from the
start of the routine register 13 can also be used as a base register
for the processor. This is particularly convenient if a processor
has more than 1 entry point and if some of the entry points require
common service routines. ‘These routines can be placed following the
save area and hence are addressable from any entry point.

It should be noted that the macro CENT and CRET are used to
provide addressability and linkage for processor routines (see 3.2.)

ENTRY1 C':ENT SAVE

}f3AL 14 ,CHECK
ENTRY2 (iJENT SAVE

]f3AL 14 ,CHECK
SAVE 1:35 18F

CHECK EQU *

- 32 -

3 Communication Regions

3.1.1. Introduction

When writing a programme consisting of many subroutines,
common information is required by many of the routines. FORTRAN, for
example, has the COMMON statement to accomplish this purpose. In the
case of a compiler it is also necessary to have a number of 'utility'
routines to perform various common tasks. These routines are in
general small, with well defined inputs and outputs, and hence it
becomes very time and space consuming to go through a normal calling
and return sequence to perform the required task. Hence, WATFOR has
adopted the technique of a communication region (nucleus?) quite
commonly used in larger programmes. The /360 addressing scheme
permits us to address these areas by means of a general purpose
register which covers these regions with the usual restriction that
only 4095 bytes may be addressed.

Since the compiler has two main steps, compile and execution,
we have set up two corresponding communication regions. The portion
of code referred to as COMMR contains compile time routines and areas
and general purpose register 10 points to the beginning of COMMR. The
control section STARTA contains routines and areas for execution time
and is covered by register 12. It became evident, as our planning and
coding progressed, that STARTA would be too large to fit in the
required 4095 bytes. We also did not want to ''steal" another register
and hence we set up the "extended" execution communication region
which will be called 'STARTB'. Most of the longer and less used
routines were placed in this area. However, they were still linked
to via the STARTA area.

e.g. Call to a routine in extended start area

BAL R14 ,XTOINIT
In STARTA
XIOINIT L R15,=A(XIOBASE) provide base register
B PIOINIT

In the extended start area
PIOINIT EQU *

The first instruction appears in the object code generated for an I/0
statement. The second set of statements appear in STARTA and they link
to a routine in STARTB after setting up a base register.

- 33 -

Now each of the WATFOR's routines can access COMMR, STARTA
and STARTB as long as these communication regions are assembled as
part of the particular routine requiring them. (The communication
regions are stored in our macro library and included by means of the
COPY instruction.)

Several problems arise as a result of the method of implementing
communication regions. Assembly time for each routine including the
regions is considerably longer. However, more important is that if the
regions STARTA or COMMR are changed in size (i.e. instructions inserted
or deleted) any routine containing these regions, must be reassembled.
This means that basically the whole compiler must be reassembled. (It
should be noted that Version one of the compiler has reorganized these
regions to cut down on assembly time.)

We feel that the increased speed at execution and compile
time as well as reduced storage compensates for the extra assembly time
required. Finally, since the assembler allows a maximum number (small)
of EXTRN's and ENTRY's in a routine, our solution is one of the best
feasible.

The reader will find the description of the routines and
areas that follow quite detailed and hence a brief summary of the
major routines is now presented. This hopefully will allow the reader
to skip the details until they are required.

COMMR
CENT Entry sequence for each of the statement processors. It
provides addressibility and sets up the save area linkage.
CRET Return sequence for each of the statements processors.
CLSTN Determine if a statement number has occurred or if this
CLPSTN is its first occurrence by searching the symbol table.
The address of the symbol table entry is returned as
output. :
CLSYM .
CLBCOM Same as above except for variable names.
COLINTGR These routines accept as input a constant in the stack
COLCONST } and determine the type of constant (real, integer etc.).
CONTEST The constant is then entered in the symbol table.
coul Output object code determined by statement processor to the

work area. This routine checks 1if the work area 1s full.

CNOP's
CDSO's

CREAD

- 3 -

Several routines to align the object code on a particular
boundary by means of NOP's or just spacing over.

This routine reads card images at compile time.

STARTA and extended area (STARTR)

XENT's

XRET's

XAl

XAN
XIEXPI
XEXP's
XCMULT's
XCDIV's

XFLOAT's
XFIX's

XROUTE's

XERRENT's
XTRACEBK
XERRPROC

XIOINIT
XARRAY
XSIMPELT
XSUBSELT
PIOINIT

XDATA
PDATA

]

Entry sequence routines for subprogrammes. This includes
passing of arguments and checking argument types.

Return sequence routines for subprogrammes. This
includes returning of arguments and restoring registers.

Subscripting routines. The routines calculate the
position of a subscripted variable in a vector or array.

Exponential routines. If exponentiation is required a
call is made to one of these routines.

Complex Arithmetic Routines.

Fix and Float Routines.

Undefined variable checking routines. The user can
specify if he wishes to have extra code generated to
check for undefined variables and these routines are
used.

Error processing routines. These routines are used both
at compile and execution time to process and output
error messages.

Execution time I/0 routines. These routines act as
an interface between the object code, the I/O
conversion routines (FORMCONV) and the I/0 routine
(FI0CS).

Data initialization routines. These routines are’used
in conjunction with object code generated for DATA
statements.

- 35 -

3.1.2. Constants and Switches in STARTA and COMMR

Many of the constants and switches used will be described in

the various processor descriptions as well as in descriptions of
routines in the communication regions. However, some of these are
used by many of the routines and others are used in a more general

context. These are described now.

STARTA

XUNDEF Contains the special bit setting for undefined
variable checking. (i.e. n*X'80')

XSAVER MAIN's save area. MAIN 'calls' the user programmer
and if any errors occur we can always recover registers
from a fixed addressable place.

XENTRYP Used as the entry point to the user programme (M/PROG).

XENTRYPD Links to the object code for the first data statement
or XENTRYP if no data statements.

XTRUE Logical value of .TRUE.

XFALSE Logical value of .FALSE.

XZERO An integer constant value zero.

XBEGDATA Address of the start of the array data area.

XENDDATA Address of the end of the array data area.

XREADS

XPRINTS‘} Register save area when I/0 is in progress.

XERRSWT Switch set on if a fatal error has occurred during
compile time.

CIHGACRD I have got a card switch. Turned on if we wish to save
the last data card in the buffer.

XEXECSW Compile/execution switch on if we are in execution,
off, if in compile.

CUNDEFSW Undefined variable switch. Used to generate undefined
variable checking object code.

XLENTAB Type as length table. A table of standard and non standard

(REAL*4 as REAL*8), and the associated length for each
type.

XCARD1
XCARD

XOUTDSRN

XINPDSRN ?}
XPUNDSRN

XSSMASK
XEDMASK

XCONTROL

COMMR

CDONO

CANXTMP
CPRG

CSYMBASE

- 36 -

Source card image is stored here along with line pumber
for output purposes.

The I/0 routine FIOCS requires a data set reference
number to identify the particular unit required for I/0
These constants are pattern DSRN's for the reader,printer
and punch units used for compile time I/0O. Each consists
of 3 words containing the unit number,the end-of-file
return and the error return.

The constants are masks used by the error processor and
the accounting routine to output constants.

This contains the control character (&CONTROL) and is
used for checking purposes in CREAD.

Each DO statement is assigned a unique sequential
integer value. CDONO contains the current value.

Two consecutive words containing the maximum number of
integer and floating point tempories required for a
programme segment.

Address of the beginning of object programme for a
programme segment. This is initialized by LENDPROG
and Relocator phase 2 uses this constant.

This contains the ''magic" constant for calculation of
pointers from symbol table entries to data areas and
vice versa. It is also initialized by LENDPROG for
each programme segment.

As already mentioned the symbol table consists of a number
of linked lists. In order to add new elements to a particular list we
require a pointer to the last element in list. Upon addition of a new
element this pointer is updated to account for the new entry. For
completeness a pointer is also required to the start of each list. The
following constants are used as start and end of list pointers for the

various lists.

CFBEG }
CFEND
CKBEG }
CKEND

CSBEG }
CSEND

Function list pointers.

Constant list pointers.

Statement number list pointers.

- 37 -

CVBEG .

CVEND } Variable list pointers.

CHBEG X .

CHEND } Hollerith list pointers.

CLBEG . s .

CLEND } Library list pointers.

CGVBEG Global variable list pointers (Relocator phase three

CGVEND list).

CURSTNO - Value of the statement number of the statement being
processed. It is set negative if no statement number
is present.

CSTNOLK Pointer to the symbol table entry for the current
statement number determined by SCAN. It is set to
zero if no statement number is present.

CENTRYPD Pointer to the object code of the last data statement
encountered.

CSRT1 Pointers to the first and second level zero right

CSRT2 brackets in the stack. (A level zero bracket implies
that if another right bracket is encountered before
another left bracket is encountered we have
unmatched brackets.)

CSN Current ISN saved here for error messages involving
statement numbers.

CMOSWTCH Memory overflow switch. It is turned on (X'80') if
the object code area has met the symbol table area.

CSRSWTCH Switch to determine the stage of compilation having the

following settings.

X'00' - We are at the beginning of a programme segment
(no entry code generated as yet).

X'94'

We are in a main programme.
X'91' - We are in a subroutine subprogramme.

X'98' - X'9F'

We are in a function subprogramme.
X'92' - We are in a block data subprogramme.

CIFGOTSW Each transfer statement processor turns on this switch
and it is used to determine the ST-4 error. Also used

to determine what kind of code must be gcenerated for
ENTRY and END statements.

- 38 -

CMODESWT Keypunch mode switch. Set X'00' for 026 keypunches,
X'06' for 029 keypunches and X'OC' for subprogramme
entry. This last value is used to maintain the current

mode.

CIMLT Table used to determine and set the type of variables
according to their first letter.

3.2 Entry and Return Routines CENT, CRET

The purpose of these routines is to perform compile time
saving and restoring of registers. All the compile time processors
use these routines for consistency.

CENT

This routine is invoked at every point in a processor routine.
In general the macro CENT is used at these entry points

e.g. ENTRYPTA CENT SAVEAREA
which generates code as follows:
CNOP 0,4
ENTRYPTA STM R14,R11,12(R13)
BAL R11,CENT
USING *,R11
DC A (SAVEAREA-XTART)

USING SAVEARFEA,R13

On entry to CENT register 11 points to an address constant pointing to
the processor save area (new save area) while register 13 still points

to the calling programme's save area. (0ld save area) CENT now sets
register 13 to link save areas as specified by 0.S. convention. Control
now returns to the instruction following the address constant. Note that
register 15 is used as a work register by CENT.

CRET

This routine is used when a processor has completed its task
and wishes to return. This is done by issuing a CRET macro instruction
which generates a B CRET. CRET restores the contents of registers
13, 14 and 11 which were in effect when the programme was called and
returns via register 14. 1In cases where other registers have to be
restored this is done by the ''calling" programme upon return.

- 39 -

3.3 Symbol Table Lookup Routines (CLSTN, CLPSTN, CLSYM, CLBCOM,
CLLIB, COLCONST, COLINTGR, CONTEST, CONLOOK)

3.3.1. Introduction

There are basically four routines for creating symbol table
list entries for quantities appearing in a programme and all four have
roughly the same logic. For example, they distinguish between new and
0ld symbols and return two pointers to the calling programme. (Exception -
the constant lookup does not distinguish between first and subsequent
appearances of the same constant.)

All routines are called via the LOOKUP macro and (usually)
assume that Rl points to the stack entry where the quantity to be looked
up may be found.

For example, execution of the statement
LOOKUP CLSYM,NEW,OLD

would call the symbol lookup routine CLSYM which assumes that there is
a name at 4(R1) in the stack. Return is to label NEW if this is the
first appearance of this symbol in the programme or to OLD if it has
appeared before. The purpose of this is to allow error checking on the
symbol. Upon return R15 contains the address of the symbol table entry
for the name looked up and R3 will contain (R15-START) i.e. a value
which is frequently used in forming object code involving this symbol.

The following table lists by function with entry points the
routines which will be described below.

Statement number lookup - CLSTN

- CLPSTN
Symbol lookup - CLSYM

- CLBCOM
Library list lookup - CLLIB
Constant collector and — COLCONST
lookup - COLINTGR

- CONTEST

— CONLOOK

- 40 -

3.3.2. Statement Number Lookup

This routine creates symbol table entries in the statement
number list for statement numbers (CLSTN) and pseudo-statement numbers
(CLPSTN) used in the source programme being compiled. A pseudo-
statement number is a statement label created by the DO-compiler for
the first executable statement following the DO-statement. This is
used for branching back to repeat the loop at execution time. Pseudo-
statement numbers are distinguishable from real statement numbers
since the former are integers greater than 10° > 99999

e.g. D01 1I=1,5
P X=1

1 CONTINUE
The DO-compiler constructs a pseudo-statement number 'p'
(> 99999) for the statement X=I to insure that an adcon is created
for branching to this statement for loop replication.

The logic of this routine is outlined by Figure 3.3.1.

The symbol 'n' is used in the chart and following description to stand
for the statement number being processed.

The number to be looked up is in the stack at 4(R1l). At
entry point CLSTN a check is performed to verify that the number is
less than or equal to 99999 using the digit count bits set up by SCAN
for numeric stack entries. An entry is created by subtracting 12 from
R6, the symtab bottom pointer, and if this does not overflow the work
area, n is stored in it. If this is the first statement number of the
programme segment, the statement number list head pointer CSBEG is set
by storing R6 in it and new number processing is performed before
returning to the caller. (A switch is set by the programme segment
initializer to indicate that the 1list is empty; this switch is reset
on the first entry to CLSTN.)

If this is not the first call to CLSTN, the new entry for n
is linked into the previous end of list and the list is searched for
n starting at the head. If n is found at the end of the list it is
new; if not, old. For an old number, the entry created at the end
of the list is freed by adding 12 to R6. The routine returns to 4(R1l4)
with registers R3, R15 set as described above.

For a new number, the list end pointer CSBEG is updated to
current value of R6 and the test bit, DO-level and ISN fields are
initialized in the new entry. Return is to O(R14) with R3, RI15 set.
(The DO-level and ISN fields are used for checking for branches into
DO-loops and in error messages which involve n. See descriptions of
DCSTN1, DCSTN2, Section 4.5.6.)

- 41 -

CLSTN CLPSTN

W.

Create an en-
try at bottom
of symtab and

insert n
 Link new N Initialize
entry to N st entry in Y list head
previous end } list? pointer CSBEG
of list] to new entry

Look for n
—3 starting

at list head

ound at en
of list?

Free entry at
end ol list

Update list
end pointer
CSEND to new

entry

|

Initialize
test bit, DO-
level, ISN

fields in the)
entry

Return
to O(R14

Figure 3.3.1.

- 42 -

3.3.3. Symbol Lookup

The routine CLSYM creates entries in the symbol list for all
variable, subprogramme, and common block names appearing in a programme
segment. The blank common block is handled by WATFOR as a named
common block with name '//bbbb' and the entry point CLBCOM is provided
for looking up this name in the symbol list.

The logic of CLSYM is virtually the same as CLSTN so the
Figure 3.3.2. should suffice with elucidation of the following
differences. Entry point CLSYM checks for a name of 6 or fewer
characters using the stack operand field length count set by SCAN.
Longer names are truncated to the leading six with a warning message.
Symbol table entries are 16 bytes. New symbol processing is as
follows:

- dimension, common, equivalence pointer fields and the B2
bit field are zeroed out.

- the type of the name is set by its first letter using the
first letter/type table CIMLT.

- the mode of the name is set as simple variable.

- mode and type indicator bits are stored as the Bl field of
the entry

i.e. a new symbol is assumed to be a simple variable of
type determined by first letter. This assumption
might be overruled by the calling programme by
modifying the Bl bits.

CLSYM

C

s name less than
7 characters?

- 43 -

Truncate
and warn

b

CLBCOM

Use '//bbbb'!
as name

Create an en-
try at bottom
of symtab and
insert name

Free entry at
end of list

Return
to 4(R14

1st entry
in list?

entry to
previous end
of list

i

ngk for name

tarting at
ist head

Update list
end pointer

Initialize
list head

pointer CVBEd
to new entry

Link new !

CVEND to new

entry

Fero out p(D)
p(C),p(E),B2
fields of new

entry

Set type bits
of Bl by lst
letter

N

Set mode bits
of Bl to
simple

variable

Figure 3.3.2.

Return
to O(R14

- 44 -

3.3.4. Library List Lookup

The routine CLLIB is used only by Relocator Phase I to
enter subprogramme names encountered in the symbol list into the
global library list for processing by Relocator Phase III. Thus,
the input to CLLIB is not a pointer to the stack but a pointer, in
R8, to the symbol list entry to be processed. The logic is the same
as CLSYM but simplified since there is no need to check the name length
and no field initialization is done for new entries in the library list.
See Figure 3.3.3.

CLLIB

|

Create an
entry at
bottom of
symtab and
insert name

Ist entry
in list?

Initialize
list head
pointer CLBEG
to new entry

N
Link new
entry to

previous end

of l%jt |

Look for
name in list

starting at
head

Free entry at
end of list

Update list end
Return pointer CLEND
to 4(R1l4 to new entry

Figure 3.3.3.

- 45 -

3.3.5. Constant Collector and Lookup - COLINTGR, CONTEST, COLCONST,
CONLOOK

Since the SCAN routine was designed, basically, to split
incoming source statements into operator-operand pairs, no attempt
was made to have it recognize FORTRAN constants. As mentioned before
the SCAN routine merely converts numeric strings to binary fields with
digit count in the stack for later processing. Hence a special routine
is necessary to collect together the source components of constants
separated by SCAN (e.g. sign, integer, fractional,and exponent parts)
into /360 internal form and to place them into the symbol table constant
list.

There is essentially one routine which does this conversion
with three entry points provided to control its processing. The entry
points are:

COLCONST to collect any integer, real or complex constant
COLINTGR to collect an integer constant
CONTEST to test for and collect any integer, real or complex

constant. (An error return must be provided in the
call to CONTEST should no constant be found 'in the
stack.)

The input to each entry point is a pointer to the stack in Rl
where collection of the constant is to begin. Outputs are relative and
absolute pointers to the symtab entry for the constant in R3, R15
respectively and a type code in RO. As well the constant collector
modifies the stack link to point around any entries it used in
collecting the constant.

For example the constant +1.2E+3 would be transformed into (i)

in the following figure; a call to COLCONST with pointer (:),
would combine the components of the constant, store it in
internal form in the symtab and return with the pointer (?)
and stack as shown below in (ii) (with symtab pointers in

R3, R15 and type code in RO as well)

PN T S

_ r»mzvvr\e"/\w (i) |
(1)
O— e |, Ok + |81 | @,
81 (2), - 81 (2),
01 Ebbb -‘ L o 01 Ebbb
+ {81) 3, ‘ +] 81 (3),
SN SR e P SO [N NSNS B

- 46 -

The constant collector makes checks on the constant being
processed for violations of the language rules e.g. maximum 2 digit
exponent, maximum 16 digit constant, maximum integer 2311 etc but does
not make 'guesses' at the type of constant being collected.
if the source statement were

and the entry point COLCONST was called with pointer
below, the result would be as in (iv) with the type reported in RO as

'"REAL*4' for the constant 1.25. That is the constant collector makes

COMPL = (1.25, 3.14A2)

1

For example

in (iii)

no attempt to guess this is a mispunched complex constant and the
calling processor (ARITH here) would eventually report a syntax error.

(iii)

- -1] 02 comp | Lbbb
-%/’ = o}
(:)*n..____, (811 (1),

) 8L [(257,
) 811 (3),
. 8Ll (14),
® 011 A2bb

f/) @

g T

(iv)

-1§ 02} COMP | Lbbb
=1 0
(8Ly (),
8L} (25),
, 81f (3),
. 811 (14),
o F 0L] AZbb
) 9
-

Had the statement been COMPL = (1.25, 3.14E2) the type
returned by COLCONST would have been 'COMPLEX*8' with the link (broken
line) in (iv). The constant collector is described in more detail

in section 3.3.6.

The constant lookup routine really consists of two main
routines, the constant collector as just described and the routine
Although CONLOOK may be
called separately, the comstant collector merely 'falls through' into
the lookup part once the constant has been converted to internal format.
The logic of the routine CONLOOK is very similar to that of CLSYM, etc,

CONLOOK which creates the symtab entries.

except no distinction 1s made between first or second appearances of

the same constant (or any other constant which happens to have the same
bit configuration) since no error checking is necessary for constants.

1 The constant collector was written before we had access to the

version C28-6515-3 in which constants of the form 1E2Z were allowed.
Hence use of these in a source statement gives rise to syntax

error messages.

- 47 -

Thus a call to the constant collector can look like BAL R14,COLCONST or
LOOKUP COLCONST. (Before calling CONTEST, the calling routine must
load RO with an S~type adcon of an error return).

3.3.6. Constant Lookup CONLOOK

The inputs to this routine are:

- a 4,8 or 16 byte constant in internal /360 form left
justified in field CDOUB1

- a type code for the constant in byte field CTYPE

- length-1 in bytes of constant in RO.

The logic of CONLOOK is very similar to that of CLSYM etc.
so will only be sketched here. (See Figure 3.3.4.). Processing starts
by creating a list entry of length % + 4 at the bottom of the symtab
and (£ is length of constant) by subtracting £ + 4 from R6. The
constant is moved into this from CDOUBl and its length-1 is stored
from RO (See symtab entry for constant, section 2.4.). If this is
the first constant in the list for this programme segment, the current
value of R6 is set as list-head pointer CKBEG, the first constant
switch is reset, list-end pointer CKEND is set to R6, and final
processing is performed.

If this is not the first constant in the programme segment,
the new entry just created is linked to the previous end of the list
via CKEND. A search is made for the constant from the head of the
list. This search compares all constants in the list not shorter than
the constant being looked up. This ensures that, to some extent,
constants which have the same initial bit pattern will share the same
storage at run time. For example 1.D0 and 1.EO0 will have the same run
time address providing the former appears in the programme segment
before the latter.

However, because of RELOC-1's method of constructing primary
and secondary pointers for relocating complex quantities, an 8 byte
complex constant may not share the same storage as the first 8 bytes
of a 16 byte complex constant. A special check is made for this
in the list search. For example, two list entries will be created
for (1.D0,3.14D0) and (1.E0,0.EQ) even though the first 8 bytes of
each constant are the same. When the list search terminates, a test
is made to see if the constant was found at the end of the list. If
so, the list end pointer CKEND is updated to current value of R6; if
not, the newly created list entry is returned for further use.

The final processing for a constant consists of setting up the
outputs - absolute pointer to symtab entry in RI15
: - relative pointer in R3 (R15 - START)
- type code loaded into RO from CTYPE.

- 48 -

CONLOOK

Create list entry
in symtab for
constant at

CDOUB1
e
) Y !l Set list-head
2
(Est constant? pointer CKBEG
N
i

Link entry to
previous end

N

Search for constant
‘from head of list

L

Y
Upndate list-end
17
(:j;;und at end?] ‘pointer CKEND

7 |

Free list entry
created above

J&
Set up output
registers

Return
to
0(R14)

- 49 -

Return is to O(R14) with no distinction between first or second
appearances of the same constant.

3.4 Constant Collection COLCONST, COLINTGR, CONTEST

The objective of this phase of the constant processor is
to combine the various stack components into the internal form of the
constant, store it left-justified in a field called CDOUBl, store its
type code in a byte field CTYPE and leave its length-1 in bytes in RO.
These three values are then used by the lookup phase to create the
symtab entry.

To attain the object just outlined, the routine uses several
internal switches which will be named as they appear in the following
discussion. It might be mentioned that some of these switches are
implemented as B/NOP condition code masks in branch-on-condition
instructions to save time and space at the expense of a highly
non-re-entrant routine.

The entry point COLINTGR, before branching to the register
save point, sets the switch CINTSW so that only an integer constant
is collected. '

The entry point CONTEST stores the error return address in
RO and sets a switch at CONERR to enable this return before joining
COLCONST, bypassing its first switch setting operation.

COLCONST sets the switch last mentioned to disable error
returns, sets COMPSW off and sets CINTSW to collect integer, real or
complex constants. A test is then performed to see if the stack
delimiter is '('. 1If it is, the switch COMPSW is set on to indicate
that the stack may contain a complex constant.

Registers R2-R6 are then saved in order to be used as work
registers by the routine, switch C1S8TCON is set on to indicate that,
should this be a complex constant, the real part is presently being
collected and pointer register R5 is set to the input stack pointer RI1.
Thus R5 is initialized to the start of a constant and is used to move
down the stack for purposes of identifying the components of a constant.

The main processing now proceeds at label COMP. Pointer
register R6 is set from R5. (R6 thus points to the stack entry that a
constant starts in; it will be moved later to point to the start of an
imaginary part if a complex constant is being collected.) Register RO
is zeroed to be used as a digit count register and switch CSIGN is set
to assume a positive constant will result.

- 50 -

At this point a test is made to determine what sort of a
stack configuration heads the constant to be collected. There are
four possibilities which the test distinguishes and these are:

(i) 6n e.g. +123
(ii) H.n +.123
(iii) Bsn =,123
(iv) Bs.n (+.123

Here, © is any delimiter (often '(' for start of complex
constant), s is unary '+' or '-' and n should be a numeric operand
and, in each case, register R5 points to the delimiter 6. For cases
(iii), (iv) the constant collector will produce properly signed
constants by resetting, and later testing, CSIGN should he '-',

(In cases (ii), (iv) the pointer R5 is advanced to the stack entry
which should contain '.n' and control is passed to a point (CDECENT)

which performs checking for these cases.

At label CDECENT, real constants with no apparent integer
part are processed by
- checking if there is a '.' and numeric fractional part
in the stack. (Error exit if not.)
- creating an assumed integer part of zero in FO
-~ continuing from label COLFLT1l for real constants with
a fractional part.)

For cases (i), (iii) a test is made on the stack code to
insure a numeric operand is present and an error exit is taken if not.
If so, the routine COLINT is called to convert 'n' to binary in

registers R2-R3.
COLINT works as follows:

- call is BAL RI15,COLINT and return is to O(R15)
- inputs are: - R5 pointing to stack entry containing 'n'
- RO containing total digit, count (times 8)
for this constant. 16
- outputs are: - a binary integer (maximum value 10" -1) in
registers R2-R3
- number of decimal digits (times 8) of n in
R4 (used in processing of real constants).
-~ incremented total digit count (times 8) in
RO (used for error checking).

The conversion algorithm used is essentially this.

(For the typical stack entry

R5 > flink [6 | 81 (n.) . £ (n.)
d]L 172 g di i’2

- 51 -

where dl’ di are subscripts e.g. di(ni)z.

- if i =1; R2+« 0, R3 < n R4 <+ 8d RO <« RO + R4

1’ 1’
d2
- dif i 2 2; R2R3 <« 10 ny + n, where d2 is the number of
decimal digits in n,.
R4 <« 8(dl + dz) where d1 = 8

RO« RO+ R4 (or RO« 8 x 16 + 1 if 1 > 2 to
indicate a constant of more than 16 digits).]

On return from COLINT, stack pointer R5 is advanced to see
if a '.' follows the integer 'm'. If so the constant being processed
is real and control transfers to process a real constant (label
COLFLT). 1If not or if the switch CINTSW is set to collect an integer
constant only, the following processing occurs:

- the integer in R2-R3 is tested to insure its not greater
than 231—1 (warn and continue with value reduced modulo
232 if not).

— the field CTYPE is set to indicate an integer constant.

- if CSIGN is set for a minus sign, the integer in R3 is
2's complemented. A

- RO is set to length-1l of constant (i.e. 3) for input to
CONLOOK.

- control transfers to check if we are currently processing
a complex constant (label C1STCON).

Processing of a real constant continues at label COLFLT by
first floating into FO the integer just collected in R2-R3. (Floating
is done by biasing the integer with exponent of X'4E' and normalizing
by adding to zera.) Then a test is made to see if a numeric operand
follows the decimal point. If not processing is continued at label
CNOFRAC.

(At label CNOFRAC, real constants with no fractional part
are processed by

- saving the digit count in RO

- checking for a possible exponent and branching to
CHKEXP1 to process it

-~ branching to COUT1 to finish processing otherwise.)

If so, at COLFLT1l, the fractional part is converted by calling
COLINT and then floated into F2. The total digit count in RO is saved
and the integer and fractional parts of the real constant combined into d
FO using the fraction's digit count in R4; thus [n.m]f = FQ « nf()nHSC)lO

for a constant of the form 'n.m' where d is the number of decimal digits
in m, D, m. are n,m as floating point numbers and @ , @ are floating

point operationmns.

- 52 -

The stack pointer R5 is then advanced to check if the next
delimiter and stack code are ®, 0l respectively, signifying a possible
exponent. If not, control passes to label COUT1l where final processing
of real constants occurs. If so, at label CHKEXPl, a search is made
in the stack for an exponent of the forms Bd, Bdd, B*td, B+dd (B is E or D).
If no such exponent is found control passes to COUT1l. The results of
a successful search are: - absolute value of exponent x as binary

integer in R4

~ switch CEXPSW set to indicate sign of
exponent

- switch CEXPTYPE set to indicate E or D
exponent

~ R5 pointing to stack entry past exponent

The exponent x is then accounted for as follows: (assuming constant
is of form n.mBx). le is gplit into 2 parts b, where 0 £ £ < 15
i.e. x=h+ ¢ b 9

and [n.mpx]= FO <« [n.m} @10° @ 10

where @ is floating multiply or divide if x is positive or negative
respectively. (The quantity [n.m]_. is in FO from processing above.)

This method was used since only the table 10, i =1, 2, 3, ..., 15, 16,
32, 48, ..., 96 (i.e. 21 constants) need be stored instead of the
i=1, 2, ..., 99 if x were not split as above.

Control is then transferred to CEXPDONE below.

At label COUT1l, the type of those constants having no
exponent is determined from the total digit count, (REAL*4 if less than
8, REAL*8 otherwise) and the switch CEXPTYPE is set to reflect this
choice.

Then at CEXPDONE, the following processing occurs:

- warn if constant had more than 16 digits
- take into account a unary minus, by testing CSIGN
- depending on setting of CEXPTYPE do:

either — warn if constant had more than 7 digits and E

“exponent; assume D exponent

- round to single precision (6 hex digits) in FO

- gset field CTYPE to indicate REAL*4 constant

- set RO to length-1 of constant (i.e. 3) as input
to CONLOOK

- transfer to check if this is part of a complex
constant (label C1STCON)

or - set CTYPE to REAL*8 code for D exponent
- set RO to 7 for CONLOOK
- transfer to C1STCON

- 53 -

At label C1STCON, checking is performed to determine if a

complex constant is being processed. If this is the first constant,
i.e. possibly the real part of a complex constant, the following
processing occurs - the constant is stored at CDOUB1

imaginary

- if the constant is integer or the switch COMPSW
is not set to indicate this is not a real part of
a complex constant, transfer to the stack link
fix-up label CONEXIT

- if COMPSW is set so that this might be part of a
complex constant and if a ',' follows next in the
stack, the type (CTYPE) and length (RO) of this
constant are saved, the switch Cl1STCON is reset to
indicate a second constant (i.e. imaginary part)
will be processed, an error switch CONERR is reset
and control transfers to label COMP to process the

imaginary part.

If this is the second constant processed (i.e. supposedly the
part of a complex constant) then:

if this constant was integer or it is not followed by ')'
in stack an exit is taken which ignores this constant and
uses the first constant as real. e.g. for (1.23,4) or
(1.23,4.4+ result of call to COLCONST is real constant

1.23 with 4 or 4. ignored.

check if lengths of real and imaginary parts are the same
and store the imaginary part at CDOUBl1+4 if the constants
are REAL*4 or CDOUB148 if REAL*8 or mixed (warn in last
case). _

set RO to 7 or 15 depending on the length of the constant.
set CTYPE to COMPLEX*8 or COMPLEX*16 depending on the type.
overlay the opening '(' and closing ')' of the complex
constant in the stack with ¢ for ARITH's use.

proceed to CONEXIT.

At CONEXIT, the stack link at input pointer R1 is adjusted

to link around all components of the constant, i.e. to the entry
pointed to by R5, and registers R2-R6 are restored before proceeding
to the lookup phase.

COLINTGR

L

Turn integer
switch on

CONTEST

- e ey

Store error
return and
enable it

- 54 -

COLCONST

Disable error
return

Y

__JTurn off complex
constant switch

L

Turn integer switch
off

i

C

Is input delimiter

Turn on complex

a '("? constant switch

J

Set sign
switch for -

Bsn or Hs.n

Bs.n

O

Set integer

part of real
constant to

Zero

o

Set switch for lst
constant

A

count

Zero total digit

\7

Set sign switch
for +

N

Test

configuration

for stack

N

Is "'n' numeric?

A

Collect n as integer

and count digits

Float integer

part

B

Set type, length
for integer

X

Account Y
for] 1
exponent

s there an
exponent?

—0O

L@

part?

X /’is there a fractional)

_

Sign switch?

2's
complement

iX

Collect it as integer
and count digits

CONLOOK

integer part

| Float and combine with

Figure 3.4.1.

e
Constant haé < 7 Y Set exponent
digits? switch for E

Error
J/N Exit

| Set exponent switch

Take
caller's
error
return

(&gn%lti@ Make (.:onstant N
negative
Set type, length
? s
Exponent switch? for REAL*8
5
More than
7 digits?
N
N Ignore 2nd
Round to single constant
precision ‘
k jL
k v
Set type, length for Restore tyne, length
REAL*S of lst

Store constant
at CDOUB1

Is it
integer?

(:_IS 2nd constant Is complex constant N\
integer? switch off?)
- L

¥/ Does ")' follow 2nd ‘N <:?oes a ")’ N Fix up stack
{\&_ constant? follow link

) 17 -

. 1 th
Are both constants of mixed i Warn Save typé, eng
same type?) 'Ak

REAL*4 [

.

Disable error return CONLOOK
Store constant at

CDOUB1+4

Store
constant at

CDOUB1+8
V.

Overlay '('
l————————)[Set type, length and ,)' with ¢

Figure 3.4.1, (Continued)

- 56 -

3.5 Object Code Qutput Routine COUT

This routine outputs object code, generated by the statement
processors, to the work area. COUT adjusts the pointer (register 5)
to the top of the object code accordingly as code is produced while
monitoring the possibility of a work area overflow. (Check R5 against
R6.)

The OUTPUT macro instruction can be used to provide linkage
and data to COUT and is described below:

OUTPUT n, a, T

n - is the number of bytes
a - the address of the code to be output
r - return address (if blank fall through)

The macro sets up register 1 with the address of the code,
register 2 with the number of bytes and register 14 with the return
address. Any or all of the operands may be omitted as long as they
are set by the user of the macro. Register 5 and 6 are used as
pointers to the object code area and symbol table area respectively
and register 3 is used as a work register.

If a memory overflow has occurred no object code will be
placed in the work area.

- 57 -

3.6 Addressing Routines CUSING, CBALR11

As previously described register 11 is used as a base register
for object code generated. Since we are generating a machine language
programme it is necessary to simulate the (BALR-USING) instruction of
the assembler. It should be noted that the ISN coding generated
usually sets up register 11 for each statement (section 2.5.1.). The
routine CBALR1l is used to issue a BALR 11,0 if this is required. The
routine CUSING is used to simulate a USING *,11. This is accomplished
by storing register 5 in CBARI11. Hence any displacements are calculated
by subtracting CBAR1l from register 5.

3.7 Input Routine (CREAD)

The routine CREAD located in COMMR is used if a card image
is required by the compiler.

3.7.1. Constants and Switches

XCARD1 The card image input/output area. XCARD contains the

XCARD actual FORTRAN source statement. XCARD1 contains the
control character for printing and the line number to
be included as part of the source listing. This area
is included in STARTA since it is required at both
compile and execution time.

CNEWJOB These three constants contain the BCD characters that

CDATA } installation decides to use for control card words

CBTCHEND (JOB, ENTRY, STOP). . They are defined using the SETC
symbols in the deck OPTIONS.

COPJOB Three instructions (CLC) that check XCARD+1 for JOB,

COPENTRY } ENTRY or STOP. When a check is required we execute

COPSTOP (EX) the appropriate instruction.

CFFCHAR Column 73 of the source input statement is saved here.
(This column is replaced with an end of card delimiter).

CSUBRDS This switch tells the read routine if input is coming
from "input unit" or the library unit. (X'00' - input,
X'80' - library).

CBUFF These constants are used if the input is coming from the

CBUFFE :} library device. CBUFF points to the beginning of the

CPOINT buffer, CBUFFE points to the end of the buffer and

CPOINT points to the end of the current record read from
the buffer.

~ 58 -

3.7.2. Calling Sequence
BAL R14,CREAD
B LABEL1 Control card return
B LABEL2 Continuation card return
B LABEL3 New statement card return
B LABEL4 Comment card return
3.7.3. Description of CREAD

It is possible under certain circumstances that the card
image desired has been read by a previous read (e.g. The user may have
read the next user's $JOB card as data). The switch CIHGACRD is turned
on when this or a similar situation occurs. This switch is tested on
each entry to CREAD and if on, we already have the required card in
XCARD and hence no 'read' need be issued. On exit from the routine
CREAD the switch is turned off.

If we issue a read, CREAD places the card image at location
XCARD and replaces column 73 of the card with the hexadecimal character
X'FF', as an end of card delimiter, after saving the character
initially present in CFFCHAR. The type of card is determined and
control returns to one of 4 possible locations as described above.

Since we are relatively certain that the next I/0 operation
will be an output of the source line and any associated error messages,
CREAD issues a call to the routine CPRINT to initialize FIOCS for the
impending output operation.

The source input can be obtained from the "input unit" or
from the library 'WATLIB'. A switch CSUBRDS is used to determine this.

"Input unit"

WATFOR is a batch processor and only the SENTRY card separates
the source programme from the data. Also, the next user's $JOB card can
immediately follow the last data card. It was decided to use the same
data set (FTO5F001) for input at both compile and execution time. The
routine FIOCS is used to process the reading of source cards.

e.g. L 1,=V (FI0CS)
LA 2, XINPDSRN
BALR RO,R1
DC X'00!' INITIALIZE
DC X'FO' BCD input

where XINPDSRN is 3 consecutive words (in STARTA) containing the unit
number (5), the end of file return and the error return.

- 59 -

The address of the card image is returned in register 2 and
the number of characters in register 3. The card is now moved to
location XCARD.

2 Library (WATLIB)

At the beginning of the batch the WATLIB data set is opened.
The blocksize is obtained from the DCB and a GETMAIN is issued for the
required buffer space. This coding appears in the deck MAIN at location
MAINP. (See Chapter 6.) When a particular subprogramme is required
from WATLIB the routine MLIBR in MAIN issues a FIND of the particular
member followed by the instructions.

MvC CPOINT (4) ,CBUFFE
MVI CSUBRDS ,ZSWON

These instructions set up the buffer pointer for deblocking and set the
switch CSUBRDS so that input will come from WATLIB. After the
subprogramme has been compiled the instruction

MVI CSUBRDS , ZSWOFF

in MLIBR resets the CREAD routine to accept input from the 'input'
unit.

A SENTRY card must be placed at the end of each data set
member (i.e. there can be more than 1 subprogramme per data set
member) .

- 60 ~

3.8 CPRINT

This routine initializes the routine FIQCS for an output
operation on the output unit (printer) (See section 5.5) for a
description of FIOCS). Following the call to FIOCS the buffer
address returned by FIOCS is returned in register 2 and is saved in
location XBUFFER. The calling sequence used is

BAL R9,CPRINT

3.9 Memory Overflow Check Routine = CGETSYM

Routine CGETSYM is used to check that a new entry to be
added at the bottom of the symtab will not overwrite the compiler.

Before calling, the required symbol list entry length is
subtracted from R6.

For example SH R6,=H"'12"
BAL R14,CGETSYM

requests 12 bytes of symtab entry if available. CGETSYM returns on
R14 if this is available or issues an MO-2 message and terminates
compilation if R6 is less than the lower boundary of the work area
set by &MEMSIZE.

3.10 Keyword Elimination Routine - CSETSTAK

The purpose of this routine is to deconcatenatel FORTRAN
keywords left in the stack by SCAN and to set up the stack for easy
processing by the calling routine.

CSETSTAK is called by either form of the SETSTAK macro

e.g. SETSTACK '"DIMENSION'
or SETSTACK

In the latter case, Rl is assumed to point to the character
following the keyword; the former case sets up RIl.

Inputs to CSETSTAK are Rl as just described and R9 pointing
to the stack entry to be processed. Outputs are R9 pointing to the
transformed stack and RO continuing the value of any concatenated
constant. e.g. STOP123

1 disconcatenate? decatenate? excatenate? getridof?

- 61 -

See Figure 3.10.2. for logic of CSETSTAK.

Statement

STOP123

REALI,X

READ, X

DO1lI=1,5

PRINT,A

Several examples may serve to clarify the processing.
(Stack links not shown.)

Stack Before

R1
R9-).4[02 | STOP {123b
il
R1
R9>[4} 02 | REAL Ibbbl
,] 01| Xbbb
'
-
R1
2
R9-3{—| OL | READ
,1 01 | Xbbb
-
R1
L
R9-A,]01 | DO1I
=j81 (1),
,]81 (5)2
[~
R1
RO 4|02] PRIN [Tbbb
,[01| Abbb
s

Call

SETSTACK 'STOP'

SETSTACK 'REAL'’

SETSTACK 'READ'

SETSTACK 'DO'

SETSTACK 'PRINT'

Figure 3.10.1.

Stack After

R9->

-

81

(123)2

7

R9 -

01

Ibbb

0L

Xbbb

(T[.[L

RO

01

Xbbb

LTl J1L

RO

81

(1)

el d

01

Ibbb

81

(1)

81

),

b
}—

RI-H—

b

01

Abbb

-

Warn and
truncate to 5

- 62 -

CSETSTAK

L

Make stack code ¢

!

Is there a
concatenated string?

(f-‘\

J(Y

s it numeric or
alphabetic?

()

alphabetic

numeric l

L

N

More than 5 digits? ’

=l

Convert to binary

B!

Does alphabetic strin
follow numeric?

Return
to
0(R14)

Left justify
alpha string
in its stack

Vlength code

entry and set

e

)

M

v

Store
numeric
stack
operand

Return
to
0(R14)

Figure 3.10.2.

Create new
stack entry
with link,
numeric code
and operand
to precede
alpha entry.

- 63 -

3.11 Alignment Routines (CNOP's and CDSO's)

The purpose of these routines is to align object code pointers

to specific word or half word boundaries and they fall into the
following two claspes:

(a) CNOPO4, CNOP24, CNOP08, CNOP28, CNOP48, CNOP68

These routines are used to generate NOP or NOPR instructions
so that argument lists will be aligned properly. They merely simulate
the assembler's language instructions

CNOP 0,4
CNOP 2,4
CNOP 6,8

The relocator recognizes this form of output and merely by~
passes it as a valid code (j,e., no relocation necessary) .

(b) CDSOD, CDSOF, CDSOH

These routines merely move the object code pointer (register 5)

to a double, full or half word boundary respectively. They simulate
the assembler instructions.

DS 0D
DS OF
DS OH

The relocator cannot automatically pass over code skipped by
these routines.

- 64 -

EXECUTION TIME ROUTINES

3.12 Entry and Return Routines XENT, XRET

These routines correspond to CENT and CRET in COMMR as they
provide linkage and data for user programmes and subprogrammes at
execution time. 1In order to describe these routines the entry sequence
for a subprogramme and a diagram of a typical save area of a subprogramme
are presented.

FUNCTION NAME (A,B)

CNOP 0,4

STM 14,12,12(13)

BAL R11,XENT

DC A (SAVEAREA)

DC CL6'NAME' ,H'0"

DC ALl (type) ,AL3(A)

DC ALl (type) ,AL3(B)

DC ALl (type) ,AL3 (NAME)

where type is described in Figure 3.12.1.

Save Area——

back pointer

forward ptr

Registers

14 thru 12

R | Work Area R Recursion bit. Used as
pointers to the data area

Registers for the subprogramme.

5 thru 10

The routine XENT links the save areas in the customary manner and loads
registers 5 through 10 so that the data area for the subprogrmame can
be accessed. If the recursion bit is on (X'80') an error message is
issued indicating the appropriate error, otherwise it is turned on.
Since register 11 was used for the call to XENT addressability has

been provided for the subprogramme. This register also points to the
model argument list which is now compared against the calling argument
list. (Register 14 points to the calling argument list.) Tests are
made for the same number of arguments as well as consistency of the
mode of arguments. During this scanning process argument or argument

- 65 -

Mode

- -
000 001 010 011 100 101 110 111

Ccl =
00 000 |xo Kickoff
[001 RET /{;j Multiple RETURN
010 SUBR SUBROUTINE } Arguments

cp - |01l |FN FN FUNCTION
100 }sv Simple Variables
101 SVX SVX SVX | SVX] SVX}] SVX] SVX Simple Variables
ik i
“ 111 - (CALL) Constant
(Temp)
(DO Parameter)

“=0 o0 77777 /777777177777 777 ,
001 A A A A A A A 1 Dimensioned
010 A A A A A A A A 2 Dimensioned
c2 = | 011 A A A A A A A A 3 Dimensioned Arravs
100 LAl Al Al Al Al Al Al A1 4 Dimensioned } Y
101 A A A A A A A A 5 Dimensioned
110 A A A A A A A A 6 Dimensioned
- 111 A A A A A A A A 7 Dimensioned

2?2- ==lO {010 //// SUBR ////// M/PRO /[]// // Subprog Last Arguments
011 [FN | FN |FN |FN] FN JFN] FN | FN FUNCTION § indicator

Type Code Ccl Cc2 Mode
1 1

Action Table for Type Codes in

Subprogramme Arguments Lists

Figure 3.12.1.

- 66 ~

addresses are passed down to the subprogramme according to their type.

Arithmetic statement functions use the same entry sequence
with the exception that registers 5 through 10 are not altered. The
routine XENTASF takes care of this problem.

Library functions use the entry XENTSPEC which does not
turn on the recursive bit.

The routine XRET performs the return sequence. Its actions
are basically an inverse set of operations of XENT. Registers are
restored from the save area, register 11 (the base register) is
restored; registers 5 through 10 are restored and the recursion bit
is turned off (X'00'). 1In the case of a FUNCTION subprogramme the
return value is loaded into the appropriate register. Simple
variable arguments called by value are now passed back. Error checking
is provided at this time, checking if the user has attempted to modify
a constant, a DO loop parameter or a temporary (l.e. the user placed
an expression in the calling sequence and is now trying to change its
value). An SR-5 error message is issued and the job is terminated if
the above error is detected.

A routine XRETASF exists for the same purpose as XENTASF if
we are processing an Arithmetic Statement Function.

XRET is now ready to return and uses one of the following
routines depending if the user has said RETURN or RETURN I.

XRETI © normal return (register 3 contains the value
of n for RETURN n)

XRETIF special return where register 3 contains

XRETIH | a pointer to I where I is a full or half-word.

- 67 -

3.13 Error Message Editor - XERRENT1l, XERRENT2, XERRENT3,
XERRENT4, XERRPROC

These routines are used to service a call by the ERROR macro
to produce an error message and possibly take some resulting action.
The entry points XERRENT1,2,3,4 really serve as branch points to the
central routine XERRPROC and four are necessary to handle the various
forms of the ERROR macro that result from the presence or absence of
some of its parameters. (See description of ERROR macro below).

Typical expansions of some ERROR macros follow:

ERROR (BOOT,SX,0),,SAVE STM RO,R15,XHELPS
BAL R14,XERRENT1
DC AL1(c),CL3'SX0',AL2(c)
LM RO,R15,XHELPS
ERROR ,,SAVE STM RO,R15,XHELPS
BAL R14,XERRENT2
IM RO,R15,XHELPS
ERROR (BOOT,SX,0) BAL R1l4,XERRENT3
DC AL1(c),CL3'SX0"AL2(c)
ERROR BAL R14,XERRENT4

In cases 1 and 3, 'c' are bit fields which describe the
error action; in cases 2 and 4 Rl is assumed to point to such a code
field.

Thus, the four entry points merely save and restore registers
RO-R15 if not done in-line and/or set Rl to point to the error action
code before loading a base register for XERRPROC and calling it.

The error code field consists of from 4 to 6 bytes packed
as follows:

BL.1'i',BL.1'j',AL.6"'x',CL3'aaa',AL.4(2),AL.4(r),ALLl(m)

The first 4 bytes are always present and i and j are 1 or O
depending on whether the 5th and 6th bytes respectively are present
or absent.

Here - x is a code for some action XERRPROC is to take

e.g. produce a traceback.

- aaa is the error code itself e.g. SXO

- % is a code for some information to be inserted in the
message e.g. a variable name

- r is a register by which information £ may be retrieved

- m is the address of a message in a table of standard
messages CMESTAB which is to be edited into the error output.

- 68 -

The purpose of the central routine XERRPROC is to interpret
this error code field, produce an edited error message and possibly
take some resulting action.

The processing of XERRPROC is roughly as follows:

- initialize some registers
- blank out the error message print line
- move the error code aaa into the print line
- if a message is specified by m, move it into the print line
- if additional information is specified by £ and r, retrieve
it and edit it into the print line and put severlty in print line
- perform the action implied by x
- print the error message line
- return via Rl4

In the calls to the ERROR macro itself, x and £ are specified
by keywords, e.g. ERROR (BOOT,SX,0,DELRY), but these are translated in
the expansion of the macro to numerlc codes, e.g. the error code field
set up for the above is BL. 1'1',BL.1'0",AL.6(2),CL3"SX0",AL.4(1),AL.4(9).

The numeric codes are used by XERRPROC to index into jump
tables to reference the proper instructions to handle the processing

for 'BOOT' and 'DEL'.

There are 9 possibilities for £, 8 for x and these are
outlined briefly next with keyword, numeric equivalent and action taken.

For parameter % we have:

SYM 0 - edit stack operand into print line.

DEL 1 - edit stack delimiter, characters 'BEFORE' and next stack
operand into print line.

STN 2 - edit statement number from symtab.

ISN 3 - edit "IN LINE' followed by the current compile or
execution time ISN:
for compile time this is found at XISN; for execution
at O(R11l).

REL 4 =~ edit a variable name retrievable from the symtab using a
pointer stored in the stack by ARITH's syntax scan.

NAM 5 - edit the 6 characters pointed to by &4(r).

CSN 6 - edit statement number from symtab entry and an ISN saved
by the caller at field CSN.

USN 7 -~ same as CSN except ISN is also in the symtab entry for
statement number.

CHR 8 - edit into the message text the single character pointed to.

Possibilities for x are:

LANG 0 - flag the message with *EXTENSION*
WARN 1 - flag with **WARNING**

- 69 -

BOOT 2 - flag with ***ERROR***, output ISN, B XBOOT to object code, set
error switch to prevent execution unless RUN=FREE is
specified.

ZERO 3 - same as BOOT but output DC F'Q’

NOEX 4 - flag with ***ERROR*** and set error switch to inhibit
execution entirely.

NOAC 5 - same as BOOT but no object code output.

TRAZ 6 - flag with ***ERROR*** and set R14 to return to the

traceback routine XTRACEBK
SUBS 7 - flag with ***ERROR*** and set R1l4 to return to the out-of-
range subscript message routine XSUBS1

Codes 0-5 are used at compile time while 6 and 7 are used
only at execution time.

XSUBS1 does the following:
If RUN # CHECK control is transferred to XTRACEBK (see below)
without issuing a further message. Otherwise the number of the subscript

is calculated from the programme's value of R4 and this number is
inserted in the print line.

~ The value of the subscript is found from the programme's value
of R3 and is inserted in the print line.

The name of the array is found using the programme's value
of Rl4, and is inserted in the print line.

The message:

'SUBSCRIPT n OF x HAS THE VALUE n'
is printed. Control is then passed to XTRACEBK.

Execution Time Traceback Routine: (XLIBBK)

The execution-time traceback routine is used when an error
condition has caused a programme to be terminated. It's purpose is
to print out a traceback of the line number and routine name of the
statement being executed, the line number and routine name of the
statement which called the routine in execution, etc. bpack to the

main programme.

- 70 -

e.g.

10 SUBROUTINE A

13 X = B(4.)

18 FUNCTION B(X)

22 X=X /0.0

Statement 22 would cause error message KO-2 to be issued.
The traceback routine would then issue the following lines:

PROGRAMME WAS EXECUTING LINE 22 IN ROUTINE B WHEN TERMINATION OCCURRED
PROGRAMME WAS EXECUTING LINE 13 IN ROUTINE A WHEN TERMINATION OCCURRED
PROGRAMME WAS EXECUTING LINE 4 IN ROUTINE M/PROG WHEN TERMINATION OCCURRED

The information is obtained by using R11 and R13.

The termination may have occurred while executing a library
function of level 1 or 2 (section 5.1.1.). If this is the case, R1l
points to a full-word address A(SAVEAREA-START). The library functions
are positioned in memory so that these offset addresses are always less
than X'00010000'. Thus, the first two bytes of the word are always
zero if termination occurred during such a routine. If termination
occurred during a level-0 library routine or during execution of a
FORTRAN statement, R11l points to a half-word ISN which is always non-
Zero.

- 71 -

XLIBBK can thus distinguish between library routines and
FORTRAN routines.

If termination occurred during a library routine, XLIBBK
finds the name of the routine at 4(R11l) and gives the line number as O.
It then gets the previous values of R13 and R11l from the save area
and tests to see if the calling programme was a library function.

If termination occurred during a FORTRAN statement or when a
FORTRAN statement is encountered after tracing back through library
functions, the line number is found at 0(R1ll). The address of the
entry point used is found after the save area, at 72(R13). The name
of the routine is located at this address plus 4. The line is printed
and then the routine name is compared with the main programme name.
If equal, control is transferred to XSTOP. If not equal, the previous
values of R13 and R1l are restored from the save area and another line
is printed.

Eventually the traceback chain must end at some statement in
the main programme.

XRETRACE, XRETR1 and XTRACEBK set up registers R11l and R13
in order to enter XLIBBK. A switch XDNTRZSW is also tested to
determine if a traceback is required. Most error conditions branch
to XTRACEBK in order to reach XLIBBK. Some error conditions,

(e.g. those detected during the routine XENT which passes arguments

from one routine to another) branch to XRETRACE or XRETR1. XRETRACE
'backs up' R13 and R1l one level before falling through to XTRACEBK.,
XRETR1 'backs up' R1l and then falls through to XTRACEBK.

- 72 -

3.14 Execution-Time Subscripting Routine (XAl,XAN)

When a subscripted variable occurs, the object code links
via R14 to the 'dot routine' for the array concerned (See section 4.3
and figure 3.14.3.). The dot routine links via R15 to the execution-
time subscripting routine (XAN or XAl).

The subscripting routine uses the subscript list at R14 and
the dot routine list at R15 to calculate the address of the subscripted
variable concerned.

The subscript list contains the offset address of each
subscript and a byte indicating its mode.

The dot routine list contains

1. 4N - 4 where N is the number of dimensions of the array,

2. the number of shifts required to multiply by the element width
(1,2,4,8 or 16) for the array,

the array base address [A(X(o,0,...0) - START)],

the length of the array, and

the values of the dimensions.

Ul W

For the internal workings of XAN and XAl see the flow

diagrams in figures 3.14.1 and 3.14.2. gee algo Appendix A, section A.2.

- 73 -
Subscripting Routine For Multiply Subscripted Variables (XAN)

Set N = No. of

subscripts.
R3 = (O
at
%
v 4 is the Nth Real *8 Load double
into F4
*
integer#*2 g1r4
Load into F4
and double

\

Fix F4 to R2

Load halfword into R2 Load into R2

0 < R2 £ Nth
dimension

Subscript
out of
range

Kick-off
Routine

Add R2 to R3.

Multiply Non-zero

R2-R3 by Nth Decrease

dimension N byl

Shift R3 left required amount to
multiply by 1,2,4,8 or 16. Add
array base address.

Return to Address
in R1l4

Note: N is not a variable, but R4 = 4N - 4.

Figure 3.14.1,

- 74 -

Subscripting Routine For Singly Subscripted Variables (XAl)

*
Real *8 Load double
into F4

Load into F4
and double

Integer*2

Integer *4

L

Fix F4 to R3

Load halfword into R3 Load into R3

Error SS-1
subscript
out of
range

Kick-off
Routine

Shift R3 left required amount to
multiply by 1,2,4,8 or 16. Add
array base address.

Return to Address in
R14

Figure 3.14.2.

- 75 -

Object Code and Dot Routine For A Subscripted Variable

Object Code For Dot Routine For Array X
Subscript Calculations (n dimensions)

BAL R15,subscripting routine

R15——> | 4N-4 AL3(X(0,0,...0)*START

No. of
Shifts length of array
BAL Rl4,dot routine
R14 —>3% | Mode of SS1 | AL3(subscript 1-START) Dimension 1
Mode of SS2 | AL3(subscript 2-START) Dimension 2
Mode of SSn | AL3(subscript n—-START) Dimension n

Figure 3.14.3.

- 76 -

3.15 Array Utility Routine - X1STELT

Since the object code constructed for any array reference
always refers to the array's dot-routine, this service routine is
provided for determining the address of the first element of the array.
This is used for example by XARRAY and the variable-FORMAT decoder.

The inputs to X1STELT are: - 4 times the number of dimensions
of the array in RO
- the (address-START) of the dot-
routine in R3
It is called via
BAL R1, XI1STELT

and the outputs are:

- (address-START) of the first element of the array in R3
- total length in bytes of the array.

3.16 Exponential Routines

Routine to Raise An Integer to an Integer Power (XIEXPI)

XIEXPI raises the integer whose value is in Rl to the power
whose value is in R4. The result is placed in Rl. 1If Rl and R4 are
both zero, error message EX-2 is issued and execution is terminated.
1f R4 is zero and Rl is non-zero the result is 1.

If R4 is negative, the result is calculated for |R4| and then inverted.

Routine to Raise a Real *8 Number To An Integer Power (XR8EXPI)

XR8EXPT raises the real *8 number whose value is in FO to
the power whose value is in R4. The result is placed in FO. If FO
and R4 are both zero, error message EX-7 is issued and execution is
terminated. If R4 is zero and FO is non-zero, the result is 1.0.
1f R4 is negative, a MDR instruction in the routine is changed to a
DDR instruction, so that the inverse result will be calculated. If
R4 is negative and FO is zero, the message EX-8 is issued and execution
terminated.

Routine to Raise A Real *8 Number to a Real *8 Power (XR8EXPRS8)

XRSEXPR8 raises the real *8 number whose value is in FO to
the real *8 power whose value is in F2.

- 77 =

I1f FO is zero and F2 is less than or equal to zero, error
message EX-6 is issued and execution is terminated. If FO is zero and
F2 is positive the result is 0.0. If FO is negative and F2 is non-
zero, error message EX-9 is issued and execution terminated. If FO
is non-zero and F2 equals zero, the result is 1.0.

In the case where FO is positive and F2 is non-zero, the
routine DLOG is called to calculate DLOG(F0) this is then multiplied
by the value originally in F2 and the routine DEXP is called to find
the exponential of this number which is returned to the calling
programme in FO.

Routine to Raise a Complex *16 Number to an Integer Power (C16EXP1)

Cl6EXPI raises the complex *16 number in FO and F2 to the
power whose value is in R4. If R4 is negative, the result is
calculated for |R4| and then inverted to give the proper result. The
routine XCDIV116 is used for the inversion. Other complex multiplies
and divides in the routine are executed in line.

3.17 Complex Multiply and Divide Routines
XCMULT8

XCMULT8 multiplies the two complex *8 numbers whose values
are contained in (FO, F2) and (F4, F6) and places the result in
(FO, F2).

XCMULT16

XCMULT16 multiplies the two complex *16 numbers whose values
are contained in (FO, F2) and (F4, F6) and places the result in
(FO, F2).

XCDIV18

XCDIV18 divides the complex *8 number in (FO, F2) by the
complex *8 number in (F4, F6) and places the result in (FO, F2).

XCDIV116

XCDIV116 divides the complex *16 number in (FO, F2) by the
complex *16 number in (F4, F6) and places the result in (FO, F2).

XCDIV28

XCDIV28 divides the complex *8 number in (F4, F6) by the
complex *8 number in (FO, F2) and places the result in (FO, F2).

- 78 -

XCDIV216

XCDIV216 divides the complex *16 number in (F4, F6) by the
complex *16 number in (FO, F2) and places the result in (FO, F2).

3.18 Fix and Float Routines

XFIX01l - fixes the real *8 number in F0, placing the result in Rl.
XFIX61 - fixes the real *8 number in F6, placing the result in R1.
XFLOAT10 - floats the integer in R1l, placing the real *8 result in FO.
XFLOAT30 - floats the integer in R3, placing the real *8 result in FO.
XFLOAT14 -~ floats the integer in R1l, placing the real *8 result in F4.
XFLOAT34 - floats the integer in R3, placing the real *8 result in F4.
3.19 Undefined Variable Checking Routines (XROUT*n)

These routines check variables used in arithmetic to make
sure they are defined. All variables in WATFOR are initially equal to
X'8080...80', If this bit pattern is found at the variable location to
be used, the variable is assumed to be undefined.

XROUTSn (n = 1, 2, 4, 8, 16) ~ These routines assume a simple variable
is to be checked. The instruction which uses the variable always
follows the 'BAL R14,XROUTSn' instruction, so the base displacement
address of the variable can be found from this instruction. The n bytes
at the variable location are compared with X'8080...80'. 1If not equal,
execution continues. If the variable was undefined, error UV-0 is
issued and execution is terminated.

XROUTEn (n =1, 2, 4, 8, 16) - These routines are for checking equivalenced,
commoned or call-by-name simple variables. They assume that R3 contains

the offset address of the variable. The n bytes at START(R3) are

compared with X'8080...80'. 1If not equal, execution continues. If the
variable was undefined, error UV~1l is issued and execution is terminated.

XROUTAn (n = 1, 2, 4, 8, 16) - These routines are for checking subscripted
variables. They assume that R3 contains the offset address of the
variable. The n bytes at START(R3) are compared with X'8080...80'. 1If
not equal, execution continues. If the variable was undefined, error

UV-2 is issued and execution is terminated.

All of the XROUTn routines destroy R15.

- 79 -

3.20 Execution Input/Output XIOINIT, XARRAY, XSIMPELT, XSUBSELT

These routines provide linkage between the object code
generated for I/0 statements and the conversion and I/0 routines.
The routine INOUT outputs object code for I/0 statements. FORMCONV
(section 5.4) and FIOCS (section 5.5) perform the conversion and 1/0
respectively. The routines in STARTA provide the necessary linkage.
Consider the following FORTRAN I/0 statement and the associated object
code generated.

e.g. REAL A(20)
PRINT25, A, B, C(2)

BAL R14,XIOINIT

T DC X'codel',AL3(address of unit number)
DC A(end of file addr)
DC A(error address)

+ DC X'code2',AL3(address of format)

statement)

BAL R14,XARRAY

+ DC A(address of A)
BAL R14 ,XSIMPELT

t DC A(address of B)
BAL 14,.C
DC F'2°!
BAL R14,XSUBSELT

t DC A(type code)
BAL R14 ,XENDLIST

t In some cases the address might occur at one or more levels

of 'indirectness', (the code specifies this). However, for the
following discussion, it will be assumed that the object code appears
as above. The routines XIOINIT, XARRAY, etc. are described now.

XIOINIT

This routine located in STARTA is called at the beginning
of each input or output statement. Its basic operation is to initialize
FIOCS and FORMCONV for the impending input or output operation. XIOINIT
in STARTA merely links to PIOINIT in the extended communications region
STARTB.

Constants and switches

XBASADDR The base register for the called routine
(FORMCONV or XDATA)

XDSRN Data set reference number and address of end-
of-file and error returns
XTABL A set of 1 byte constants used to tell FIOCS

what type of I/0 (binary or BCD input or output).

- 80 -

XTAB2 A set of 6 address constants (in FORMCONV)
for each type of I/0 (BCD,binary and free
input or output).

XTAB3 Similar table to XTAB2.

XXADDR Address of particular I/0 routine that
XSIMPELT and XSUBSELT will use later.

Following are PIOINIT's functions:

Set up base register constant XBASADDR.

Move EOF and ERR addresses to XDSRN+4.

Obtain code for FIOCS from XTABl.

Obtain unit number and store in XDSRN.

Determine the operation type from code 1.

If BCD check if format is variable and if so go to FORMAT.
Place address of format list in register 1.

Call FIOCS.

. Set up XXADDR from XTAB3.

Get address of the FORMCONV initialize step from XTAB2.
Off to FORMCONV.

\v W

O 00~ O

FORMCONV will return to the object code when it has completed
its functions.

If the operation is a control operation (BACKSPACE, REWIND,
or ENDFILE) control would have transferred at step 5 above to PCONTROL
where the appropriate action is taken.

FORMCONV's base register is stored in XBASADDR and the end-
of-file and error addresses are saved in XDSRN.

Following this set of operations the I/0 and conversion
routines have been initialized and are now ready to process the I/0

list.

XSIMPELT and XSUBSELT

These routines are used if the list element is a simple
variable or a subscripted variable. Register 3 is used to point to
the required variable in the I/0 list. The value previously stored
in XXADDR determines where to go in FORMCONV. Again FORMCONV returns
to the object code.

XARRAY

This routine is used if the list element is an array. After
setting up the necessary loop control, finding the address of the first
element and the length of the array (use X1STELT) XARRAY calls XSUBSELT
the required number of times to output the array.

- 80.1 -

XENDLIST

This routine is used to terminate activity for an I/0 or
DATA list. For example on a PRINT statement a call to XENDLIST
would cause a call to FIOCS to print the line. The call to XENDLIST
is the last object code generated for an I/0 list or the only code
generated in case no list is present.

- 81 -

Error Handling (PERROR)

1f an error occurs in FIOCS control transfers to PERROR
(via MYIBCOM). Register 14 points to a constant containing an error
code and the address of the unit number. If the error is an EOF or
ERR type the addresses saved in XDSRN are used to possibly return to
the object code or to print the appropriate error message.

3.21 Pre-execution DATA Statement Processor = XDATA, PDATA

The DATA statement compiler produces object code for source
DATA and initializing type statements which basically, consists of
two lists: one list is a sequence of executable instructions corresponding
to the variables (an I/O list) and the other is a list of 8 byte
constant descripters corresponding to the list of constants in the
statement. The object code for all such statements is chained together.
For a full description of this coding and its production see section
4.6.7. The discussion which follows will use the example statement:

DATA A,I/l.,2/,C/ZlZF3/
to describe the action of XDATA and PDATA.

The object code for this statement is:

B AROUND

BAL R11,XISNRTN

DC AL2 (ISN)

CNOP 0,4

BAL R14 ,XDATA

DC A(next data statement—-START)

DC AL1(n) ,AL3(savearea—START)
SUBLIST1 DC AL1(0) ,AL1l(m),ALZ(CONLISTl—SUBLISTl)
IOLIST1 BAL R14,XSIMPELT

DC ALl(t),AL3(A—START)

BAL R14 ,XSIMPELT

DC ALl(t),AL3(I—START)

BAL R14 ,XENDLIST
CONLIST1 DC ALl(O),ALl(Ql—l),ALZ(rl)

DC ALl (t),AL3 (=1=START)

DC AL1(t),AL3(=2-START)
SUBLIST2 DC ALl(O),ALl(mz),AL2(CONLIST2—SUBLIST2)
TOLIST2 BAL R14 ,XSIMPELT

DC AL1(t) ,AL3(C-START)

BAL R14 ,XENDLIST
CONLIST2 DC ALl(O),ALl(R3—1),AL2(r3)

DC ALl(t),AL3(=XL16'12F3'—START)

BALR R11,0

AROUND EQU *

- 82 -

where - n (=2) is the number of I/0O-conlist pairs in the
statement
-t is a type code for the constant or variable
- m,m, (=2,1) are the number of conlist descriptors
- rl,rz,r3, (=1,1,1) are the replication factors for
the constants

- 21’22’23 (=4,4,16) are the lengths in bytes of the constant
(Hexadecimal constants are set up as 16 byte
fields by the constant collector.)

The purpose of routines XDATA, PDATA is to match up the
variable items with the constant items and effect the initializatiom.
In this respect they perform the same functions as do XTIOINIT and
FORMCONV for formatted I/0 statements; XDATA does initialization
for each DATA statement and PDATA actually carries out the initializing
of variables on an element by element basis as control is transferred
to it via the I/0 list item handling routines XSIMPELT, XSUBSELT, XARRAY.

XDATA does the following:

- sets up XBASADDR, XXADDR to provide linkage to and
addressability for PDATA via XSIMPELT etc.

- saves the pointer to the next DATA statement in the chain
(the last DATA statement is chained to the entry point of
the mainline programme via XSTART11);

- gsaves the number of sublists nj;

- loads the data area registers R5-R10 from the savearea
of the programme segment this DATA statement happens to
be in;

- sets a pointer to the first sublist header, SUBLISTL

- joins the coding which does sublist initializing.

The sublist initialization which is performed for each sublist is:

- set a switch which is used to insure that there are at
least as many constants as locations to be initialized;

- saves the number of conlist descriptors m;

- returns to the I/O list coding via R1l4.

Eventually one of XSIMPELT, XSUBSELT, XARRAY sends control to
PDATA with R3 containing the (address—START) of the variable to be
initialized and R14 pointing to its type code t.

PDATA then does the following:

- tests the switch to see if the conlist has been exhausted:
if so issue error DA-2 and proceed to next sublist;

— obtain the address of the constant from the saved conlist
descripter;

The special

- 83 -

tests the saved conlist descripter type-code t for a
hollerith or hexadecimal constant which require special
treatment. (See below).

adjusts the address of the constant to ignore its 2 high
order bytes if the variable is half word integer;

tests that the type of the variable and constant are the
same (error DA-6 issued and next two steps bypassed if not);
tests to see if the variable has already been initialized
(e.g. DATA A,A/1.,2./) (warning DA-8 is issued and next

step bypassed);

moves the constant into the location specified for the
variable (i.e. performs the initialization of the variable);
decrements the replication factor r for this constant and
returns to the I/0-list coding if it is not zero.

decrements the conlist count m to see if there are any
constants and sets the switch if not; if so it advances’
the conlist pointer to the next conlist descripter and

saves both the pointer and the descripter before returning
to the I/0-list coding via R14. '

treatment of hollerith and hexadecimal constants is:

right-pad with blanks if the variable is longer than the
hollerith constant or truncate with a warning message if
vice versa before initializing.

right-pad with zeros if the variable is longer than the

hex constants or truncate if vice versa.

When the end of the I/0-1ist is reached, XENDLIST sends
control to that part of PDATA which does the following:

tests the switch to see if the conlist has also been
exhausted (if not, warning DA-7 is issued and the
remaining constants ignored);

decrements the sublist count n and repeats the sublist
initialization if the count has not been reduced to zero;
if zero, PDATA branches to the next DATA statement in the
chain using the pointer saved above.

The flow charts for XDATA and PDATA are given in

Figure 3.21

Jd.

- 84 -

XSIMPELT XSUBSELT XARRAY XENDLIST

XDATA PDATA

N

Is

cwitch off? Y I Retrieve address

of constant

Initialize Error
XBASADDR, XXADDR

L

1
Save link to next Right pad "vargzgizh<oi N s comstant
DATA Statement with zeros length of hollerith or
and sublist count constant? hex?

,L _ L

Truncate
Load R5-R10 from| Set constant
savearea switch off

~AE__, Adjust Is it halfword
Save contest count, address of integer?
constant descriptor constant
and pointer to it.
Are variable
Error and constant
of same type?
Return AN

to I/0
list

codin s
g , LN Is variable still
Warning undefined?

Initialize it

Decrement
replication
factor by 1

Figure 3.21.1.

Return
to I/0
list

coding

Decrement
conlist count

Set switch on

Advance . m
conlist

pointer to

next X
descriptor

Figure 3.21.1.

- 85 -

Hollerith

Length of
variable < = >
length of

constant

Right pad
with blanks

Truncate k——“‘

Warning

W . Is
arning switch on?
Ignore
remaining - “
constants
A 4
Decrement
sublist count
by 1

Is it zero?

(Continued)

- 86 -

3.22 Compiler Qutput Routine XPRINT

This routine outputs source lines, error messages and
accounting information on the output unit. (Usually a printer.) The
routine uses FIOCS and assumes that FIOCS has been initialized to the
proper "output state'. At compile time the routine CREAD has
accomplished this purpose since it expects to do output following
input. If the routine XPRINT is to be called and the caller is not
certain of the state of FIOCS a call to the routine CPRINT will
rectify the situation.

XPRINT obtains the address of the current buffer supplied by
FIOCS (from XBUFFER) and using the length supplied in register 2 and
the address of the record in register 1 moves the line to be printed
to the buffer. A call to FIOCS causes the line to be printed and on
return register 2 points to the new buffer supplied by FIOCS. This
is stored in XBUFFER.

Following is the calling sequence to FIOCS used by XPRINT:

LA 2,length of record
L 1,=V(FIOCS)

BALR 0,1

DC X'02'

DC x'o0'

In general most routines will use the SPRIN macro to output a line.
SPRIN AREA,n

where n is the number of bytes to be output from location AREA. Note
SPRIN causes the current register to be saved and assumes that FIOCS

is initialized for the output operation. (If the user is not sure a

call to CPRINT (BAL R9,CPRINT) will initialize FIOCS.)

- 87 -

3.23 Execution-Time Interrupt Handling Routine (XRUPT)

During execution time, control is passed to XRUPT to process
the interrupts indicated by the SPIE statement at XSTART11l. These
normally include all programme interrupts except fixed-point overflow
and significance.

At XRUPT, R12 is loaded with the address of START in case
the routine causing the interrupt has destroyed it. The interruption
code in the PIE is inspected, and control passed to a routine to handle
the particular interrupt.

For operation, privileged operation, execute, protection,
addressing, data, decimal overflow and decimal divide interrupts, the
error message KO-7 is issued. The address of STOP is put in the
return address portion of the PIE and control is returned to 0S which
finishes its processing and then goes to STOP. These interrupts should
not occur unless there is an error in the compiler.

The significance interrupt is ignored. (i.e. control is
returned directly to OS which returns to the execution of the programme.)

The specification interrupt is assumed to be caused by
improper boundary alignment of variables in common or equivalence if the
instruction which caused the interrupt is located on a half-word
boundary in core, and is four bytes long. . If the instruction address
is odd, or the length of the instruction is 2 or 6, a compiler error is
assumed and the same procedure is followed as for the other invalid
interrupts. ' ‘

Otherwise, the instruction is assumed to be an RX type
instruction in which the data is not located on the proper boundary.
The DZ(IZsBZ) portion of the instruction is moved into an instruction
'LA R14,*-*' which is then executed. Following execution of this
instruction, R14 contains the address of the data which is not located
on the proper boundary. Eight characters from O(R14) are moved to
XDOUBLE which is located on a double word boundary. The programme's
values of R15-R2 are restored from the PIE, and the OP code and R;
portions of the instruction are placed in an instruction 'NOP O,XDOUBLE’.
This instruction is then executed, and the eight characters from XDOUBLE
are moved back to the location from which they were obtained. The same
effect has now been achieved as if the instruction causing the interrupt
had been executed. The registers R15~R2 are stored in the PIE (in case
the execution of the 'bad' instruction has altered their value) and a
return to OS is executed. O0S finishes its processing and then returns
to continue execution of the programme.

For a fixed-point overflow interrupt, the value of XFXOFLOW
is decreased by one and if non-zero, control is returned to OS which
returns to execution. If XFXOFLOW becomes zero, the message KO-5 (too
many fixed-point overflows) is issued and the return address in the PIE
is set to XTRACEBK. A return to 0S is then executed. OS returns to

- 88 -

XTRACEBK. XFXOFLOW can be set by calling the subroutine TRAPS (See
section 5.1.

For a fixed-point divide interrupt, the value of XFXDVCNT is
decreased by one, and if zero, the message KO-1 is issued and the
return address in the PIE is set to XTRACEBK, etc. If XFXDVCNT does
not become zero, the switch XDVCHKSW is set to X'0l' and control is
returned to 0S which continues execution.

For a floating point divide interrupt, the value of XFLDVCNT
is decreased by one, and if zero, the message KO-2 is issued and the
return address in the PIE is set to XTRACEBK, etc. If XFLDVCNT does
not become zero, the switch XDVCHKSW is set to X'0l' and control is
returned to O0S which continues execution. XFXDVCNT and XFLDVCNT are
initially equal to one and can be set by calling subroutine TRAPS.
XDVCHKSW can be tested by calling the subroutine DVCHK (See 5.1.3.)

For an exponent underflow interrupt, the value of XEXUFLOW
is decreased by one and if zero, message KO-4 is issued. The return
address in the PIE is set to XTRACEBK, etc. If XEXUFLOW does not
become zero, the switch XOVRFLSW is set equal to X'03', and control is
returned to 0S which continues execution.

For an exponent overflow interrupt, the value of XEXOFLOW is
decreased by one and if zero, the message KO-3 is issued, the return
address in the PIE is set to XTRACEBK, etc. If XEXOFLOW does not
become zero, the switch XOVRFLSW is set equal to X'01' and control is
returned to 0S which continues execution. XEXUFLOW, XEXOFLOW are
initially one and can be set by calling subroutine TRAPS. XOVRFLSV
can be tested by calling the subroutine OVERFL (See 5.1.3.)

- 89 -

3.24 Run Time Operator Message Routines XSTOPN,XPAUSE

The coding for these routines may be eliminated by proper
choice of the assembly parameter &STOPN in OPTIONS. (See page 27 of
WATFOR Implementation Guide,)

The two entry points XSTOPN, XPAUSE merely establish
addressability for and linkage to routines PSTOPN, PPAUSHOL which
are now described.

1. PSTOPN

This routine is reached from the object code by a statement
of the form STOPn by means of the compiler instructions
~ BAL R14 ,XSTOPN
DC AL4 (n)

PSTOPN sets a switch to terminate execution following the
issuing of the WTO macro, sets the operator message code to read

THCO02I, edits 'n' into the message and branches to issue the WTO.

2. PPAUSHOL

The object code for a PAUSE statement is of two forms:

PAUSE n BAL R14,XPAUSE
DC AL1(0),AL3(n)
PAUSE'literal’ BAL R14,XPAUSE
: DC AL1(2-1),AL3(literal~START)

where n is zero for simple PAUSE statement, £ is the length in bytes
of the literal constant.

Thus by testing 0(R14), PPAUSHOL either converts to decimal
the constant n or moves the literal constant into the operator message
area. (The constant is truncated if longer than the message area.)

It also sets a switch to execute a WAIT macro following the WIOR, sets
up the operator message code to read THCOOIA.

The WTO(R) macro is issued and a branch is taken to XSTOP
(job termination) for a STOP statement or a WAIT is issued for the
operator reply. When this is received the pause ECB is cleared and
a return is taken to the object code via Rl4.,

- 90 -

4.1 SCAN
4.1.1. Introduction

The SCAN routine of WATFOR performs two major functions. SCAN
obtains the user's FORTRAN source statement and transforms it into the
stack format (Section 2.7). The second function involves determining
the statement type and giving control to the required statement processor.

In order to perform these tasks the following steps are
required (See Figure 4.1.1.).

1. Initialize switches and constants
Since WATFOR handles each statement as a logical quantity
certain constants (e.g. bracket count) and certain switches
have to ibe initialized.
Obtain a card image from the input unit.
3. Transform the statement into the stack format.
The routines that perform this function could be described
simply as a character manipulator. At each step the action
taken is a function of the 'element' (variable, constant, etc.)
being collected and the new character obtained.
Determine the statement type.
. Process statement labels.
Statement numbers in columns 1 - 5 are entered in the symbol
table. At this time checking is done for errors involving
statement numbers (e.g. multiply defined, illegal use, etc.)
6. SCAN performs some general functions such as generating ISN coding
for executable statements, checking if the main-line entry
coding has been generated.
7. Give control to the statement processor routine.
8. Check if end of do-loop coding is required.
If the statement has a label we go to the routine DODO which
performs the required check.

N

o~

It should be noted that SCAN is called from two different
locations in MAIN to handle card images either from the 'input' unit
or from the 'library' unit. SCAN maintains control until the S$ENTRY
card or equivalent is obtained. At this time control returns to MAIN.

- 91 -

4.1.2. Scanning a Statement

1. Initialization

The only initialization for a particular job is to establish
the keypunch mode specified by the user. A one byte switch CMODESWT
is used.

This switch has the following settings:

X'00' - 26 keypunch
X'06' - 29 keypunch
X'0C' - S/R entry; leave mode as it was.

The table (SBCDEBC) is set up using this switch and SCAN can now issue
warning messages if a user has punched from the 'wrong' character set.

2. Input/Qutput

SCAN uses the routines CREAD and XPRINT to read and print lines
These routines are discussed in section 3.7 and section 3.22.
respectively.

WATFOR attempts to allow the user some flexibility on choice
and position of control cards. Our particular installation was 7040
IBSYS oriented and hence we decided that WATFOR should accept the same
deck format that our users were accustomed to. Hence WATFOR allows
control cards following the $JOB card or equivalent and preceding the
first FORTRAN statement. Control cards are also allowed as separators
between subprogramme modules and as an end of data or end of programme
indicator. (Our installation uses coloured cards for this purpose and
hence the operator's job is easier.)

e.g. $JOB
$IBFTC

mainline

SIBFTC
subroutine
SENTRY
data
SIBSYS

In order to allow this feature and to check for 'empty'
programmes ($JOB followed by $ENTRY) SCAN has an initial read loop to
obtain the first statement of the programme. Now SCAN is ready to process the
FORTRAN job and any future 'reads' required will occur in a second
read loop (SMREAD).

- 92 ~

Set mode table.
Read until first
statement
encountered

Read a card

and save it.
N SENTRY p new statement
RETURN What kind
continuation
Save
)\“a statement
number if
present , Fix up end
l of stack
Initialize I
new switches
and areas
Determine
statement
type
Put card
in stack
Error checking.
Main-line entry
Print coding.
card
"Call”
statement
processors
End of
DO-1oo0p
coding

Figure 4.1.1.

- 93 -

SCAN processes each card image as it obtains it and a new read will
destroy the previous card image. Hence, when we get a statement we

save the statement number, if present, convert the card to the stack
format, obtain a new card and if it is a continuation card, continue
scanning. If it is not, we know we have a new statement and can proceed
to the next step.

4.1.3. Transformation of Statement

At the beginning of each statement, a set of switches and
constants is initialized by SCAN. These are now described:

LABEL INITIAL SETTING PURPOSE
SNLIST zero a double word used to collect
digits of a constant.
SWITCHES
SBOMBSW zero don't go to processor switch.
SLTSW zero first left bracket switch.
SLASHSW zero slash switch.
SHLCONS zero hollerith constant switch.
SIHPALNE zero already printed the line switch.
SWITCH1 zZero combined level 0 comma and equal
switch.
SCC &NOCCRDS number of allowable continuation
cards.
CDOEND Zero used by end of do-loop
CDOBAD zero processor.
CSTNOLK zZero pointer to current statement number
entry in symbol table.
SBCNT zero parenthesis count.
SRT1 zZero pointer in stack to first and second
SRT2 . zero level zero right brackets.
SRTSW1 P'1’ counter of level 0 right brackets.
SADDR1 value in Reg 5 used for calculating the branch
around address for Hollerith
constants.
XISN increased by 1 current ISN.
SOPTR xX'ol’ start of stack deliminator.
SWITCH x'03!' Operator and Operand type switch.
SERRVECT zero error vector
Reg 2 Zero for TRT inst.

Reg 15 addr of stack Pointer to the stack.

- 94 -

SCAN is now ready to put the statement in the stack. The
method used is a character collection process. Using the TRT (Translate
and Test) instruction the address of the particular routine to process
the character is obtained. The TRT uses a standard TRT character
table (SJUMPC), set to ignore blanks and to process any other character.
A second table (SJUMPR) contains the addresses of the various character
processors. Certain characters, mainly operators, require some processing
and switch setting to occur, before being placed in the stack. Following
this processing, control transfers to the operator routine (SOPERTOR).

Character Label
* SSTAR If the previous character was '*' change
the operator to '**' in stack.
/ SSLASH Reverse the slash switch setting. We can

check if we are collecting a list of
constants, e.g. / 1.0, 2.0, "ABC' /

s SCOMMA If we have had a level zero equal sign (not
enclosed in brackets) we now have a level
zero comma. (Used to determine DO statements)

Invalid SERROR Replace invalid character by &INVCHAR
for printing.
SDoT If previous character is a digit go to SCNUMB

(we are collecting a constant). Check if
the previous operator was a '.' and if so
check if a relational operator, a logical
operator, or a boolean constant is possible.

If yes, make appropriate entries in the stack.

Note:

The characters +, =, (,), ' have two possible representations
(26 or 29 keypunch) and are first checked to see if they are the same
mode as specified by the user. If not, the appropriate error flag is
set and processing continues assuming the character to be valid.

Character Label

+ SPLSBOK
SPLSEOK
SPLSBNO
SPLSENO

= SEQUBOK Check the mode and check if it is a level O
SEQUEOK equal sign. This is used to determine
SEQUBNO DO's and assignment statements.
SEQUENO

! SQUOTE It's a Hollerith constant (described later).

(SLTBRBOK :
SLTBREOK
SLTBRBNO
SLTRRENO

Just check mode.

Check mode and go to SLEFTB.

- 95 -~

Character Label

) SRTBRBOK
SRTBREOK
SRTBRBNO
SRTBRENO
SLEFTB Increase the bracket count. If it's the
first left bracket check if first 6 characters
in the stack are FORMAT. 1If yes go to SCAN's
format processor (SFORM).

SRIGHTB Decrease bracket count and if negative set
error flag. If zero set up a pointer to
stack in SRT1 or SRT2 depending if it is
the first or second time a level zero ')’
has occurred.

Check mode and go to SRIGHTB.

Having processed the above characters, they and the rest of
the possible characters, fit into one of three groups; letter, digit
or operator. However, before inserting them in the stack, it is
necessary to know what type of 'thing' we are presently or have just
completed collecting.

A switch (SWITCK) is used for this and has the following
settings.

OPERATOR ,

NAME (Anything with first character
alphabetic)

NOTHING (beginning of statement)
BOOLEAN CONSTANT

HOLLERITH CONSTANT

NUMERIC CONSTANT

N =

SN~ W

Depending on the current character and the setting of SWITCK
one of two possible actions will occur. The first and simplest is just
to insert the present character in the stack. For example, if our
present character is an alphanumeric character and we are collecting
a NAME,the character is concatenated to the name in the stack. The
second possible action invelves 'completing' the present stack entry
and starting a new entry. The 'completing' of the stack entry is of
course dependent on the operand type. It could involve one or more of
the following steps.

Calculation of the link.

Inserting the appropriate code and length.
Conversion of a constant (see below).

. Padding a variable name with blanks.

~ L=

- 96 -

A set of routines (SFIXTAB) accomplish these steps for the
various types of 'things'. (e.g. If we have been collecting a NAME and
the next character is an operator, the link is determined and inserted,
the appropriate code is inserted, and the name is padded with blanks
to a full word boundary. The operator is then placed in the next entry
of the stack.)

The three major routines (SOPERTOR, SLETTER, SNUMBER) which
maintain control over the above process are now described.

SOPERTOR Upon encountering an operator a new entry in the stack is
always required. Hence, using SWITCK the present entry is
completed and the operator is inserted in the next entry.

The operators are recoded before they are placed in the
stack (Table 4.1.1.)

SNUMBER Constants are collected in groups of eight digits or less
along with a digit count. These groups are inserted in the
stack. Hence, if the previous 'thing” being collected was
a constant we might continue collecting the constant or might
be forced to do a conversion and then make an entry in the
stack. If the previous 'thing' is a NAME the digit is just
inserted in the stack. Any other type of entry other than
operator will require a new stack entry to be generated.

SLETTER The letter routine follows the same basic pattern as described
above; creating new entires if the previous 'thing' is number,
boolean, hollerith, or null and just inserting the character
if the 'thing' is letter. A test for the letter 'H' is made
if the 'thing' is number, i.e. a possible hollerith constant.

Processing a FORMAT Statement (SFORM)

The list of specifications in a FORMAT statement are merely
placed in BCD form in stack after FORMAT(has been recognised by the
routine SLEFTB as described above.

Processing Hollerith Constants

The routine SHOLL is used to process hollerith constants. The
constants are stored in-line in the object code. The stack contains a pointer
to the symbol table and the symbol table points to the constant in the object
code.

e.g. 'ABCD', 3HXYZ, 'HHHHH'
B AROUND
CNOP 0,4
DC CL4"ABCD'
DC CL4"XYZB'
DC CL8 "HHHHHbbb '

AROUND EQU *

- 97 -

rloooojoonoo o 0
lbooolooo1 + 1
0000{0010 [2

delimiters < ooooloo11 (3
and = 0000f0100) 4

\fbooo{o101 = 5

fooo1joooo OR 16
logical 00010001 AND 17
fooo1joo10 NOT 18

(loo10joo010 GT 34

0o10f{o100 LT 36

relational ﬁ 0010§0111 NE 39
Yjoo10f1000 EQ 40
00101010 GE 42

foor1oj1100 LE 44

(lo100j1010 + 74
0100f{1011 - 75

arithmetic 4 .0 10011100 * 76
operators 0100fJ1101 / 77
jo1o00j1110 *% 78
rt. bracket 1000]0110) - 134
10000111 135
1000f{1111 &

Transformed Operator Table

Table 4.1.1.

- 98 -

4.1.4. Determining the Statement Type (SFIND)

Determining the type involves one of four possible steps:

Is it a DO statement?

Is it an IF statement?

Is it an assignment statement?

Is it any other type of statement?

~ww N

It should be noted that we already know if it is a FORMAT
statement.

Several registers and switches are used or set up for future
use. These are:

Rgg. 2 - address of the statement processor routine
SFNDSWT - switch describing attributes of statement.

1 executable

2 possible for 'FUNCTION' to follow key-word
(REAL FUNCTION)

4 statement valid in BLOCK DATA subprogramme

8 statement does not generate main-line entry coding
(SUBROUTINE, FUNCTION etc.)

16 For 'IMPLICIT' processor

32 END statement

64 FORMAT statement

If the statement type is logical IF registers 3 and 4 are also set.

Reg. 4 - address of the statement processor routine
following the IF.

Reg. 3 - number of characters in the key word
portion of the statement (set zero for
an assignment statement).

1. DO's (SFNDTYPE)

Control transfers to the routine SFNDDO to determine if we have
a DO statement. This routine has a 'NO' and 'YES' return (0(14) and
4(14) respectively). If the first two characters are 'DO' and we have
a level zero equal followed by a level zero comma it is assumed that
we have a DO statement. The switch SFUNNY specifies that we had a level
zero comma before a level zero equal and hence the statement is assumed
not to be a 'DO'.

- 99 -

2. IF's (SFND1)

Control transfers to the routine SFNDIF. This routine also
has a 'NO' and 'YES' return.

After determining that the first two letters are IF the
pointer SRTl1 is used to determine what follows the first level zero
right bracket. If it is a digit, we have an arithmetic IF. If it is
a letter we have a logical IF. The same 4 steps described above are
now done to determine the type of statement after the logical IF. SRT2
is used to point to the second level zero right bracket in case another
IF follows.

3. Assignment (SFND2)

If we have a level zero equal and no level zero comma we now
have an assignment statement.

4, Other (SFND10)

The routine SFIND is used to determine other statement types.
The tables STYPET1 and STYPET2 used are now described.

STYPET1

This table consists of 1 entry of the following form for each
statement.

char ptr addrl switch addr2
where
char 4 bytes - first four characters of the key~word.
ptr 1 byte - a pointer to STYPET2 table (zero if key-word

contains 4 or less characters).

address of the processor routine

attribute switch (same settings described
above for SWITCK).

this is present only if 'FUNCTION' can follow
the key-word (e.g. INTEGER FUNCTION).

addrl 3 bytes
switch 1 byte

addr2? 3 bytes

e.g. DC CL&'COMM',X'ptr',AL3(addr of COMMON proc),X'switch'

STYPET2

This table contains two entries for each key-word containing
more than 4 characters. The first entry contains the length of the
remaining characters minus one and the second the rest of the characters.

e.g. DC X'01'
DC CL2'ON' 1last letters of COMMON

- 100 -

To determine the statement type the first four characters of the

current statement are inserted as the last entry in the STYPET1 table.
The processor address portion contains the address SERRST5 (i.e. an
address in SCAN). Now a search is initiated and we are always guaranteed
to be successful.

A test is now made 'to determine' if the key-word has more
than r characters (if ptr is non-zero) and if not control can return
with the address and switch. If there are more than 4 characters a
check is made to see if 'FUNCTION' can follow. (Note: REAL has a
dummy entry in the STYPET2 table and the ptr entry in STYPET1 is non
zero so that it won't return after finding only 4 characters). If
FUNCTION can't follow a comparison is made on the rest of the characters
and the address is obtained or an error message is issued. If FUNCTION
can follow the rest of the characters are compared and then a test
is made to see if 'FUNCTION' follows the key-word in the stack. The
appropriate address is obtained depending on a successful comparison.
Note that if the statement is undecodeable the processor address obtained
(SERRST5) will merely print out the appropriate error message.

4.1.5. Error Checking and Miscellaneous

Now that the statement type is known, it is now possible to
do some error checking.

(a) ST-4 Statement after a Transfer Statement has no Statement Number

A switch 'CIFGOTSW' was set on if the last statement was a
transfer statement. 1If the switch is on and the current statement is
executable it turns the switch off. If there is no statement number
on the current statement an error flag is set.

(b) Enter Statement Number in Symbol Table

The LOOKUP routine is used to do this (See section 3.3.2.)
If the statement number is already in the symbol table but not defined
or if it does not appear in the symbol table SCAN defines it (turn on
appropriate bit in Bl) and inserts the address. A pointer to the symbol
table entry is stored in CSTNOLK. (This saves some LOOK-UP time for
processors wishing to check and/or use it.) If it was there and was
defined the ST-3 error is issued.

(c) Test for Illepal use of Statement Number

(i) ST-9 transfer to FORMAT statement
(ii) ST-7 transfer to non-executable statement
(iii) T0-2 referencing a non-format statement in an I/0 statement.

- 101 -

These are accomplished by checking the various bits in the
symbol table (See section 2.4).

(d) Set Switch for IMPLICIT Processor

Because there are certain rules about the placing of IMPLICIT
statements SCAN sets COTHSTAT off for the SUBROUTINE, FUNCTION, 'type'’
FUNCTION and BLOCK DATA and on (X'FF') for all other statements. The
switch SFNDSWT is used for this.

(e) Check If Statement is Valid in a BLOCK DATA Subprogramme

The switch CSRSWTCH is set X'92' if we are in a B/D S/R.
Again the switch SFNDSWT is used and the error message BD-0 issued if
statement is invalid.

(f) Generate MAIN-line Coding Entry

The CSRSWICH is checked (X'40') and if so then we already have
had main line coding generated. If not go to the routine 'LMAIN'. The
statement number address in the symbol table has to be adjusted if we
go to LMAIN.

(g) Generate ISN Coding

If the statemént is non—executable no ISN coding is issued.
If the statement is FORMAT a BALR 11,0 is issued in the object code and
CBAR11 is updated (See section 2.8.3.). 1If the statement is executable
a control transfers to CISN (See section 2.5.1.).

(h) 1Issue Error Messages

During the scanning process various error flags could have
been set in the location 'SERRVECT'. 1If this word is zero we know that
no error flags were set. If non-zero the appropriate error message is
issued. Each bit is used to signify that a particular error occurred.

(i) Transfer to Statement Processors

The information saved after determining the statement type is
now recovered. The processor address is placed in register 2. If the
statement is a logical 'IF' the length of the keyword (zero if
assignment) is placed in register 3 and the address of the processor
required in register 4, Control now transfers to the statement processor
which subsequently return to SCAN.

- 102 -

(j) End of DO-loop coding

If the statement has a statement number, control now transfers
to '"DCSTN1'. The switch CDOEND is set X'02' if the statement is non-

executable.

(k) All Done

We have now finished processing the statement and can now
return and repeat the same procedure for the next statement.

- 103 -

4.2 LINKAGE STATEMENTS PROCESSOR (LINKR)
4.2.1. General

Compiler deck LINKR contains the sections of the compiler
which deal with what may be grouped loosely under the title of linkage
statements. These are statements which are concerned with the transfer
of control to and from the function and subroutine call's. The actual
call statements are processed by the arithmetic statement processor.
But the entry and return statements are processed here. The loose
definition has been expanded to include a main programme statement
(simulated), the END statement, the BLOCK DATA statement, and
simulated entry and return statements for arithmetic statement
functions (ASF). Initialization for subprogramme segments is also
done here in routine LENDPROG (somewhat misnamed).

The primary entry statements FUNCTION, SUBROUTINE etc. use

a common exit routine and a common argument list SCAN routine to
perform the tasks with a minimum of duplication of code.

4.2.2. Function Statement Processor (LFUNC)

The FUNCTION statement processor compiles the FUNCTION
statement. First, it checks to see that we are at the beginning of
a subprogramme segment and if not, simulate an END statement. Extract
the function name and look it up in the symbol table and set aside
space in the function name list for a duplicate symbol table entry,
initializing it to a subprogramme entry. Branch to the common exit
routine where we join with the processing of the various "TYPE" function
statements (e.g. REAL FUNCTION). There we link the variable list
entry to the function name list entry, save the entry point address,
and initialize base register R1l at execution time (CBAR1l).

2 2 6 2 4
LINK | B1,B2 NAME entry FUNCTION

j point address| NAME
PP S
VARTABLE
LINK | B1,B2 | NAME A/%

We then output the object code for the entry sequence. The
stack is checked for a left bracket and we go off to the argument list
processor. Upon return, we output the last argument, and after
initializing the "GO TO" switches, we return to SCAN.

- 104 -

4,2.3. Subroutine Statement Processor (LSUBR)

The subroutine statement processor does the same preprocessing
as the FUNCTION statement processor until we look up the entry point
name in the variable list. Here we enter it into the list as a
subroutine entry point. We then save the entry point address in the
symbol table entry and move the entry point coding into the object code
area. If the stack contains a left bracket, we go off to the argument
list processor. Then we move in the last argument of the model argument
list and go off to the common exit routine to set the "GO TO" switches
and return to SCAN.

4.2.4. Argument List Processor (LARGL)

This routine processes argument lists for main entry point
statements. The syntax is checked in the normal manner as one scans
the argument list. The variables are inserted into the variable list
by calling the lookup routine. If an entry is "FOUND" when it is
looked up, this indicates either duplicate entries in the ARG list
(ERROR FN-3) or the entry point name is in the argument list
(ERROR FN-8). If we come upon a STAR argument (i.e. multiple return)
in a function subprogramme, then we print an error message (FN-5).

For variable type arguments we simply enter them in the variable lists
either as parameters or parameters by name (equivalent to simple
variables, equivalenced). At the end of the argument list, we check
for a closing right bracket and the end of statement symbol and

return to the calling routine.

4.2.5. Type Function Statement Processors

COMPLEX FUNCTION (LCOMP)

. DOUBLE PRECISION FUNCTION (LDOUB)
INTEGER FUNCTION (LINTE)

LOGICAL FUNCTION (LLOGI)

. REAL FUNCTION (LREAL)

v WwN =

The above statement processors perform individual initialization

and then converge to a common routine to perform statement analysis.

With the exception of the DOUBLE PRECISION FUNCTION statement, each
processor initializes CSRSWTCH, loads up R7 with the default mode and
links to the common processing routine by R8 thereby transmitting an
argument list whose values are the default and optional lengths for

the respective statements. The statement is analysed to see if it has

a length defined, and if it does, then the length is compared to see

if it matches. 1If it doesn't, then an error message is given (FN-6).

- 105

Here the DOUBLE PRECISTON FUNCTION statement rejoins the logic. Now
we insert the name in the variable 1list and duplicate it for the
function name list as was done for the FUNCTION statement. At this
point, we join with the common processing for a FUNCTION statement.

Sample FUNCTION statement object code (unrelocated)

FUNCTION X(A,B,C)
CNOP 0,4

X STM R14,R12,12(R13)
BAL R11,XENT
DC X'A0',AL3(0)
DC CL6'X',H'O'
DC X'A6' ,ALl (mode) ,AL2(pointer to A)
DC X'A6' ,AL] (mode) ,AL2 (pointer to B)
DC X'A6',ALl (mode) ,AL2 (pointer to C)
DC X'AC',AL1(mode),AL2 (pointer to X)

Sample Subroutine gtatement object code

SUBROUTINE Y

CNOP 0,4
Y STM R14,R12,12(R13)
BAL R11,XENT
DC X'AO',AL3(0)
DC CL6'Y',H'0" ,
DC X'AB',X'10',AL2(0) LAST ARG.

Figure 4.2.1.

- 106 -

4,2.6. Entry Statement Processor (LENTR)

The entry statement processor receives control from SCAN,
moves a branch instruction into the object code and then it performs
the following checks before proceeding with the scan of the statement.
It checks to see that we are not within a main subprogramme module
(M/PROG). It checks to see that this is not the first statement of
the subprogramme. It checks to see that the entry statement is not
within a DO loop. The check that we are not within a BLOCK DATA
subprogramme is performed by routine SCAN.

This done, we branch to different sections according to
whether we are in a function or subroutine subprogramme.

1. ENTRY (SUBROUTINE)

The entry point name is extracted and looked up in the variable
list. If found, an error message is printed (EY-0). The
variable list entry is initialized to subroutine entry and the
E.P. address stored. The E.P. name is moved into the prototype
entry code and this code is moved into the object code area.

If a left bracket follows the name in the stack, the subroutine
(LEARG) which constructs the model argument list for entry
statements is called. After the model argument list (if any)
has been created, the last argument is added by this routine.
The branch instruction which was moved into the object code
prior to the entry sequence is patched up to branch to the
current address of the object code. We then return to SCAN

via the common exit routine for linkage statements.

2. ENTRY (FUNCTION)

The processing done here is much like the processing done for
subroutine subprogramme entries with the following exceptions.
When the entry point name is looked up in the symbol table it
is permissable for it to be found in the variable list. With
the provision that only its mode may have been previously
declared (usage bit not on). This provision being met, space
is set up for the function name list element which is then
initialized and put in the FLIST. A pointer to the variable
list entry is stored in this element along with the address
of the entry point.

0f course, this being a function subprogramme entry, an
argument list is mandatory rather than optional as in the
case of subroutine subprogramme entries.

The last argument for function entries also includes a
pointer to the variable list entry, so that the execution
time return routine can load the appropriate value when the
function is exited from at execution time.

- 107 -

3. ENTRY STATEMENT ARGUMENT LIST SCAN (LEARG)

This routine is much like the normal argument list scan
routine with the exception that it allows names in the model
argument list to be found in the symbol table when they are
looked up. If they are found, checking is done that the
previous declaration does not conflict with what is implied
by the fact that the name appears in the entry statement.
For example, mode may be declared, or even the type may be

a dimensioned variable, but it is not allowed to have the
variables in common or equivalenced as they are subroutine
parameters.

Sample entry statement object code (unrelocated)

ENTRY X(A,B,C) (subroutine)
B AROUND
CNOP 0,4
X STM ~ R14,R12,12(R13)
BAL R11,XEND
DC X'A0',AL3(0)
DC CL6'X',H'O'
DC X'A6',ALl (mode) ,AL2 (pointer to A)
DC X'A6' ,ALl1 (mode) ,AL2 (pointer to B)
DC X'A6',AL1 (mode) ,AL2 (pointer to C)
DC X'AB',X'10',AL2(0) LAST ARG
AROUND EQU *
4.2.7. Return Statement Processor (LRETU)

This routine processes the return statement in FORTRAN.
The following logical errors are detected upon entry from SCAN. Firstly,
a return statement cannot be the first statement in a subprogramme.
Then we determine whether it is a multiple return statement or not. If
it is not, we output object code to branch to the execution time return
routine (XRET) and then return to SCAN., If we do have a multiple return
statement, then we check to see whether we are compiling a function
subprogramme or a main subprogramme. If we are, then we terminate
processing with appropriate error messages. (RE-2 and RE-4 respectively).
Otherwise the statement is 0.K., and we determine the mode of the
multiple return number. It can be one of immediate value, or halfword
or fullword integer, direct or indirect addressing. We then output
corresponding object code for each case and return to SCAN.

- 108 -

4.2.8. End Statement Processor (LEND)

This routine merely scans the syntax of the END statement
to see if it is correct. Then it calls Relocator Phases one and two
to perform symbol table cleanup and object code relocation respectively.
Then it calls for beginning of subprogramme initialization from
LENDPROG and returns to SCAN,

4.2.9. End Statement Simulator (LENDS)

In the event that we are inside a subprogramme segment when
we try to compile another start of programme statement (e.g. FUNCTION,
SUBROUTINE) it is necessary to print an error message (EN-3), perform
the processing normally done for an END statement and return to
whatever statement processor called this routine. This processor does
all the above. It should be noted that as there is a statement in the
stack yet to be processed, LENDS (by choice) does not alter the
contents of register RO.

4.2.10. Simulate Main Programme Entry (LMAIN)

This routine is called by SCAN if the first statement in a
subprogramme segment is not a start of subprogramme statement
(e.g. FUNCTION, SUBROUTINE, BLOCK DATA). It simulates the processing
done for a special subroutine entry statement. That is, it creates
an entry in the symbol table for the subroutine name '"M/PROG'. It
then moves in object code for an entry point with no arguments for
the main programme. This done, it returns to SCAN. It should be
noted that R9 which points to the current statement in the stack, is
not altered by this routine.

4.2.11. Block Data Statement Processor (LBLOC)

This statement does little more than check the syntax of
the statement and initialize CSRSWICH to a value which indicates that
we are in a BLOCK DATA subprogramme.

- 109 -

4,2.12. ASF Entry Processor (LASFE)

This processor receives control from the arithmetic statement
processor (ARITH) and proceeds to scan down the stack as if it were
processing a FUNCTION statement. Before it does this, it moves a branch
instruction into the object code which will be patched in later to
branch around all code generated for this ASF. An entry sequence and
model argument list are then generated and control is returned to ARITH.
During the scan of the stack to create symbol table entries, duplicate
entries are formed and added onto the front of the variable list.

These will be the variable list entries in effect during the compilation
of the rest of this statement.

At the end of the compilation, the sublist which was created
by these local entries, will be removed from the front of the variable
list and placed at the end of the variable list. Hence, during the
rest of the subprogramme, the original variable list entries will be used.
e.g. For X(A,B,C) = ...

The variable list looks like the following

BEFORE DURING AFTER
1 4 1
2 5 2
3 le 3
4 % 4

Al 5 A

E A 10 A

b B 6 B

b B r9 B

10 C 7 ¢

il C |8 C

where the order of the entries is indicated by the sequence number to
the left.

Checking for duplicate entries is performed by storing the
symbol table pointer in an unused portion of the ASF variable list
entries, (the common and equivalence list pointers) to the variable
list entry for the name of the ASF. 1In the example above, it would be
the variable "X'", when the lookup is performed for the model argument
name. If the name is found, and the pointers are the same, then an FN-7
error is given. Another task performed is to calculate a cumulative link
around the model argument list so that ARITH can eliminate this junk from
the stack when it does its processing. The calculation is pexformed in R7
and the result shifted into RO just before returning to ARITH.

- 110 -

4.2.13. ASF Return Processor (LASFER)

As described in the note just previous on the ASF entry
processor, this routine cleans up the processing of the ASF statement.

This consists of
1. Moving a branch to the execution time return routine (XRETASF)

into the object code.
2. Moving an end-of-ASF indicator into the object code

DC X'B6BO'
3. Shifting the local variable list to the end of the variable list.
4. Patching up the branch instruction to branch around all the

generated code for this statement.
Control is then returned to ARITH.

Sample coding for ASF statement

X(A) = ...
B AROUND
CNOP 0,4
X STM R14,R12,12(R13)

BAL R11l,XENTASF

DC X'Al',AL1(0),AL2(pointer to X)

DC CL6'X',H'0'

DC X'A6' ,ALl (mode) ,AL2 (pointer to A)
DC X'AB' ,ALl (mode) ,AL2 (pointer to X)

object code generated by ARITH for R.H.S.

B XRETASF
AROUND DC X'B6BO’ end-of-ASF indicator

- 111 -

4.2.14, Beginning of Subprogramme Initialization - (LENDPROG)

This routine initializes the compiler for the beginning of
a subprogramme segment. Specifically this is: dinitialization for
symbol table lookups, initialization of temporary lengths, initialization
of the implicit mode table, and saving of the beginning of programme
address and the bottom of the symbol table address (CSYMBASE). It
should be noted that R9 is not altered by this routine. This was done
because this routine can be called by the end statement simulator and
an as yet unprocessed statement may be in the stack. This routine is
also called at the beginning of job initialization from the compiler
deck MAIN.

- 112 -

4.3 SPECS

4.3.1. Introduction

The routine SPECS contains processors for the following
statements: DIMENSION, Type, COMMON, EOUIVALENCE, IMPLICIT and FXTERNAL.
Table 4.3.1. shows the various sections.

In general this routine does not generate any object code but
rather creates new, or changes old symbol table entries for variables.

e.g. REAL N,Z
DIMENSION N(20)
EQUIVALENCE (N(1),Z)

On obtaining the first statement of the example SPECS would enter N and
Z as new variables in the symbol table. Appropriate bits will be set
on to indicate the mode, type and length etc. of the variables. The
second statement merely adds new information about the variable N.
Hence the appropriate bit would be entered in the symbol table to specify
that N is subscripted and a "dimension" list established. (See
description of VLIST section 2.4.1.) The third statement would require
that an "equivalence" list be generated for N and Z and that again
appropriate bits be set on to indicate that N and Z are equivalenced.
While the above entries are being made or modified SPECS checks for
various error conditions such as re-typing a variable.

SPECS will cause code to be generated if the type statement
includes data initialization

e.g. REAL K/1./

CSECT name Function
1. TDLIPCDP Type and Dimension Processor
2. TEQUIVAL Equivalence Processor
3. TCOMMON Common Processor
4, TIMPLCIT Implicit Processor
5. TEXTRNAL External Processor
6. TSAVER Save Area, Data Area, Service Routines

Table 4.3.1.

- 113 -

fntry points to TDLIRCDP
Entry Point Purpose
TDIME - Dimension Statements
TLOGL - Logical Statements
TINTGR - Integer Statements
TREAL - Real Statements
TCMPLX - Complex Statements
TDBLPREC - Double Precision Statements
Table 4.3.2,
4.3.2. Tables & Switches used in SPECS
NAME LENGTH VALUE SET USAGE
COTHSTAT 1 X'00' Only a function, type function
Subroutine, Block Data or Implicit
Statement has occurred.
X'FF' Other Statements have occurred.
CIMPLIT 1 X'FF' Tmplicit Statement has occurred.
X'00' Implicit Statement has not occurred.
It is used to check that Implicit
is first statement in a programme
segment.
. TAYBL (EQUATED Used by Implicit to check
TO XLENTAB validity of optional
IN STARTA) lengths.
CTYPESW 1 x'o2' Call to INOUT is to process
initialization.
x'ol' Call to INOUT is for end-of-
statement tidy up.
CIMPLT 42 Implicit table. Also used by
LOOKUP.
CHECKINT 4 Checking integer for equivalence.
T™L1 1 Set to Default bit configuration
in VLIST by type and dimension
processor.
TML2 1 Bit configuration to be put in Bl

for a particular variable. Set by
type and dimension processor.

- 114 -

NAME LENGTH VALUE
TPVLINK 1 c'N'
c'y’
TSUDEQV 1 C'N'
c's'
c'T'
TCRESS1 1 C'N'
c'y’
TRANGER 1 c'N'
c'y’
TDATSW 1 c'p'
C'N"
TBLNK 1 C'B'
c'rL’
1 C'E'
TSSVABL | c'y’
c'N'
TERROR 1 C'N'
C'E'
TFICLST 1 C'F'
C'N'
TDIMSW 1 c'D’
c'T!
c'c’
C'E'
TSPPARM 1 c'N'
c'y’
TEQCOMER 1 C'E'
C'N'
TSHIFTAB 8
JUMPTAB 8

COMMENTS

No previously equivalenced variables
have yet appeared in the current
list of the equivalence statement
being processed.

At least one such variable has been
found.

Variable is not pseudo-equivalenced.
Pseudo-equivalenced, and not in
common.

Pseudo-equivalenced variable appears
in common statement.

No data initialization for current
statement.

At least one variable was initialized.
Must go to INOUT to fix object code.
No error yet in Implicit.

Error Flag for Implicit.

If slash occurs in type statement
with no dimensioning it indicates
initialization.

No Slash.

Blank Common.

Labelled Common.

Invalid Common Block Name.
Subscripting or Dimensioning follows.
No subscripting or dimensioning.

Error Flag.

Current Variable is first in

Common Block.

Not first.

Dimension statement.

Type statement.

Common statement.

Equivalence statement.

Current variable is not a S/R
parameter.

Current variable is a S/R parameter.
Error has occurred in compilation
of subscript or dimension.

No error.

Contains number of shifts, one for
each data type and length, required
to convert product of dimensions into
an array length in bytes.

A macro which generates 8 1-byte
address constants used as an index
to process subscripts for dimensions.

4.3.3,

(a)

(b)

(c)

NAME

TSS

- 115 -

LENGTH VALUE COMMENTS

32 First seven words contain the
subscripts or dimensions associated
with the variable. The last word
contains the number of SS or DIMS.

Linking Operations in SPECS

Unfortunately the desired meaning of the word 'link' is not
always clear when used in this documentation. Basically the word can
be used in three different contexts depending on whether it is used
as a noun or verb.

Noun -

Verb -

Verb -

in this case 'link' is a half word offset or displacement
from some location, and is used to get a pointer to another
entry.

e.g. ZVLINK, ZCOMLINK, ZEQVLINK, ZVDIM, ZVCOMM, and
ZVEQV are all links in the symbol table. ZSTLINK
is the forward link in the stack. Links in the symbol
table are subtracted from the reference address to get
the new entry. Stack links are added.

to link means to create a link between two entries in the
symbol table. If we create a link from entry A to entry B,
whose addresses are in GPR R2 and R3, say, then the following
code is used.

LR R15,R2
SR R15,R3
STH R15,--

Note the use of a work register, R15. The reason is that
the location in which the link is stored is usually dependent
on the address in R2.

to link from A to B can also mean to get a pointer to entry B

using the pointer to entry A and a link relative to A.
e.g. if the address of A is in R2Z~

LR R7,R2
SH R7,n(R2) n = [0,2,4,...,14].

Again note that we may wish to preserve R2, hence the use
of work register R7.

- 116 ~

4.3.4. OBJECT CODE

The only object code generated by SPECS is done indirectly.
INOUT produces the object code for initialization in type statements.

4.3.5. DETATLED DESCRIPTION OF PROCESSORS

Type & Dimension

At each entry point for TYPE statements RO and R2 are loaded
with the standard and optional lengths for the variable (other
initialization is also performed). DOUBLE PRECISION and DIMENSION
have identical syntax rules so they are treated in the same fashion.
They have a separate call to the SETSTACK routine, after which they
transfer control to label TESTNAME. All the others go to label TESTAR
where TDIMSW is set to C'T' and the SETSTACK routine is invoked. Then
the stack is examined to see if '*n' follows the statement identifier.
If so, 'n' is checked against the contents of RO and R2 for validity.
If 'n' is the optional length, bit 7 of TML1l is set to 1.

All statements now transfer to TESTNAME. TMLZ2 is set to TML1
and the STACK is checked for a symbol (i.e. the fourth byte in the
current stack entry). Permissable values are of the form X'On' where
n is usually 1 or 2.

For Dimension Statements (TDIMSW = C'D') the type bits
(bits 5, 6, 7) of TML2 are set by extracting the first character of the
symbol in the stack and using this to pick up the corresponding
element in table CIMLT, which is then OR'd with TML2. The next section,
up to label TLOOK1l, does some checking on the operator that follows the
name. The operator in question is in the next stack entry (i.e. after
the one containing the name). If the code for a left bracket (X'03') is
detected, TSSVABL is set to C'Y' to indicate dimensioning, and control
is passed to TLOOKl. If a terminator (X'0l') is detected statement
processing ends. If an asterisk (X'4C') is found, the operand in that
stack entry is checked against the standard and optional lengths for
that data type, which were saved previously. On detection of a slash
TDATSW is set to C'D'. 1If either an '*' or a / is detected for a
dimension statement, a diagnostic is igsued. If none of these operators
is found, a diagnostic is issued and processing resumes if the operand
in that entry is a symbol (or a null operand). The current stack
pointer is saved, and the one pointing to the previous entry is loaded.
Control then passes to the symbol lookup routine, via the LOOKUP wmacro.
There are two returns, for new and for old symbols.

- 117 -

For new symbols, the following processing is performed:

—

Fix up Bl, by 'OR' ing TML2 into the low order 3 bits.

Set the type bit in B2 if this is a type statement.

3. Compile dimensions, if any, by going to TSUSDET. TIf there are
dimensions, a dimension list is set up and the dimensions are

set. The symbol table entry contains a link to this new list

as follows:

N

Bytes O 2 3 4 10 P(DIM) 12 14
LINK [Bl1| B2 NAME e
1 3 4 s
L.LENGTH DIM 1 DIM 2

SHIFT

Figure 4.3.1.

P(DIM) is a half-word offset from the symbol entry. Note
that it does not point to the start of the dimension list. This list
will be described more fully under routine TGENDIME. Control then
passes to label TESTINIT to check for initializationm.

For old symbols, the following checking and processing is

performed.
1. Check that the symbol is a variable name.
2. Check if dimension bit (bit 1 of Bl) is on. If not, processing

continues at label TNPREVDI. TIf it is om, check if variable
actually is dimensioned. This is the case if the dimension field
is non-zero. 1If the switch TSSVABL, has the value C'Y', an error
is given for an attempt to re-dimension. In addition to these
conditions if this is a type statement, the first word in the
dimension list must be changed to reflect the new element length.

3. Compile dimensions if any, and generate a dimension list (routines
TSUSDET, and TGENDIME). The second routine is not entered if this
variable is pseudo-equivalenced.

4. Check that the variable is not

(a) A DO parameter
(b) An ASSIGN'd variable } Bit 3, 4, 5 in B2
(c) Initialized

- 118 -

Check for the situation in which an equivalenced variable is being
typed. If the element length of the new data type is different
from its present length, an error condition exists. This is an
implementation restriction, e.g.

e.g. EQUIVALENCE (X(3), Y&))
COMPLEX X(5) results in error
INTEGER Y(10) valid

This condition can be avoided by having the type declarations
precede the EQUIVALENCE statement.

If this is a type statement, the type bits in B2 are reset using
TML2, and the type established bit in B2 is turned on.

If the pseudo equivalence condition (4.3.6.) exists and
TSSVABL = C'Y' then routine TEQVFIX is entered. This routine is
described in section 4.3.10.

TDATSW is checked for C'D', in which case, TCRESS1 is set to

C'Y' to indicate that a call to IDATA was made. CTYPESW is set
for the use of that routine, and control passes to it, to process
the initialization. On return CTYPESW is checked for an error
code in which case compilation of the current statement terminates
with a branch to TIZEND.

Both new and old variables then are at label TNSUBSEQ where

additional syntax checking is performed. Specifically the following
is checked for:

1.

(a)

(b)

A right bracket (dimensions).
If one is found, a slash (initialization) can still occur. If a
slash is found the same coding as in point No. 8 above is executed.

Check for a comma (more variables) or a terminator (end of
statement). For the latter control is passed to TIZEND.

At location TIZEND end of statement "fixing up'" is done i.e.

If initialization occurred (TCRESS1 = C'Y') then another call to
IDATA is made with a different switch setting for CTYPESW. This
is done so that IDATA can patch up the object code it has
generated. :

TCRESS1 is reset to C'N' and TML1 is moved into TML2 (in case
this is a type statement).

- 117 -

For new symbols, the following processing is performed:

1. Fix up Bl, by 'OR' ing TML2 into the low order 3 bits.

2. Set the type bit in B2 if this is a type statement.

3. Compile dimensions, if any, by going to TSUSDET. If there are
dimensions, a dimension list is set up and the dimensions are
set. The symbol table entry contains a link to this new list
as follows:

Bytes O 2 3 4 10 P(DIM) 12 14
LINK Bl B2 NAME 9
1 3 J o
4 LENGTH DIM 1 DIM 2
SHIFT

Figure 4.3.1.

P(DIM) is a half-word offset from the symbol entry. Note
that it does not point to the start of the dimension list. This list
will be described more fully under routine TGENDIME. Control then
passes to label TESTINIT to check for imitialization.

For old symbols, the following checking and processing is
performed.

1. Check that the symbol is a variable name.

2. Check if dimension bit (bit 1 of Bl) is on. If not, processing
continues at label TNPREVDI. If it is on, check if wvariable
actually is dimensioned. This is the case if the dimension field
is non-zero. If the switch TSSVABL, has the value C'Y', an error
is given for an attempt to re-dimension. 1In addition to these
conditions if this is a type statement, the first word in the
dimension list must be changed to reflect the new element length.

3. Compile dimensions if any, and generate a dimension list (routines
TSUSDET, and TGENDIME). The second routine is not entered if this
variable is pseudo-equivalenced.

4, Check that the variable is not

(a) A DO parameter
(b) An ASSIGN'd variable } Bit 3, 4, 5 in B2
(¢) Initialized

- 118 -

Check for the situation in which an equivalenced variable is being
typed. If the element length of the new data type is different
from its present length, an error condition exists. This is an
implementation restriction, e.g.

e.g. EQUIVALENCE (X(3), Y(4))
COMPLEX X(5) results in error
INTEGER Y(10) valid

This condition can be avoided by having the type declarations
precede the EQUIVALENCE statement.

If this is a type statement, the type bits in B2 are reset using
TML2, and the type established bit in B2 is turned on.

If the pseudo equivalence condition (4.3.6.) exists and
TSSVABL = C'Y' then routine TEQVFIX is entered. This routine is
described in section 4.3.10.

TDATSW is checked for C'D', in which case, TCRESS1l is set to

C'Y' to indicate that a call to IDATA was made. CTYPESW is set
for the use of that routine, and control passes to it, to process
the initialization. On return CTYPESW is checked for an error
code in which case compilation of the current statement terminates
with a branch to TIZEND.

Both new and old variables then are at label TNSUBSEQ where

additional syntax checking is performed. Specifically the following
is checked for:

1,

(a)

(b)

A right bracket (dimensions).
If one is found, a slash (initialization) can still occur. TIf a
slash is found the same coding as in point No. 8 above is executed.

Check for a comma (more variables) or a terminator (end of
statement). For the latter control is passed to TIZEND.

At location TIZEND end of statement "fixing up" is done i.e.

If initialization occurred (TCRESS1 = C'Y') then another call to
IDATA is made with a different switch setting for CTYPESW. This
is done so that IDATA can patch up the object code it has
generated.

TCRESS1 is reset to C'N' and TML1l is moved into TML2 (in case
this is a type statement).

- 119 -

Examples of type and dimension statements.

#1 REAL*8 A, B*4, C(5), D*4(2,2)/4*0.1/, E*8/10D+0/
LINK Bl B2 NAME P(D) P(C) P(E)
0 2 3 4 10 12 14 16
t Abbbbb 0 0 0 B1,B2=B'10100101',B'10000000"
ki Bbbbbb 0 0 0 B1,B2=B'10100100',B'10000000"
: Cbbbbb ; 0 0 B1,B2=B'11001101',B'11000000"
X'03' (40) (5)
0 4 8
1 Dbbbbb r 0 0 B1,B2=B'11010100',B'11000000"

X'02' (16) (2) (2)

=) garbage Ebbbbb 0 0 0 B1,B2=B'10100101',B'10000100"
#2 =DIMENSION A(5)
Abbbbb r 0 0 B1,B2=B'11001100" ,B'01000000"

JJ

X'02' (20) (5)

- 120 -

COMPLEX *16A

Abbbbb r 0 0| B1,B2=B'11001111',B'11000000"'
X'04°7 (80) (5) Underlined areas have been changed.

4.3.6. EQUIVALENCE

At this point it would be wise to clarify some of the terminology
used from here on in. "

1. New list: could have either of two meanings:

(a) a list of variables of the source statement, all of which
are in equivalence e.g. EQUIVALENCE (A(3), B, C(4)), (¥,Y,Z).

(b) the linked list of symbol table entries resulting from
the variables above (a).

Since these two meanings are almost synonymous no distinction
is made between them.

2. 0ld list: 1If, while processing a new list, a previously
equivalenced variable is encountered, the list to which that

variable belongs is called the old list.

Note: New list = new equivalence list

0l1d list = o0ld equivalence list
3. EQV is an abbreviation for equivalence.
4, VECT is the position of a subscripted element in the array. This

holds only when #8S > 1 and the variable has been dimensioned. Its
value is calculated by routine TVECTOR2 (see section 4.3.10.)

5. Dimensioned variable ~ is one that has been given dimensions in a
DIMENSION, TYPE or COMMON statement.

6. Description of Equivalence Double Word

- the EQV DWD (ZEQVENT) consists of two full words in the
symbol table, aligned on a full word boundary. It contains
information for use by the equivalence algorithm and
dimensioning routines.

- 121 -

#fEQV SS END OFlLIST

Byte 0,1 ZEQVLINK - a half word link to the next symbol entry in the
equivalence list (filled in when the next variable
is processed) or a link to the first symbol entry
in the list if the current variable is the last
element in the list.
Byte 2 ZEQVBYTl - a one byte checking integer (see section 2.4)
Byte 3 ZEQVBYT2
Bit 0,1 - not used
Bit 2-4 - the number of equivalence subscripts. This field is
filled in if the variable in question has not been dimensioned,
but appears with subscripts in this equivalence statement. The
variable is said to be pseudo-equivalenced (for lack of a
better name). This is done in routine TDIME2 (see section 4.3.10).
These bits have the same relative position in ZEQVBYT2 as
the # dimensions bits do in ZVBYT1 i.e. Bl of symbol entry.
Bit 5 ~ unused

Bit 6 ~- this bit is set if an offset was assigned to the variable
Bit 7 - end of equivalence list indicator = 0 not end
=1 end

Byte 4-7 ZEQVOFFS - a full word that contains an offset (in bytes)
of the variable from an arbitrary reference point (0).

The FORTRAN statement
EQUIVALENCE (A(3),B(5),C(8),%,Y(1,2,3))

has the following core layout and will be used as an example.
Calculations to determine the starting position of am array in the table
are done relative to '0' and the amount of shifting to the right or

left is called the offset.

-7 =6 =5 -4 -3 -2 ~1 0 +1

A(1) | A(2) | AQ3) | A(4)
B(1) | B(2) | B(3) | B(4) | B(5) | B(6)
C(1) Jc@ [c@3) C(7) | ¢(8) | C(9)
X(1)

<O
I
OO NN

where A, B, C, X and Y are superimposed on each other. This graphical
description is the basis for the offset algorithms.

- 122 -

Note that although X may or may not be an array it is
nonetheless treated as an array of dimension one. Note also that since
Y has not been dimensioned yet, (we assume it will be later on) and has
more than 1 subscript we have no way of knowing where it fits into the
above layout. Hence its offset is set to zero for the time being.

All non-dimensioned variables referenced with subscripts in
an EQUIVALENCE statement, have their subscripts, saved (by routine
TDIME2 (see section 4,3.10) in a list having a format identical to that
of the dimension list, except that the subscripts occupy the locations
where dimension would normally be, When dimensioning information is
eventually provided, this list of subscripts is used for checking. 1In
the case where the number of these subscripts is greater than 1, it is
used to calculate the offset. If the number of dimensions (from
dimensioning source) is equal to the number of equivalence subscrints,
then the dimensions replace the subscripts in this list, otherwise
(# dim > #S8) a new list is created. This processing is performed in
routine TEQVFIX (see section 4.3.10.)

The offset is used by phase 3 of the relocator to assign
core storage to these variables.

Algorithm for Calculating Offsets
a. For a new list whose elements were not previously equivalenced

1. Set up an equivalence double word (EQV DWD) for each
new member of the list. The first half-word contains
a link to the symbol table entry for the next member of
the list. The last member of the list links back to the
first member.

e.g. EQUIVALENCE (A,B) sets up the following svmbol table.

LINK B1B2 NAME P(D) P(C) P(E)
-~ A

L

<
LINK 4 OFFSET 8

EQV DWD for A

_(

EQV DWD for B

%

- 123 -

In ZEQVBYT1l, the third byte of the EOV DWD (referred to
symbolically as ZEQVENT) set up an integer for checking.
This value is contained in the full word CHECKINT in
COMMR. Its value at any one time is the number of
equivalence lists processed in the programme segment.

Calculate the offset and store it in 2nd word of
EQV DWD and link the previous EQV DWD (if there was one)
to the current symbol table entry.

(i) OFFSET TREFVALU - (SS-1)*ELTLEN for EQ...A(15),

TREFVALU for EQUIV... (A,

(ii) OFFSET .
or EQUIV...(A(3,2,6),...

if dimensions are known

(iii) OFFSET = TREFVALU-(VECT-1)*ELTLEN for REAL A(4,4).

EQUTVALENCE (A(2,3),...
where TREFVALU has the value zero (0) in this case.
ELTLEN is the number of bytes per element of this
variable.

When a new list first links into an old list:

1.

2.

Set a switch (TPVLINK to C'Y') to indicate that the
current list has linked into an old one.

Go through the old list resetting the checking integer
(ZEQVBYT1) to agree with that of the current (new)
list i.e. CHECKINT

REFERENCE VALUE (TREFVALU)

= OFFSET of the Element of the Member of o0ld list linked

into or

= OLD OFFSET (of the member of the old list) + (SS-1)*ELTLEN
if NI = 11,TSSVABL=C'Y' or

= OLD OFFSET + (SS-1)*ELTLEN if NI = lO,TSSVABL=C'Y' or

= OLD OFFSET if TSSVABL = C'N' and NI = 10 or = 11

Reset offsets of all members already processed in the
new list as follows:

NEW OFFSET = OLD OFFSET + TREFVALU

Attach old list into the end of the new list and refer
to the combined list as new.

C.

- 124 -

6. Offset of all further new members in list is as described
in (a) part 3 above.

When a new list links into an old list on subsequent occasion:

1. This situation is detected by testing TPVLINK which was
set in (b.1l.) to C'Y'.

2. Temporary Reference Value (TMPRFVAL)

= TREFVALU - OLD OFFSET - (i) 0O
(ii) (SS-1)*ELTLEN
(iii) (VECT~1)*ELTLEN

(i) if TSSVABL = C'N’
(ii) if TSSVABL C'Y' and ##ss = 1
(iii) if TSSVABL = C'Y' and #SS > 1 (and has been dimensioned)

]

where OLD OFFSET is that of member of old list referred
to

3. Go through old list

(i) Reset the checking integer in ZEQVBYT1 so that it
agrees with that of the current list i.e. CHECKINT
(ii) Reset all offsets in the o0ld list, as follows
NEW OFFSET = OLD OFFSET + TMPRFVAL

4. Attach the old list onto the end of the new (current)
list by performing the proper linking. Call the
resulting list new.

Purpose of the checking integer

1. This integer makes possible the detection of an attempt
to equivalence a variable to itself. Such an occasion
occurs if, when linking into an old list, a member of
that list has a checking integer equal to that of the
new list.

Examples

For the purpose of illustrating graphically a more simplified
typical entry of the symbol table is used.

A B 1 -4 replaces

Variable Link to Checking Offset
Name next integer
variable

- 125 -

this

VI

Also assume that the following statement has appeared.
IMPLICIT LOGICAL*1(A-Z,$)

This is for convenience in calculating offsets. Also, it is
easier to see what is going on.

e.g. {1 EOUIVALENCE (A(3), B(5), C(8), x, Y(1, 2, 3))

results in the following list.

A B 1 -2 0 - (3-1)*%1 = -2

B c 1 -4 0 - (5-1)*1 = -4

C X 1 -7

X Y 1 o

Y A 1 0% * = 0 if Y has not been dimensioned.
It is filled in when dimensioning

information is provided.

Figure 4.3.3.

- 126 -

EQUIVALENCE (D(19), E(11))

EQUIVALENCE (F(4), B(7), G, E(3), H(10))

F A 3 -1

A B 3 -2 TREFVALU = -4 + (7-1)*%1 = 2
-4 is the offset for B in
the old list.

B C 3 -4

C X 3 -7

X Y 3 0

Y G 3 0

G D 3 2
TMPRFVAL = 2 - (-10) - (3 - 1H)*1 =1

D E 3 -8

- 127 -

#2 DIMENSION A(2,3,4)
EQUIVALENCE (A(1,2,3),B)

A B 1 -14 | VECT = 1 + (1-1)1 + (2-1) 2+
(3-1)2%3 = 15
Offset = —(VECT-1)*ELTLEN

- 128 -

4.3.7. COMMON PROCESSOR

Compilation of Common Statements begins with the setting of
TDIMSW to C'C', followed by a call to the CSETSTAK routine (see section
3.10.). On return we check for a name in the operand field of the
first stack entry in which case we are working with blank common and
TBLNK is set to C'B' to indicate this. Otherwise we have a null operand
and the operator field of the next entry should contain a slash (/).
If this slash is followed by another slash in the succeeding entry, the
operand between them is the common block name. If there is a name,
i.e. not a null operand, TBLNK is set to C'L' for labelled common, but
if the operand is null TBLNK is set to C'B'.

Next, a lookup on the common block name is performed. Depending
on the type of common block name (blank or labelled) the CLBCOM or CLSYM
lookup routine is used. If the symbol is new, Bl is set at X'40', the
code for common block names. The type and usage established bits in B2
are also turned on. . If the symbol is old, Bl is checked for the above
code. If the test fails, an error is given and TBLNK is set to C'E’'.

Now the compilation of variables can begin.

The following are some of the conditions that are checked for
in old symbols after the lookup of the symbol.

1. Does Bl have the code for a variable?

2, Is this variable already is common? If so - error.

3. Are there dimensions (TSSVABL = C'Y')? If so, link to TSUSDET and
TGENDIME. This procedure is similar to that used for type and
dimension statements.

4. If it's already dimensioned, is TSSVABL = C'Y'? If so - error.

Are the DO, ASSIGN and INITIALIZED bits in B2 on? TIf so - error.

6. Is this variable equivalenced? Check that none of the variables
it is equivalenced with are in common.

w

Before continuing, a description of the linkage between
common block entries, variable entries and common entries is necessary.
A two word common entry is set up in the symbol table in much the same
fashion as the equivalence double word, for a similar purpose.

The following symbol tables entries would result from this
common statement.

- 129 -

COMMON/BLOCK/A, B(100)//D

§9 2 4 10 12 19 NOT USED
. BLOCKb . . /////
b
S B1=B'1010100'
b Abbbbb . B2=B'0000010"'
Y
. % € Common Entry for A
{
ALak e
’ Bbbbbb ° 1 B1=B'11001100"
B2=B'01000010"
o 2 3 4 8
‘ Common Entry
| \
X'02 (400) (100) 1 % for B

g S

T X'40'] X'Co'| //bbbb * ////

Dbbbbb P
£ <

Note that bytes 10,11 of the common block entry are a half
word link to the entry of the first variable in the common block.
Bytes 12 and 13 are a half word link to the entry for the last variable
in the common block. Note also, that the linking structure of variables
and their common entries' are the same as equivalence, except that the
link in the last common entry, points to the common block name rather
than to the start of the list.

A description of the common entry is in order here. Byte 0,1
link to next variable in common block or to the common block if this is
the last variable in the block. The latter is the case after compilation

- 130 -

of each variable has finished, no matter how many more variables there
are to be processed in that block.

2 Not used
3 Bit 0-6 Not used
7 = 1 End of list indicator
, = 0 normal i.e. not end of list
47 Not used by SPECS. RELOC sets up an offset
' here (see section 4.8)

The following is a brief description of how the links between

the variable entry, common entry and common block entry are created.

1.

2.

If the current variable is the first in the common block, set
TFICLST to C'F' and skip the next step.

If the current variable is not the first in the common block,
link to the last (i.e. previous) member (element) of the common
block using the link in bytes 12 and 13 of the common block entry.
From this variable entry, link to its common entry using ZVCOMM,
and turn off the end of list indicator in ZCOMBYT2 and keep the
pointer. '

Generate and zero a two word common entry and create a link to

it in ZVCOMM of the current variable entry.

Create a link from the common block entry to the current variable
in bytes 12, 13 of the common block entry.

If the current variable is the first in the common block also
create the same link in bytes 10, 11. i.e. the latter is a

link to the start of the linked variable list of commoned
elements, and the former is a link to the tail of this list.

Turn the common bit (bit 6) in B2 on and also the end of list
indicator in ZCOMBYT2.

- 131 -

4.3.8. IMPLICIT Processor

The Implicit processor has two phases, one, to update a
table (CIMLT) using the information from the source statement, and two,
to retype subprogramme arguments and not-explicitly-typed function names.
The format of CIMLT is as follows:

- 42 bytes, one for each character in the binary collating
sequence from A to Z inclusive, plus one more for the 'S$'
- the bit configuration of each byte is:

01 2 3 4 5 6 7 8

n o o o o o t t ¢t

n = 1 if this letter has been typed by IMPLICIT

0 otherwise

type and length bits as they would appear in Bl of
variable list. The algorithm used is as follows:

il

ttt

- look for a valid data-type keyword and set TMODLEN
accordingly i.e. B'10000ttt'

- check syntax for left bracket,

- check syntax for a single alphabetic character operand and
get a pointer to the corresponding entry in CIMLT,

- check the operator in the next stack entry for '-', ',',
'"y'. For '-' check the operand in that entry for a single
alphabetic character and get a pointer to its entry in
CIMLT. Propogate TMODLEN between these two bounds. For a
',' or ')' simply put TMODLEN into entry pointed to by
first pointer.

- the previous step is repeated if ',' appears after ranges
e.g. A-E, or after single character specifications. After
a right bracket a search for another data type keyword is
initiated, or for the end of the statement.

Note that since the position of the letter '$' in the
alphabetic sequence is not defined by IBM, specifications of the following
type are illegal and generate error messages.

_-S_F’ M_$ -

Actually, the '$' is treated separately because its position in the table
(after '2Z') does not agree with its binary representation.

Routine TPOSTIMP is entered after the end of statement has been
encountered. CSRSWTCH is tested to see whether we are in a function or

- 132 -

subroutine. Block Data or M/PROG settings of this switch cause
branching out of this routine. If we are in a subroutine, the first
entry in the VLIST, the subroutine name, which cannot be typed, is
skipped. Function names are retyped. Each succeeding entry, if any,
is processed as follows:

1. Get the first character of the name and pick up the corresponding
byte in CIMLT.

2. If bit O of the byte from CIMLT is on, then the low order three
bits of ZVBYT1 (Bl) are replaced by the low order three bits of
the CIMLT entry.

4.3.9. EXTERNAL Processor

This processor is very trivial in nature, because of the
simple syntax and the minimum of symbol table modification. As each
name is picked from the stack it is checked if it was previously used
for the following errors:

. Is it an array?

Commoned or Equivalenced?
Previously externalled?

Usage other than in type statement?

o=

If the name passes this test, bits in Bl and B2 are set to
indicate that it is externalled, used as a function or subroutine,
and it is assumed that it will be a subprogramme.

- 133 -

4.3.10. SERVICE ROUTINES

1. TVECTOR2 -~ This routine calculates the position in an array of an
element with 2 to 7 subscripts, provided that the number of dimensions
of the array match these. The value that is calculated is the

following:
n i-1
v=1+ I [(si—l) T D,]
1=1 j=0 J
where n = #ss = # dims 2<n<g7
s; = the subscripts
D, = the dimensions, D =1
i o

This value, decremented by one is usually used as input to the
ELTLON macro which produces a value in bytes rather than elements.

Inputs - R15 points to ZDIME, the dimension list
- Rl4 is the return address
- R4 fss

Outputs - RO, R3 the value 'v' as calculated. This routine is
used by the equivalence processor and by routine TEQVFIX.

2. TEQVFIX -~ This routine is called by the type, dimension and
common processors when a non-dimensioned equivalenced wvariable
is to be dimensioned. TFour different cases must be distinguished
before processing can begin. '

(i) #ss (from ZEOVBYT2) #DIMS(in R4) =1
(ii) #ss (from ZEQVBYT2) 1, #DIMS(R4) 1
(iii) #ss (ZEQVBYT2) = #DIMS(R4) 1
(iv) #DIMS(R4) X #ss (ZEQVBYT2) % 1

1

The last case being an error condition.

In case (i) the offset has already been calculated, so the
dimension has to be placed in the dimension list and the array length
in bytes, placed at the head of the dimension list along with the shift
byte. The # dims is also put into Bl.

Case (ii) is almost the same as case one, except that a new
dimension list must be created, because the old one is too small.

In Case (iii), the offset has not been calculated. 1In order
to use routine TVECTOR2 to accomplish (part of) this, the subscripts
which are in the dimension 1list, and the dimensions which are in TSS
must be interchanged. Also the # dims is put into Bl and the array

- 134 -

length is calculated, as in cases (i) and (ii). Now a call is made to
routine TVECTOR2. The offset is now created as described in the
equivalence processor (see section 4.3.6.) and stored in TEOQVOFFS.

Inputs: R14 - Return address
R9 - Pointer to symbol table entry
R4 - # dimensions

In addition the following registers are set up in the

routine
R15 - Pointer to dimension list
R8 - Pointer to equivalence entry.
Routine TGENDIME is utilized by case (iii) above.
3. TGENDIME‘— This routine is called from Type, Dimension and Common

processors as well as by TEQVFIX. Using the # of dims from
TSUSDET as input, it creates a dimension list, puts the dimensions
in it, calculates the array length and shift byte and puts the

dims in Bl.

Inputs: R9 -~ Symbol entry pointer
R4 - # dims

Outputs: R15 - Pointer to dimension list

4. TSUSDET - This routine compiles subscripts or dimensions in
Type, Dimension, Common and Equivalence statements. It produces
a list of the binary equivalents and loads a register with their
number. The list of full words where the SS or dims are placed
is labelled TSS. ’

0 4 8 12 16 20 24 28 32
TSS Ss1 Ss2 SS3 SS4 S85 SS6 Ss7 #SS

Checking is done here for variable dimensions, to see that
they are simple integer *4 variables and are explicit or implicit
parameters. In these cases the dimension is set to 1

Inputs: R1l4 - Return address
Rl =~ Stack pointer to first entry of ss or dim

Outputs: R4 - #ss or #DIMS
Rl =~ Stack pointer to last entry of ss or dim. i.e. to entry
containing ')' as operator
TSS - The list of subscripts or dimensions

- 135 -

TDIME2 - This routine 1s used only by the equivalence processor.
It is much the same as TGENDIME except that the #dims field in Bl
is left at zeros. They are, however, put into ZEOVBYT2. The
values put into the dimension list are subscripts. No array
length is calculated.

- 136 -

4.4 ARITH

4.4,1. General Description (See Figure 4.4.1.)

ARITH is the routine which compiles all assignment statements.
It also compiles CALL statements, parts of the logical IF, arithmetic
IF statements, and elements in I/0 and data lists (which are allowed to
be expressions in WATFOR). It recognizes arithmetic and logical
statement functions, and ¢ompiles the expression on the right-hand side
of the equal sign.

There are entry points in ARITH for logical IF, arithmetic IF,
and CALL statements as well as the main entry point used for assignment
statements and elements in I/0 and data lists. Each entry point does
some initialization and switch setting. :

All entry points converge to a left-to-right syntax-checking
scan which has as its input. the stack formed by SCAN. The purpose and

operation of this routine is described in section 4.4.3.

After completion of the syntax-checking scan, the code-
generating routine is entered unless a serious error has been detected.
The code-generating routine is a right-to-left scan of the stack
formed by SCAN as modified by the syntax-checking routine. 1Its purpose
and operation are described in section 4.4.4.

When the statement (or expression) has been compiled or when
a serious error has been detected, control is passed to an end-of-statement
routine. This routine determines which type of statement is being
compiled and goes to one of several termination routines. These do
special checking and/or cleanup depending on which type of statement is being
compiled (See section 4.4.17.)

General

- 137 -

Flow Diagram For ARITH

l Logical If Statement

T
‘ Arithmetic If Statement

Assignment Statement
and Element in TI/0

Statement

A

-3

Recognize asf and go to

b -
rw-' Left-to-right - . :
svntax scan P argument list processor
Call Statement y
Right-to-left scan.
Double jump table lookup
T ﬁf"‘deﬂ,fd
Output function call ::ﬂ’j’/,,ﬂ——' on o eratoaiv
{
/A |Exrrors
\ Y
Detach subscript list Prepare a single Remove a pair Output code for an
1
’from stack for later use argumegt or of brackets operator
subscript for
later from stack (arithmetic, logical
outputting relational).
\ 4
Frror condition-fix End—of-statemeﬁt - End“'of"I/O Element set
-— : . >

i up stack and return

processor

to calling programme l

7

r;nd—of—asf-go to

processor to output

| returning code half o

End~of-logical-if go to
processor for second

statement

codes and check for
special errors.

Return to I/0 Statement
Processor

End-of-arith.if go to
processor for second

half of statement

Assignment statement
return to calling

programme

- 138 -

4.4.2. Object Code Generated

Since the design of the object code to be generated for
aritlmetic dictates the design of the compiler routines, the object
code to be generated will be discussed before the routines in ARTITH.

Execution-Time Routines

In order to reduce the size of the object code, and to do
some execution-time error checking WATFOR uses out-of-line routines
located in STARTA to perform many functions of arithmetrin. Examples
are: subscript calculation (and range checking), fix, float,
exponentiation, complex multiply and divide. In some cases (e.g. complex
multiply) execution-~time is faster because of this practice, since the
routines in STARTA are addressable and it is not necessary to do a formal
call to get to them.

Repister Usage (See Figure 4.4.2.)

At execution-time, R5-R1l1l are used as base registers for the
programme and its data area, R12 and R13 are used to address STARTA and
the programme's save area, respectively.

Therefore R14 and R15 are available for linking between the
object code and the execution-time routines. (See section 3.15 etc.)
RO-R4 and FO-F6 are available to the object code and execution-time
routines for use as accumulators and work registers.

In order to be able to pass arguments to the execution-time
routines in registers (rather than by use of argument lists), it was
derided to use only one register as an accumulator for each mode of
arit'vi-*ic. The accumulators are: logical-Rl, integer-Rl, real-F0,
complex-(F0,F2) (See Figure 4.4.2). The object code generated for
any operator will leave the result in the accumulator associated with
the mode of the result. (e.g. The result of I+J would be in R1l, the
result of X+I would be in FO). R3 is the result register from the
subscripting routines (See 4.4.14). It is also used to contain the
offset address of equivalenced or commoned simple variables, since they
are not addressable using R5-R10. i

e.g. of arithmetic code:

Fortran Statement: Y = J * X + (I-1) where I is commoned.

- 139 -

Object Code Generated:

L R3,p(1) : Pointer to I
L R1, START (R3)

S R1,p(1)

L R3,p(J)

BAL R14,XFLOAT30

ME FO,p(X)

BAL R14,XLOAT14
AER FO,F4

STE FO,p(Y)

For a description of the object code issued for subprogramme calls,
see section 4.4.10.

Some Restrictions On The Use Of Registers:

1. F6 is used to convert single-precision numbers to double precision.
It must always be left with zeros in the low-order half.

2. F4 is used by the subscript routine (as well as R2 and R4). Its
contents may be destroyed during subscript calculations.

0OT*%" % UOL] o985 92§ AN UQirlaas ady 3 uu oo oe§ ¥
{~u3a jo
1Insoy SSQIpPPE J[nsax-jurt
. Mo_ XaTuwo) 10 [edy uanial 1958430 3STTSaE 10 *Bog STTE) uorioung
b
$591ppE *STQA
198330 ‘ATnby § -wo)
ISIT 2UTIN0Y
¥ yiom wrp juanisx jyiom|] 3Insax yaom gutidraosqgng
3Insai
andut andut {suoTieasdy TeOT307]
1Tnsax 3Insal .
: uinia ndauy
* andut andut 3 3 : Lwx
3Insal 1Tnsal .
¥ oﬁu:mcﬂ andut Jnduy 1ndut uinial !/ ‘%
j[nsal 3nsai uinjal - ‘4 ‘gTx xo7dwo)
o_ 3Insai JTnssx 4In15 y
¥ andut andut andut andut in3esd ["
JInsax FRICEES - ‘4 gy x3Tdwo)
3Insax
uinjol
* .wmmﬁml,;%usmﬁﬂ‘ 3 g Teougx
Indut uinialx andut .
¥ 11nsai : L
yaom JInsai /
yiom 1Tnsax) - ‘4 gy IE9Y
alzandut Surqnog
- r
MIom 3[nsax /
yaom 1Tnsaa v - ‘4 Hyx IEBIY
¥ | 0]3ndut andut uiniadl 1Insa1 sau1inoy XTJ
% 1Tnsal JTnsax uinlal andut andut SauT3nNoy 1BOTJ
Indut
¥ uinjal ndut Niom iom JInsax NIom{ oy x
B Y I0M 3Tnsaa /
aTnsail % ‘= ‘4 19893Ul
94 74 ¢d 0d STd 7Td 74 £d A1 IR 0d
ST1oW(ITdy opo) 109[qQ UT SI23ISTI3Yy 3FO 3s)) 7'h'4 2In3Ti

4.4.3.

10.

NOTE:

- 141 -

Syntax—Checking and Lookup Routine (See Figure 4.4.3.)
The functions of this routine are:

Check for as many errors as possible at this stage. (e.g. AS-2,
CM-4, CN-6, EQ-A, EO-8, HO-4, SF-1, SF-2, ST-5, ST-8, SV-1, SX-0,
SX-1, VA-A, VA-6, VA-8).

Set an error/continue switch to prevent further compilation of the
statement if a serious error occurs. (Note that the complete
statement is always scanned by this routine, even though the error
switch may be on).

Recognize arithmetic and logical statement functions (ASF's) and
transfer to an ASF entry list processor in LINKR. (See 4.2.12.)
[The processor in LINKR outputs code for the entry sequence and
returns to ARITH. After compiling the expression on the right-
hand side of the equals sign, ARITH goes to an ASF return processor
in LINKR which outputs the return code. See 4.2.13]

Look up names in the symbol table, and replace the names in the
stack by Bl and B2 from the symbol table, and the symbol table
pointer for the name.

Find argument lists and subscript lists. Replace the '(' by a
function bracket '['. Recognize the first usage of a function
and update the symbol table accordingly.

Turn on type and usage established bits in the symbol table for
variables and subprogramme names.

Use the constant collector to enter constants into the symbol
table, and link around them in the stack. Replace constants in
the stack by a byte similar to Bl for variables and a symbol
table pointer. : ,

Convert &nnnnn constants to symbol table pointers and go to a
routine in deck DODO to check for invalid transfers.

While scanning the stack, change the links so that each entry
points to the one preceding it. Thus at the end of the routine,
the pointer is at the end of the stack and the links point back
to the beginning.

Change the code bytes in the stack to new codes:

CODE ~ OPERAND

A3 a name with no argument list following it

A4 a statement number constant (&nnnnn)

A5 a hollerith constant

A8 a name with an argument list or the name of
an indirectly addressed variable (commoned,
equivalenced, called by name)

A9 a constant :

Three further codes are developed later in the compilation:

- 142 -

A2 a quantity in temporary storage
AA a quantity in RL
AR a quantity in FO

These codes are used extensively in the code-generating phase of ARITH
for table lookups on the types of operands. Some of them are also used
in the object code as information to the relocator. (See section 4.4.10.)

On completion of the syntax-checking phase each entry in the stack
has the format:

link back operator code Bl B2 p(symtab)!
2 1 1 1 1 2
(except for entries with null operands)

An example of the stack produced by this routine appears in
Figure 4.4.6.

4.4.4, Code~-Generating Phase

After completion of the syntax-checking routine, the code-
generating routine is entered if no serious error has been detected.

This is a right-to-left scan of the stack produced by the
syntax-checking routine. The order in which operations should be
executed is determined by a table lookup on the operators in pairs.
The entry in the table (AUPTABO table 4.4.4.) is found by

1. Calculating a function of the operator indicated by the stack
pointer.

2. Moving the pointer up one entry in the stack.

3. Calculating a function of the new operator.

The entry thus found in the table indicates the routine which should he
executed when these two operators occur in sequence in the stack
(See Figure 4.4.4.).

The different routines referred to in the table are:

- 143 -

ARIT: Output code for an arithmetic, logical or relational operator
or equals sign (AOUTARIT).

CALL: Output code for a function call or detach subscript list from
stack (AOUTCALL).

PREP: Prepare an argument or subscript in a list for outputting
later (APCALL).

REMOVE: Remove a pair of parentheses from the stack (AREMBR).

HOLD: Return to the table-lookup routine to examine the next pair of
operators (AHOLD).

Error conditions, (e.g. LG-2, PC-0, SX-6, EOQ-6, MD-2).

END: End of statement or expression (AEND).

®_

-

Plow Diagram of Syntax-Checking and Lbokup Phase of ARITH

Figure 4.4.3

{ 6) % Backwards Stack link.

Initialize Error Switches,

)

S

Va

/7
/

Inspect Next Operator In Stack

4

N

‘;o—_@J

d or (error message

unless previous operand
was ¢. If ¢ occurs in
[stack remove it.

o

jLJ If‘eq;

sw. is off,

Y |1

operand not

é_J Is

operand a

statement number

turn on. If ¢ , give constant?
on, give warn error No 2-qu
or error message Vo
message Frror | :
Look up :
J{ message

lﬁame

Inspect operand in stack

1o§ica1
constant

o

] \ ‘hollerith Letack - f

Set codes and

| store pointer in!

Error message if

| Megsage if not in

a CALL statement

not in an arglist.

{

|

’;

f
v

‘ Lookup name, set code Set codes in Set codes
to s. var. Store stack and store
pointer, byte 1, ~ Pointer
byte 2 in stack. constant in stack
Inspect type of b
variable 4 >

mon block
Array ggm:Z;eblizt Set stack pointer to
name name. Error beginning of constant.
mess; e‘ Collect constant. Set
— g codes and store pointer
in stack. Remove ¢¢
if it occurs.
followed .
by (? ™ I
y (\Y)Q e
1
Set code
change (to |

to next stack entry

Store link back to previous
stack entry, advance pointer

and usage

Turn on type

bits. Update
symtab entry

operator

No

F?

Initialize

for code-

generating
\ phase

Figure 4.4.3 (cont'd)

followed indirectl®

by (?

Yes

Error

Set codes to
function name

. W

If legal, change to an ASF."
Initializes codes and temporaries
check further error conditioms

4

ASF entry list procéssor in deck
LINKR. Generates entry sequence
and checks list ‘

Warning

“assigned
2

Yes

| Simple variable

BONNN

‘Subprogram name !

followed
by (?

ot
Set code

change (to |

subroutine
name?

statement?

Message

Error message
unless in arg
list or betweern)
two terminators

- 146 -

SUOTITPUOD 10118 - *23I9 (I-XS

$1031BI92G0 JO ITBd 3XdU 9yl dnjool - QIOHV 03 03 - ({T0H

auTInOl1 uoIssaidxa-Jo-pua 9yl - NIV 03 08 - (NI

j}oe1S 9yl UT S3IMNOBIQ 3JO ITed B 2A0WSI 03 JYGWAYV 03 03 - JAOWIY

3sTT B ur 3draosqns 10 juswndie ue diedaad 03 TIvDdV 031 08 - Jd¥d

3sTT 3driosqns ,yoeisp, 03 I0 ‘IIBD UOTIDUNF ® 103 3p0Od andano 031 TIVHIAOV ©3 08 - TIVD

ugdrs stenbs 10 103jeiado TBRUOIIETSI ¢7eo1807 OT3I2WYITAB UB 103 dpod 3Indino 03 LIYVINOV ©3 08 - 119V
Q'IOH a1od QAOEL aQ'I0H T10H Q'1I0H aio”H ¢-971 aT'I0H d'I0H d10H a'10H a-xs a-Xxs a'10d lem, (
Q'I0H 113V aT'I0H ad'I0H a10H a’10H aIoHn ¢-01 a'I0H a’10H 9-0d d'I0H HAOWHAY TIVO T'I0H a-xs ¥x
qrog | Iiyv} QIOH | QTIOH § QIOH | QTIOH | QTOH z-91! QIOH | @I0H | 9-03 | QIOH | HAOWHM | TIVD | QIOH | G-XS /
a1on ! I11d4v} aIoH } @IOH | QIOH | QIOH | QIOH | ¢-91| QI0H | QTOH 9-03 | QIOH | dAOWHEYM § TIVD | QIOH | (-XS ¥
(T0H | 1I¥V 119V | L1IdV aICH a’10n Q'I0H ¢-071 QIOH { @IOH { 9-0d a'IOH HAOWIH TIVD aQ'IoH a-xs -
aTod LI9V 113V LI¥V | (10H a'I0H aQ'IOH ¢-91 J'I0H a'I0H ©|0m\ aion HAOKWHYE TIVD J'10H a-xXs +

d10H 11av 11dv AR L ABR-A 1148V At =071 d10H §{ QI0H cldm- Q10H JAOWHE TIVOD a'I0H d-xsi{21=2-04"
d10H EAR:AY 1149V 114v 113V LIV L1dav ITdV a10d d'10H 9-0d ({T10H ; JAOKWHY TIVD G'I0H a-Xxs} "ION’
Q'TI0H M 1T¥V W 1148V 119V 11av 11dav L1138V 118V LIdv a'TOH 9-01 aT0H w HAOWHY TIVD {4 dIOH a-XS§{ "aNV’
d'I0H W LTV m KA\ L1¥V 114V II¥V | 119V II¥V ; 114V L1dv 9-0d a'10H | HAOWIY TIVO d'I0H d-Xs ‘430
0-0d ! LI4V M 118V KRR I1¥V ¢ LI¥V 114V LIdV m 1139V LIdv LIdV o-XS m HAOWHY TIVO d'T0H d-Xs =
d3¥d 118V W 11av L1dv L1d8Y LI9Vv LIdV L1V M L1434V AR:AY 9-04 didd W HAOWHE AA<UW o-XS a-xs ‘
aQTOH i II¥V : 118v LIdV LI4V 114V 11¥V 114V M LT14V LIdV 9-04 J-XS W TAOWTA : AA¢UW O|Umw a-xs)
dayd ;. LIdv M 119y ; 119V | IIdvV | 119V | II¥V | LI¥V W LI¥V | 119V { 9-0d) d¥dd m JAOWHY W AA<UW O|om. a-Xs 1

0-0d ; LI¥V M LI9V 118V M LIdV LIdV L14v m LIdV LIdV m LIdV HHM<W J-XS W HAOWHYE W Addow aNg ; a-XS . ¢ $|
a-xs a-Xs W a-xs a-Xs M a-Xs a-Xxs a-xs a-Xs Q|Nm.. a-Xs a-xs lemm Q|xmm a-Xs, a-Xs lemw o}

; ; : 1
(o % « - + 038 JION® [anv' 0" = S « 1 4k $ Jdo
W, | . 0d” | gdo ™
SITeq d03eded(Q I0J St 4nog 3O °2TqeL hrytw 2. T4

- 147 -

4.4.5, The Routine To Output Code For An Operator (See Figure 4.4.5.)

This routine sets up a table for the operands of the overator
concerned (see below). It also finds the proper entry in the
code table for the operator (see below) and calculates the
mode of the result. Temporary storage is obtained for the register to
contain the result, if this is necessary. Control is then passed to
the piece of dummy object code indicated by the entry in the code table.

The dummy object code links to an outputting routine which
uses the operand tables and dummy object code to produce instructions,
which it outputs.

After the object code for the operation has been produced,
the stack is updated to remove the entry containing the operator and
operand 2. The entry containing operand 1 is updated to indicate
that the new operand is a quantity in a register.

Control is then passed back to the operator-pair table lookup

routine.
A. Contents of The Operand Tables
1
ASAND1 » . .
ASAND?2 ! 2 3 ! b > 6
AIN 11 APOIN1 APOIN12
AIN |2 APQIN22 APOIN22
1. The numeric portion of the code of the operand (X'00', X'A2' ... X'AB')

taken from the stack entry in which the operand occurs.
2. The mode of the operand (X'00', ... X'07'), taken from byte Bl in

the stack entry, plus X'80' if the operand is a quantity in a register.

3. The index register to be used in the instructions pertaining to the
operand [R3 if the operand is subscripted or indirectly addressed,
- otherwise RO].
4, The offset address of the stack entry in which the operand occurs.
S.and 6. The primary and secondary pointers to be used to fill in the
base displacement address portion of the instructions referring to
the operand. The values of these will be as follows:

TYPE OF OPERAND APOIN1 and APOIN22 APOIN12 and APOIN22

temporary the pointer in the - APOIN1 + (the element
stack entry length of the operand)

simple variable or the pointer in the APOIN1 + 2

constant stack entry

indirectly addressed|X'C000' APOIN1 + (the element

or subscripted | length of the operand)

variable

quantity in a not used not used

register

Aritl:

Aritcont:

ArtnXXX:

Aritret:

- 148 -

Rout Ine To Output Code For An Operator

Aoutarit: Initialize switches

Store operator,
Yes jchange to minus
set relational

operator switch.

L

operator
elational

Get address of code table for operator used

Set up operand 2 table (ASAND2) using the stack entry and the routines at
AOPND2E.

Get the column of the code table, and columh of the mode table indicated
by operand 2.

L\

Set up operand 1 table (ASAND1) using the stack entry and routines at
AOPNDLE.

Get the row of the code table and the row of the mode table indicated
by operand 1.

Aouteq:

Y

‘ . No
Go to ASTORL or ASTOFO to output code

Lookup, fill and output

Lookup, fill in and output
code to load the quantitr
into the proper register
If an ASF, go to ASFRET

storing the register which will containj
the result (if necessary).

Aoutlog:

operator code table for logical

logical

Lookup proper entry in dummy

operators.

Branch to the piece of object code found//,/’/k(/

in the code table, which links to an
outputting routine.

M

Output-suBSCripting or indirect addressing code for operands if necessar§
Fill in primary and secondary pointers and/or index registers and/or op-—
codes into dummy object code. Output the dummy object code.

J‘ ‘ Aritl9:

code to store the quanti

:
H

e T s m e

|

Output additional code if operator Set stack to indicate a quantity in a regicer

and omit 2nd operand entry. Return to
operator-pair table-lookup.

A 4

was relational.

Figure 4.4.5

- 149 -

B. Contents of the Mode Table

The mode table (ARITAB6) is a table which gives the mode of
the result as a function of the modes of the two operands of a binary
operation. If the two modes are not allowed to occur together
(e.g. integer with logical), the result mode is given as X'FF'.

C. Contents of the Code Tables For the Operators

There is a code table in ARITH for each of the operators
+, %, /, ** [AADDTAB, AMPYTAB, ADIVTAB, AEXPTAB]. The tables have rows
and columns corresponding to the following types of operands:

- null ()

- quantity in R1

- integer *4 in storage
- integer *2 in storage
- real *4 in FO

- real *8 in FO

- real *4 in storage

- real *8 in storage

- complex *8 in FO0, F2
- complex *16 in FO, F2
- complex *8 in storage
- complex *16 in storage

The entry for two given types of operands is an address
indicating the piece of object code to be filled in and outputted when
the operands occur with the given operator.

The operator '-' uses the same table as '+'. The op code
is always filled into the object code for + and -, and extra instructions
are outputted to change the sign of the result when necessary for -.

For commutative operators, the same dummy object code is used
for AOB as for BOBA. A routine (ASWAP) which interchanges the operand
tables and looks up the address of the code for BOA is used for this
purpose.

- 150 -

4.4.6. The Pieces of Dummy Object Codé (ARICDnnn)

The pieces of dummy object code contain the 'skeleton' of the
object code to be generated for an arithmetic operation. Each piece of
code branches to a routine (ARTNnnn) using Rl to point to the 'skeleton'.

In sothe cases the same piece of dummy code is used for several
operations. For example (real *4 in storage) + (real *4 in storage)
uses the same dummy code as -, * and / with the same operands.

The code is:

LE FO, %%
AE FO,*—%
LCER FO,FO0 (conditional)

The addresses *-* are filled in by the outputting routine, and the
numeric part of the opcode AE is changed to suit the operator.

Some outputting routines are also used by several vpieces of
dummy code. For example the outputting routine used in the example
above is also used for (integer *4) # (integer *4) for which the skeleton
code is:

L R1,%-%
A R1,*-%
LCR R1,R1 (conditional)

This code is different from the code above, but has the same form.
(i.e. it requires *-* addresses to be filled in at 2 bytes and & bytes
from the beginning, and an op-code at 4 bytes from the beginning).

- 151 -

4.4.7. Qutputting Routines

The outputting routines have as their inputs the operand
tables (see section 4.4.5.A), and the dummy object code indicated by
Rl1. They construct and output all the object code associated with an
operation, inserting subscripting code and/or undefined-variable-
checking code where required.

In general, the outputting routine goes to routine ANDSS1
which outputs the associated subscripting, indirect addressing and/or
undefined-variable-checking code for operand 1. It then fills in the
op codes, indexes and pointers required for the portion of the object
code associated with operand 1, and outputs it. Routine ANDSS2 is
used to output subscripting code, etc. for operand 2. The remainder
of the dummy object code is then filled in and outputted. In the case
of an operand in a register, ANDSS1(2) is not used, and therefore
the object code for the whole operation can be output at once.

To generate the instructions for filling the object code,
the macros AFILL and AFILC are used.

AFTLC N 0o Nogs Mg Moo Nyos N,

generates instructions to:

1. Move the numeric part of the operator to Nopl(Rl) and NopZ(Rl)'

2. Move the numeric part of the index for the operand concerned to
NINl(Rl) and NINZ(Rl)' ‘

3. Move the two characters of the primary pointer for the operand to
Npl(Rl)

4, Move the two characters of the secondary pointer to N 2(Rl). Any of
the operands may be omitted. P

The macro AFILL is the same, but has only 3 operands.

The macros AOUT1l, etc. are used to generate the instructions
which cause sections of object code to be output. For example
AOUT1 N causes the N bytes of object code indicated by Rl to be output,
and R1 to be increased by N. It then falls through to the next
instruction. :

AOUT2 N causes the N bytes or N+2 bytes of object code at Rl
to be output depending upon whether the sign of the result should be
changed. Control is then passed to ARITRET.

Example of an outputting routine:

The routine which outputs the object code for (real *4) x
(real *4) and (integer *4) t (integer *4) given above is:

- 152 ~

ARTNOO8 BAL R14,ANDSS1 output gs code for opndl
AFILL 51,2 fill in index and pointer
AQUT1 4 output 4 bytes and advance R1
BAL R14,ANDSS2 output ss code for opnd2
AFILL 0,1,2 fill in opcode, index, pointer
AOUT2 4 .output 4 or 6 bytes and return
to ARITRET

The reason that the object code is output in two sections is
that the subscript or indirect addressing code leaves the offset address
of the variable in R3, and so the addresses of two subscripted variables
can not be available at the same time unless extra code is generated.
Also, the code generated for undefined variable checking must immediately
precede the instruction which uses the variable.

4.4.8. Routines to Qutput Subscript, Indirect Addressing and/or
Undefined Variable Checking Code for Operands in ARITH

Routines ANDSS]1 and ANDSS2 set R15 to indicate the operand
table for operand 1 or 2, then converge to a single routine.

If the operand concerned is a constant or temporary, no object
code need be generated. If it is a subscripted variable, control is
passed to AOUTSS to generate the subscript list (See 4.4.14). If it is
‘an indirectly addressed simple variable (commoned, equivalenced, called
by name) an instruction 'L R3,P(V)' is generated, where P(V) is the
symbol table pointer from the stack entry containing the variable.

Undefined Variable Checking:

1f switches AUNDEFSW and CUNDEFSW are both on, an instruction
to check for an undefined variable is generated. This instruction is:

BAL R14, XROUTxn

where x is A for subscripted variable

E for indirectly addréssed variables

S for simple variables
and n is 1, 2, 4, 8 or 16 depending on the mode of the variable. (See
section 3.19. for a description of the XROUTxn'S).

The switch CUNDEFSW is set by MAIN depending on whether
RUN = CHECK, NOCHECK or FREE.

The switch AUNDEFSW is on unless ANDSS1INC was called. ANDSSINC
turns off AUNDEFSW, then falls through to ANDSS1. This routine is used
for quantities on the left-hand side of the equals sign, where it is
necessary to generdte subscript code, etc. but no undefined variable checking.

- 153 -

4.4.9, Routine To Prepare An Argument Or Subscript In A List

This routine is called from the operator pair table lookup
when the operator sequences [, ; [) ; , , ; ,) occur.

A table lookup on the code of the operand in the stack is
done, and the following actions are taken:

1. Temporary, statement number constant, hollerith constant
(codes A2, A4, A5, A9) - no action.

2. (Code 00) - error ST-5

3. Simple name (code A3) - function or array - no action

- simple variable, if the variable is a
do~parameter or assigned variable, a bit
in Bl in the stack is set on.

4. Quantity in a register (codes AA,AB) - control is passed to routine
ASGETEMP which assigns temporary storage for the quantity, outputs
the instructions to store it, and updates the stack entry to
indicate a temporary (See 4.4.13.).

5. Subscripted variable or indirectly addressed variable (code A8) -
the subscripting code or indirect addressing code is generated
using AOQUTSS if subscripted (See 4.4.14.).

If the operand is an indirectly addressed simple variable
which is a do-parameter or assigned variable, the bit mentioned in (3)
is set.

Instructions:
I1C R2,*-%
ST R3, *-%
STC R2,*-%

are then generated for both subscripted and indirectly addressed variables.
These instructions will store the address of the variable in the argument
or subscript list after it is calculated. The addresses *-* are presently
unknown, but will be filled in when the list is output.

The offset address of the first *-* is stored in the stack,
destroying B2 and the symbol table pointer. Bl in the stack is changed
to look like a simple variable of the same mode.

- 154 -

4.4.10. Routine To OQutput A Function Call

The operator-pair table lookup branches to AOUTCALL for all
valid operator-pairs with '[' as the second operator. If the operand
before the '[' is an array name, control is passed to the routine
ADETSS (See 4.4.12.). Otherwise, the operand must be a subprogramme
name, and the code for a call is generated,

Code is generated to store Rl and FO in temporary storage if
in use. An instruction is generated if necessary to pad the object code

to a full word boundary.

The instructions:

L R3,P(F)
LA R14 , %%
BAL R1,START (R3)

are outputted. P(F) is the pointer to the function name and the return
address *-* is not yet known. The argument list is now processed as
follows:

1. If the code of the argument is A8, the base~displacement address
of the argument in the object code is filled in to the three #*-%*
addresses mentioned in 4.4.9.

2. If the code of the argument is A2, the temporary table (see 4.4.13.)
is updated to indicate that the storage is now free to be used
again.

3. For all arguments - 4 bytes are output, containing the code, Bl and
the pointer from the stack. (The top bit of Bl is turned off) .

(See Figure 4.4.7.).

The code is used as an instruction to the relocator. Bl
appears in the final argument list along with an address constructed
from the pointer. (See 4.8.)

An extra 'last argument' is now generated containing the code
X'B2'and the pointer to the function name. The base displacement address
of the next instruction in the object code is now filled into the
'LA R14,%-*' instruction described above.

If the subprogramme called was a function, the code is changed
to indicate a quantity in a register, and the register table (see 4.4.11.)
is updated. 1If the function was integer or logical, the instruction
'LR R1,R0' is generated to move the result from the return register RO
to the accumulator R1.

Control is then returned to the operator-pair table lookup.

- 155 -

4.4.11, Contents of the Register Table

The register table consists of two full words ASGPR1 and
ASFPRO. If bit 31 of ASGPR1 is 1, Rl is not currently in use. Otherwise
ASGPR1 contains the offset address of a stack entry in which the operand
is a quantity in R1. ASFPRO operates similarly for FO.

4.4.,12. Routine to 'Detach' Subscript List From Stack (ADETSS)

This routine counts the subscripts of an operand, and gives a
message if the number is not correct. It also stores the link which
points from the stack entry containing the array name, to the entry
containing the first subscript into byte B2 of the entry with the array
name (See Figure following) The link of this entry is then changed to
point to the entry following the subscript llst. Control is returned to
the table lookup.

e.g. X = A(1,J)

Stack at beginning of ADETSS - Stack after ADETSS

0 {4 {A3 |Bl, |B2, |P(X) 0 1 ;:A3 Tle ?Bzx "“P(Y) ;
18 1= ja8 jBL, [B2, |P(A) 28 1= 1A8 [Bl 8 EP(A)
8 L[§A3 B, |B2, [P(D) 8 i1 ; B1, 5321 ;P(I);
8 !, fAB Bl, |B2; |P(J) 8 i, : B1, iBZJ ;P(J)g
4 1) 100 4 1) |00 ; '
Lo | b oo 4ot | 0

- 156 -

4.4.13. Routine To Assign Temporary Storage (ASGETEMP)

This routine assigns temporary storage for an operand in a
register. Its inputs are a stack entry pointed to by R15, and the
temporary table.

The temporary table consists of a double word ASNXTEMP. The
first word of ASNXIMP cofitains a number of the form X'ooooDnnn' and
the second word has X'000bEmmm'. These two numbers represent the next
available integer (or logical) temporary and the next available floating-
point temporary.

The pointers 'Dnnn' and Emmm' are used in the address portion
of instructions ih the object code and are changed by the relocator into
base displacement addresses (See 4.8.3.).

At the beginning of each programme segment, CANXTMP in COMMR
. is initialized to the numbers corresponding to the first temporary
locations.

Upoh entering ARITH to compile an expression, ASNXTMP is
initialized to the numbers corresponding to the first temporary lotations.

When temporary storage is required, the number in the appropriate
half of ASNXTMP is aligned to the next boundary at which the value can be
stored. Code is then generated to store the register(s) using the two
bytes from the temporary table as address pointers in the instructions
generated. The two bytes are also put in the pointer portion of the
stack entry comncerned and the code in the stack is changed to X'A2' to
indicate a quantity in temporary storage. The register table is updated
to indicate that the register stored is no longer in use.

The number of bytes used by the quantity stored (1, 2, 4, 8, 16)
is added to6 the nufiber in the temporary table to give the next available
temporary location.

If the number in the temporary table is greater than the number
in thé corresponding position of CANXTMP, CANXTMP is updated to contain
the new value. Thus, at the end of compilation of a programme segment,
CANXTMP contains the pointers corresponding to the amount of temporary
storage needed. The relocator then uses CANXTMP to assign the temporary
storage area.

- 157 -

4.4.14, Routine To Qutput Subscript Coding (AQUTSS)

This routine begins by padding the object code to a full
word if necessary. An instruction BAL R14,P(array name)' is output.
A word for each subscript follows, containing: ‘

X'A9' N p(subscript)

where N is a code telling if the subscript is integer *4, integer *2,
real *4, real *8. Logical subscripts are not allowed. Complex
subscripts are also not legal in Fortran IV but are allowed in WATFOR.
A warning is given for complex subscripts, and the real portion is
used. Error messages are given for subscripts which are hollerith
constants, statement number constants or subprogramme names. A warning
is given for subscripts occurring on the right hand side of an ASF,

and for non-constant subscripts occurring in a data list. For subscripts
which are subscripted or indirectly addressed variables, the *-%
addresses in the IC, ST, STC instructions generated earlier (See
section 4.4.9.) are filled in with the base-displacement address of

the subscript in the list. For subscripts which are quantities in
temporary storage the temporary table is updated to make the storage
available to be used again.

A description of whatbhappens at execution time for subscripting
is given in section 3.14.

- 158 «

4.4,15. The End of Expression Routine (AEND)

The end of expression routine is called from the operator-nair
table lookup when the operator sequence < } occurs.

. If the statement being compiled is a logical IF, arithmetic IF,
DATA READ or WRITE statement, control is passed to ATIFLRET, AIFARET,
or ARTTIO. 1If ACALLSW is on (see 4.4.,17.A), control is passed to the
routine AOUTCALL to output a CALL to a subroutine with no arguments.
Otherwise a return to SCAN is executed.

4.4,16. Error End-of-Statement Routine

If a serious error occurs, the compilation of the statement is
terminated, and an error end-of-expression routine is executed. This
routine fixes up the stack go that the stack pointer is positioned at
an entry containing a-1 and linking to another entry containing a .

The code of the first entry is 00,

Control is then passed to the appropriate other routine,
depending on the statement type.

4.4,17. Entry Points and Termination Routines For Various
Types of Statements

There is one byte switch in COMMR called CADSSW. It contains:

" ——

EQ | CALL | DATA | ASF [LIF | AIF IN { OUT

where: o ‘ i
EQ 0 if an equals sign is expected
CALL = 1 if a call statement is being compiled
DATA = 1 if a data statement is being compiled
ASF = 1 if an ASF gtatement is being compiled
LIF = 1 if a logical if statement is being compiled
ATF = 1 if an arithmetic if statement is being compiled
IN 1 if a read or data statement is being compiled
ouUT 1 if a write or print statement is being compiled

These switches are set by the programme calling ARITH or in the
entry point used, and are tested by the end-of-expression routine to decide
which termination routine to use.

- 159 -

A. CALL Statement

kntry Point

The entry point ACALL is used to compile a CALL statement. A
special switch ACALLSW is set on if there are no arguments. This
switch is tested by the end~of-expression routine.

The EQ and CALL switches in CADSSW are set on, and the stack
pointer is advanced to remove the word CALL.

CSRT1 is used to find the first level-0 right bracket in the
stack. The stack is checked to make sure it was the last character in
the statement. ’

The name used in the CALL is looked up in the symbol table and
changed to a subroutine if it has not been used previously in another
context. Control is then passed to ARITHL to compile the statement.

Termination Routine:

ACALLSW is tested by the end-of-expression routine, but there
is no termination routine for CALL statements with an argument list.

B. Input, Output and Data Statements

Entry Point

, The routine INOUT delimits an expression to he compiled by
ARITH withf 's in the stack. The stack pointer is set at the first .
The DATA, IN and/or OUT portions of CADSSW are set, and a call is made
to the regular entry point (ARITH) of ARITH. (i.e. ARITH has no
special entry point for I/0 expressions)

Termination Routine:

The end-of-expression tests the IN and OUT portions of CADSSW
and if either is on, goes to the routine ARTTIO.

Routine ARTTIO checks for error conditions DA-3, D0O-9, AS-~5,
10-8, and I0-C.

For elements which are subscripted, AOUTSS is used to generate
subscripting code. For indirectly addressed variables, the instruction
'L R3, P(V)' is output. The presence of an array name with no subscripts
is detected, and a special value X'AC' is put in the code to indicate
this condition.

- 160 -

C. ASF's

Entry Point

There is no entry point in ARITH for ASF's, since thev are
identical in syntax to assignment statements. See section 4.4.3 for
detection of ASF's and handling of the entry list. '

Termination Routine:

The routine which outputs code for an equal sign detects the
presence of an ASF after it has output the object code which places the
result in the proper accumulator. Control is then passed to routine
ASFRET.

ASFRET tests for the error SF-3, and stores in the symbol table
the maximum teémporary values needed for the ASF. If the ASF is logical
or integer the instruction 'LR RO,R1' is output to move the result from
the accumulator to the function result register.

Control is passed to LASFR in deck LINKR to output return
code, and is then returned to SCAN.
D. Logical If Statements

Entry Point (IFLOG)

This entry point has its own save area, since it calls a
routine (which may be another entry point of ARITH) to compile the
second half of the statement.

The routine adjusts the stack to remove 'IF' and changes the
opening (to a-{. It then sets R13 at ARITH's save area, turns on the
EQ0 and LIF portions of CADSSW and goes to ARITHI.

NOTE: SCAN changes the first level zero ')' to a< before calling
IFLOG.

Termination Routine (AIFLRET):

ATFLRET gives error message IF-3 for result expressions which
are not logical, or for hollerith or statement number constants. For
expressions which are subscripted or indirectly addressed variables,
the appropriate code is generated. Imstructions are output to put the
logical result in Rl if necessary. -

The instructions: N R1,XTRUESP
BZ %

are output. These instructions branch around the second half of the
statement if the result is false. The EQ and LIF portions of CADSSW

- 161 -~

are turned off, the address of the second level-0 right bracket is put
in CSRT1 (See 4.4.17.A) and the processor is called to compile the
second half of the statement. After returning from this processor,
the *-* address above is filled in and control is returned to SCAN.

E. Arithmetic If Statements

Entry Point (GIFIF)

This routine adjusts the stack to remove 'IF' and changes the
opening '(' to a4 . It then sets on the EQ and AIF bits in CADSSW
and goes to ARITHL.

NOTE: SCAN changes the first level zero ')' to a < before calling GIFIF.
Termination Routine (AIFARET):

AIFARET gives error message IF-4 if the expression compiled
was logical or complex or was a hollerith or statement number constant.
If the expression was a subscripted or indirectly addressed variable,
the associated code is output. Code is generated to put the result in
the proper accumulator (if necessary) and to set the condition code
according to its value. Control is passed to GIF in deck DODO to
compile the branching portion of the statement, then returned to SCAN.

Figure 4.4.6. Example of Compilation of a Complete Statement

(1) Input Statement: B = A(X + I) + Y*SIN(Z) + 3.0
(A is an array)

(2) Stack Generated By Scan (3) Stack after Syntax Scan
_ <V ~Jlo1 |Bbb b (~ja3 |81, B2 P (B)
x) =f01 [Abbb = [A8 BlA BZAP(A)
< (101 IXbbb I 1A3 BlX BZXP(X)
¥]0L|Ibbb C + A3 [B1, B2 P(D)
Y1 ¢) { ¢
+]01}]Ybbb + | A3 BlY BZYP(Y)
% *
(9 0L [SIN s A8 [Bly . B2 P(SIN)
P ({01]Zbbb [N BlZ BZZP(Z)
)i ¢ Y19
+1 81 (3) + | A9 BlBJO_P(B'O)
.1 81 (0) >
Flo —NY e

LR

= O W~

=

13
14
15
16
17

- 162 -

(4) Routines Used in Code-Generating Scan

Operator Pair

+ -
) +3
[)
* [
* +2
+2 %
+2 41
) +2
+)
[+1
()
= [
= +2
= +3
= -
—4 =
— -

1 2 3
B = A(X+I) + Y*SIN(Z) + 3.0

Routine Indicated by Double Jump Table

return to table look up (HOLD)
HOLD

_prepare an argument or subscript for later output

output a function call or '"detach" subscript list (in
this case - output code to calculate sin(Z).)

HOLD

output code for * (Y*SIN(Z))

hold

hold

hold

output code for + (X+I)

prepare an argument or subscript for later output (in
this case output code to store X+I at a temporary)
output = function, or ''detach" subscript list. (In this
case "detach" subscripts for A from stack).

output code for + (A(X+I) + Y*#SIN(Z))

output code for + (above +3.0)

hold

output code for =

end-of-expression

Figure 4.4.7.

Object Code Generated For Statement in Figure 4.4.6.

CNOP 0,4
L R3,P (SIN)
LA R14,%+12
BAL R1,START(R3)
4 [A3 Bl P(2 Pointer to Z
6 ME, FO. P
STE FO,P (TEMP1)
L R3,P(I)
BAL R14 ,XFLOAT30
10 AE FO,P(X),
1T STE FO,P (TEMP2)
BAL R14,P (A)
{A9,code, P(TEMP2)] Pointer to Z
LE FO,START (R3)
13 AE FO,P(TEMP1)
14 AE FO,P(3.0)
16 STE FO,P(B)

- 163 -

4.5 DODO

4.5.1. Introduction

The routine DODO processes most of the FORTRAN 'control'
statements. This includes the simple, assigned and computed GO TO
statements and the ASSIGN statement. DODO also processes all DO loops
including the usual DO as well as implied DO's in Input/Output
statements or in DATA statements. While processing DO statements
DODO also checks for illegal transfers into the range of a DO-loop.
Finally,DODO processes the statement number portion of arithmetic IF
statements (ARITH compiles the arithmetic expression portion).

4.5.2. COMPILE GOTO

WHAT KIND|
OF GOTO

simple computed ssigned

check syntax output object code check syntax

oL K" -

lookup statement check syntax lookup variable
numbers

i Y .' ' ‘ JL

output object lookup statement numbers output object code
code and output object code -
v . -
lookup variable : lookup statement numbers

output object code

w/

van 3 -€ J

[return :g SCAﬁAW

Figure 4.5.1.

- 164 -

To determine the kind of GOTO:
it a number follows '"GOTO" is is simple GOTO,

if a variable follows "GOTO" it is assigned GOTO,
if a '(' follows "GOTQ" it is a computed GOTO.

1. SIMPLE GOTO

- Lookup statement number and check for illegal branches
into DO LOOPS by DCSTN2.
- Output the following object code:

L R3,ptr to statement numbers in symbol table
B START (R3)

2. COMPUTED GOTO

Output the following object code:

B XBOOT

NOP START (R3)

LTR R3,R3

BNP error GO-2

LA R4, maximum value of index
CR R3,R4

BH next FORTRAN statement
SLA R3,2 multiply R3 by 4
EX 0, LABEL(R3)

LABEL B START (R3)
L R3,ptr to first statement number
L R3,ptr to second statement number
etc.

The B XBOOT is necessary in case there is an error in the GOTO statement.
We do not want to execute the code (RUN=FREE) which may not have all
the necegsary information filled in.

If no errors are encountered the following changes are made
in the above code:

(i) - the B XBOOT is replaced by a L R3,ptr to index.
(ii) - the NOP START(R3) becomes a L or LH R3,START(R3) if the
index is commoned or equivalenced.
(iii) =~ the value of the index is now in R3 so that we can test if
it is positive. If it is negative the error GO0-2 is given
(index of compiled GOTO negative or undefined) - note that
the special number to mark undefined variables is negative.

(iv) - now put maximum value of index into Ré4.
(v) - compare R3 and R4
(vi) - if R3 is larger than R4, the index is greater than the

number of statement numbers present — therefore, we go to
next FORTRAN statement.

- 165 -

(vii) - multiply R3 by 4 and execute the proper L instruction (see
below), then branch to START(R3). '

During compilation, the statement number list is scanned in
a loop which looks up each statement number and checks for illegal transfer
into DO loops (DCSTN2). Then "L R3,ptr to statement number' gre
outputted (forming a list of them right after the first block of object
code). These loads are executed by the EX as noted above. When the
index is looked-up, its address is patched into the object code.

4.5.3, Assigned GOTO

The variable is looked-up and marked as an assigned variable.
An assigned variable has as its value the address of the statement number,
thus it cannot be a half word integer.

Output the following object code:

L R3,ptr to assigned variable
NOP START (R3)
LA R15,LABEL1

LABEL2 EX 0,0(R15)
CR R2,R3
BE START (R3)
LA R15,4 (R15)
B LABEL2

LABEL1 EQU *
L R2,ptr to 1lst statement number
L R2,ptr to 2nd statement number
L R2,ptr to last statement number
B IRGO3

The following modification and insertions are made to the
object code:

(i) - The NOP START(R3) is changed to L R3,START(R3) if the
assigned variable was commoned or equivalenced.
(ii) ~ R3 has address of statement number.
(iii) - We execute the loads in turn looking for an equal compare
of addresses (i.e. statement numbers).

During compilation each statement number is looked up and
checked for illegal transfers. The object code consisting of

- 166 -

"L R2,ptr to address of statement number' is generated. Thus we have
a series of L R2's coming after previous block of coding. Finally

a B IRGO3 is outputted. If no equal compare is found this instruction
is executed giving a GO-3 error. (IRGO3 is in STARTA)

4.5.4. ARITHMETIC TF STATEMENT

ARITH branches here after setting up the code to generate
the condition code. This routine lookups and checks the statement
numbers and outputs the following object code.

L R2,ptr to lst statement number
BL START (R2)
L R2,ptr 2nd statement number
BE START (R2)
L R2,ptr to 3rd statement number
B START(R2)

4.5.5. ASSIGN STATEMENT

The statement number and variable are looked-up in the symbol
table. The variable must be 'assigned' variable. The following object
code is outputted.

L R3,address of statement number
ST R3,variable

These instructions cause the address of the statement number
to be stored in the assigned variable.

4.

5.

- 167 -

6. DO STATEMENT

Implied DO?
No

Regular
DO

DO in I/0

Is it end of

Yes

7 No
lookup and check }(
statement number

-

-__‘—__a1lookup index

A\
lookup initial
parameter

)

lookup test value

Is this end Yes

End DO in I/O

L

Return

of statement

lookup increment

il

Patch up object code for half word
variables and commoned or equivalenced

variables.

Return

Figure 4.5.2.

%*Increment assumed 1

- 168 -

There are two aspects of a DO statement.

1. Compiling the statement itself
2. Setting up the DO Loop

A. DOSTACK

Before describing the DO statement the DO-STACK located in

COMMR, will be described. The stack is an area of fixed size. Each
entry is of the form

€é—— word > & word >
Statement number CDONO Address of
pseudo statement
number

half word pointers to
4 parameters in DO
statement

The halfword pointers are used for turning off the bit which

marks certain variables as DO parameters. This occurs when ending a
DO loop.

For implied DO loops the stack is another area of core and its entries
dare of the form

word

Address to branch back to

- e

half word pointers to 4
parameters in DO statement

The purpose of the DOSTACK is to have a record of all DO
loops, which still have to be ended. It is useful when checking
for illegal branching into DO loops.

- 169 -

The end of the DOSTACK is denoted by the statement number
X'7FFFFFFF'. Zero cannot be used, as 0 is a legal statement number.

B. COMPILING THE DO STATEMENT

The statement number is looked up and checked by DCSTN2 for
validity.

Each of the parameters is looked up in turn and the information
needed to generate object code (whether full or half word variable or
constant, commoned, equivalenced or not) is stored in DOPARM and
DOPARMH. Pointers are stored in DOSTACK. If the parameter was a
constant it is verified not to be zero.

Now the object code is generated, A few examples give an
idea of what must be generated in various cases. The pseudo statement

number is the branch back point from the end of the loop.

(i) Object code when all parameters are simple, full-word integer

variables:

L R2, increment

- LTR R2,R2

~ BNP IRDO7 error return
L R2, test value
LTR R2,R2
BNP IRDO7
L R2, initial
LTR R2,R2
BM IRDO7
ST R2, index
B around incrementing code
pseudo statement number here
L R2, index
A R2, increment
C R2, test value

ST R2, index
BHR R14 statement after end of DO LOOP

(ii) Object code when parameters all constant:

L R2, initial

ST R2, index

B around incrementing
pseudo statement number here
L R2, index

A R2, increment

C R2, test value

ST R2, index
BHR R14

- 170 -

(iii) If all parameters are commoned or equivalenced, the object

code is:
L R2,ptr to increment
L R2,START (R2)
LTR R2,R2
BNP IRDO7
L R2,ptr to test value
L R2,START (R2)
LTR R2,R2
BNP IRDO7
L R2,ptr to initial
L R2,START (R2)
LTR R2,R2
BM IRDO7
L R3,ptr to index
ST R2,START (R3)
B around incrementing

pseudo statement number
R2,ptr to index

R2, START (R2)

R3,ptr to increment
R3,START (R3)

R2,R3

R3,ptr to test value
ST R2,START (R3)

BHR R14

L“%L‘"L“t“t“

In each case the code generated above the pseudo statement
numbers tests if the parameters are positive and initialize the index
to its initial value. If not positive control transfers to IRD0O7 where
the error message DO-7 is issued.

The pseudo statement numbers are created so that it is
possible to branch back to the beginning of a DO loop. They are
described in more detail in the sections about DO loop construction.

C. DO-~loop Construction in Programmes

CDONO is a variable which is increased by 1 with each D0
statement. Thus it is a number which is uniquely identified with each
DO loop. The pseudo statement number is 100,000 plus the CDONO (larger
than one can use in a FORTRAN programme) .

Then end of DO loop coding branches to the pseudo number statement code
by means of a BAL, It is now possible to exit from the DO loop if
necessary.

- 171 -

For implied DO loops, the coding is simpler since it is
assumed that they will not have more than 4096 bytes of object code
(range of addressability). The address of the point which we branch
back to is stored in the I/0 DO-stack. At the end of the loop, the
displacement is calculated.

COMPILE Implied DO's = I/0 LOOPS

As mentioned above implied DO loops in I/0 statements are
compiled by DODO. The end of I/0 DO loop is there.

For DATA statements, all the parameters must be constants since DATA
statements are executed before anything else. This is checked in DODO.

D. ERROR CHECKING

The important items in the error checking routine are the
following:

1. Each statement number in the symbol table is assigned a level.
This level is the current CDONO when the statement number is
encountered in columns 7-72. It is changed to the level of the
statement when encountered in columns 1-5.

2. CDONO is a variable which increases by 1 with each DO statement
encountered. It does not indicate the level of nesting but is a
unique number corresponding to each DO loop.

3. DOSTACK. Its purpose is to keep a record of all DO loops which
are 'open' at any time - the number of entries in the DO-stack
is the depth of nested DO loops. (In the examples it is denoted
as 'statement number' - CDONO)

(i) TIllegal transfers into DO loops.

There are two cases to consider when checking for illegal
transfers into DO loops.

Case 1: A statement number has not appeared in columns 1-5
e.g. GOTO5. The course of the action is:

1. Look up the statement number and put CDONO in the symbol table
entry. If the statement number is found in symbol table, do
not alter its level.

2. Check for illegal transfer using routine DCSTN2.

3. Transfer to the statement number in columns 1-5 is legal if the
level in the symbol table is greater or equal to CDONO on the top
of the stack. This is de«ivermined in DCSTN1 and a DO-1 error is
issued for an invalid transfer.

4. For a DO statement, do not alter the level (See e.g. 6).

- 172 -

Case 2: The statement number has appeared in columns 1-5.
When the statement number appears in columns 7-72,
the transfer is legal if the level in the statement
number can be found in the DO-stack. If it cannot
be found that DO-loop must have ended so we must be
branching into the DO-loop. For DO statements give
a DO-2 error - the object of the DO-loop is bhefore
the DO statement.

Some examples follow:

the level
transfer.

2.

Level
1 GO TO 200 0
2 DO 100 I =1, N 0
3 200 CONTINUE i
4 100 CONTINUE 1
DO~stack in line 1 is 0 - O
DO-stack in line 2 is 100 - 1
0-20

In line 3 the symbol table entry for 200 had level 0. Since
on top of stack (1) is greater than 0, this is an illegal

Level
1 DO 100 I =1, N 0
2 200 CONTINUE 1
3 100 CONTINUE 1
4 GO TO 200 1

In line 1 the DO-stack is 100 - 1

0-20
In line 2, the level 1 is put in the symbol table
entry for 200
In line 3, the DO loop is ended leaving the DO-stack
as 0 - 0
In line 4 since 200 has 1 at its level and there is
no level 1 in the DO-stack we have an error (D0O-1)

- 173 -

3. Level
1 DO 100 I=1, N 0
2 GO TO 300 1
3 100 CONTINUE 1
4 DO 200 I =1, N C 2
5 300 CONTINUE 2
6 200 CONTINUE 2
In line 1 the DO-stack contains 100 - 1
‘ 0-0
In line 2 300 is assigned level 1 in the symbol table.
In line 3 the DO-stack is 0 - 0, a DO loop has ended.
In line 4 the DO-stack contains 200 - 2 (CDONO
increases by 1 with each DO statement)
In line 5 the level for 300 is 1 in the symbol table
but the level at the top of the DO-stack is 2, hence,
an error.
4.
Level
1 DO 100 I =1, N 0
2 300 CONTINUE 1
3 100 CONTINUE 1
4 DO 200 I =1, N 2
5 GO TO 300 2
6 200 CONTINUE 2

In line 2, 300 is assigned a level 1 in the symbol
table. After line 4 the DO-stack contains 200 - 2
and hence in line 5 since no level 1 occurred in
the DO-stack we have encountered an error.

5. The DO-stack makes it possible to check for badly nested DO loops

Level
1 DO 100 I =1, N 1
2 DO 200 J=1, N 2
3 100 CONTINUE 2
4 200 CONTINUE 2
DO-stack in line 1 100 - 1
0-0
DO-stack in line 2 200 - 2
100 - 1
0-20

In line 3 we attempt to end DO loop ending on statement
100. Since 100 is not on top of stack, the loops are
incorrectly nested.

- 174 -

6. An example showing why DO statements are special as far as the
illegal branching is concerned. '

Level
1 DO 100 I=1,N 1
2 GO TO 100 1
3 DO 100 J=1, N 2
4 100 CONTINUE 2
In line 1, DO-stack is 100 - 1. 100 gets dummy level X'FF'
0-0
In line 2, 100 gets level 1 in the symbol table
In line 3, stack 1is 100 - 2 and 100 still has level 1
100 - 1
0-0
in the symbol table
In line 4, the level in symbol table is 1, and level
on top of DO-stack is 2, thus an error is given.
4.5.7. End of DO loop coding

The code for the end of a DO loop is

L 3,ptr to pseudo statement number
BAL 14 ,START (R3)

This code branches back to the section of DO loop coding
which increments the index and tests for end of DO loop.

For implied DO loops, the end of DO loop coding is

BAL 1l4,address where pseudo statement number
is put out in ordinary DO loops.

4.5.8.

4.5.9.

- 175 -

COMMON ROUTINES

DCSTN1

DOENDCD

DCSTN2

DOUNP

SWITCHES

CIFGOTSW:

CDOBAD:

CDONO:

DOSWCH:

DATASTW:

CTYPESW:

DOSTA:
DOPARM:

DOPARMH:

GASSNSW:

DHIGHEST:

This routine checks for illegal branches into

DO loops, improperly nested DO loops, and end of
DO loops. When SCAN finds a statement number in
columns 1-5 it goes on to process the statement.
Then, it looks up the statement number and calls
DCSTN1.

The end of DO loop coding is "outputted'" here.

" The DO parameter bit in the 4 DO parameters is

turned off in the symbol table.

All statement numbers which can be transferred
to (i.e. the statement number list in a GOTO)
are looked up and checked for legality here.
This routine cancels DO parameters by turning
off their DO parameter bit, for DO statementg
and implied DO's.

When set to X'0Ol' the next statement must have

a statement number. Used in arithmetic IF and
GOTO statements.

X'01' means this statement can't be end of DO loop.
Has the number of DO statements processed so far.
Used to give each DO loop a characteristic number.
X'01' means that DCSTN was called from DODO. A
special return is required.

X'01l' means at least one of the parameters in
implied DO loop was a variable. This is illegal
for DATA statements.

Not X'00' means this is a DATA statement.

X'01' means this is a DO statement used in DCSINI.
Stores information on DO parameters. 2 bits are
used for each parameter. The lst bit indicates
whether constant or variable (0 or 1).

The 2nd bit indicates whether commoned or
equivalenced or neither (1 or 0).

Stores information about DO parameters. O means
not half word, 1 means half word variable.

X'01' means an ASSIGN statement is being processed.
Used in DCSTN2 so that the statement number will
not be treated as if it were GOTO n, i.e. will not
be checked for illegal transfer.

The CDONO on top of stack when entering DCSTN1

is stored here.

- 176 -~

A6 INOU'T

4.6.1. General Organization

The compiler module INOUT contains the coding to process all
1/0 statements allowed by version O of WATFOR and in addition compiles
DATA, STOP, PAUSE and CONTINUE statements. The statements processed
and their entry points in INOUT are given in the following table:

1 CONTINUE GCONT
2 STOP ISTOP
3 PAUSE IPAUS
BACKSPACE IBACK

4 {.ENDFILE IENDF
‘ REWIND IREWI
PUNCH IPUNC

5 PRINT TPRIN
WRITE IWRIT

READ IREAD

6 DATA IDATA

Each entry point is entered via the CENT macro which establishes
addressability for that point as well as for the save area.

The module is divided roughly into seven sections because of
the similarity in syntax of some of the statements. The sections which
should be considered together and which share coding are indicated in
the left column of the table above. The seventh section is a set of
utility routines used by these various processors and all are contained
in the one save area used by the module. Some examples of these utility
routines are a processor for units in 1/0 statements, an I/0 list
compiler, error message routines etc. These will be described individually
later on since their use is common to several of the statement processors.
For example the unit processor is called by BACKSPACE and READ, the T/0
list compiler is called by RFAD and DATA.

The module INOUT calls entry points in other compiler modules
to perform certain functions. Specifically, these are:

ARITH to compile expressions in I/0 lists

DODO to compile implied DO's in I/0 lists

DCSTN2 (entry point in deck DODO) to perform error
checking on statement numbers

FRTOSCAN to process hexadecimal constants in DATA
statements

- 177 -

Entry point IDATA of INOUT is called by the Type Statement
processor (deck SPECS) to handle initializing information in type

statements.

The principal switches used by INOUT are:

CADDSW
- CDOIO

CDOBAD

CIFGOTSW

CTYPESW

for communication with ARITH

to indicate to DODO that start or end-of-DO
coding is requested

to indicate a transfer statement is being
compiled (GOTO, STOP, etc.) and next statement
should be numbered

to indicate that the statement being compiled
may not be the object of a DO loop

for communication between the DATA and TYPE
processors - DATA and DODO.

The register conventions used in the module are roughly as

follows:

R1,R9
R11

R13
R14,R15

The rest of thé

1

used as stack pointers

used for programme addressability and for
calling some utility routines

covers save area and utility routines
used for calling some utility routines

description of INOUT is split into sections
which describe the logical organization just outlined and each section
is headed by the statement types considered.

- 178 -

4.6.2. CONTINUE

No object code is produced for this statement. A simple check
is performed to verify that the keyword CONTINUE is not followed by any

other characters.

Eliminate
keyword

"CONTINUE'
from stack

Was it followed Y\ Error b Ret Aﬁ"\\
by alphanumerics?) eturn /

N

Figure 4.6.1.

4.6.3. STOP

Since WATFOR was to be used principally for fast processing
we decided that the operator messages which result from the execution
of STOP statements might impair the performance of the compiler. Thus
it was decided that statements of the form STOPn would be screened at
compile time with a warning message to the programmer that the constant
n was being ignored. For the same reason the simple STOP statement would
produce no operator message whatsoever.

However since some installations might wish to allow these
messages we included an assembly parameter &STOPN which could modify
the compiler to allow these statements just as the other compilers would.
Thus the description of the STOP statement processor provides the logic
for both cases. ' :

1. &STOPN SETC 'NO'!

- 179 -

Switches CDOBAD, CIFGOTSW are set to indicate that this statement
can't be the object of a DO or a logical IF. The keyword STOP is
eliminated from the stack. A test is made for concatenated characters.

If concatenated characters are present, the stack is tested to verify

they are numeric. If so, a warning message PS-0 is given; if non-numeric,
an error is given and the routine returns. The stack is then checked

for l—. The object code output is B XSTOP,

2. &STOPN SETC 'YES'

The switches are set as above. The same checks are made. In
the event of a numeric character string the following object code is
output:

BAL R14,XSTOPN
DC AL4 (n)

For a statement of the form STOP the code B XSTOP is produced.

4.6.4 PAUSE

The same remarks concerning operator messages apply here with
the added comment that the PAUSE statement in the hands of mischievous
students could disrupt the operation of the computer installation.l

The CDOBAD switch is set to indicate this statement can't be
the object of a DO. After the keyword PAUSE is eliminated from the stack
a test is made for a following numeric string, hollerith constants, null
string or error conditionmns.

If &STOPN SETC 'NO', a warning PS-1 message is given and no code produced.
If &STOPN SETC 'YES' the following object code is output

BAL R14,XPAUSHOL for PAUSEn
DC X'00',AL3(n) (n = 0 for PAUSE)
or BAL R14,XPAUSHOL for PAUSE'hol'

DC AL1(r),AL1(2 - 1),AL2(hol*)

where r is a relocator code, % is the length of the hollerith constant
(possibly right padded with blanks by SCAN to a multiple of 4) and hol*
is a pointer to the symbol table entry for this hollerith.

1 For example, the following programme showed up several times on the
day the use of '+' as carriage control was described to one undergraduate

class:
DO 1 I=1,1000
1 PRINT 2
2 FORMAT ('+ THIS PROGRAMME CHEWS UP THE PRINTER RIBBON')

STOP
END

- 180 -

The latter code after relocation is

BAL R14,XPAUSHOL
DC AL1(% - 1),AL3(hol - START)

where hol is the location of the hollerith constant stored by SCAN.

4.6.5. BACKSPACE, ENDFILE, REWIND

The relocated object code for these statements is

BAL R14,XIOINIT
DC AL1(OP),AL3(unit - START)

where OP is a bitfield which describes the operation to be carried out
by run-time routine XIOINIT. This field is as follows:

lo T o] ¢ |] oper
where - C =1 if unit is COMMONed or EQUIVALENCEd
= 0 otherwise
- L =1 4if unit is 2 byte integer
= 0 if unit is 4 byte integer

- OPER is a 4 bit subfield which specifies operation by the
codes:

formatted input

formatted output

unformatted (binary) input

unformatted (binary) output

free input

free output

Backspace

Rewind

Endfile

QWL WNEHEO

=

Each entry point does initialization of OP in the skeleton
object code and to eliminate the keyword. All three converge to a
routine which does the following:

- eliminates the keyword from the stack
- calls the unit processing utility routine
- outputs the unrelocated code

BAL R14,XIOINIT
DC AL1(r),AL1(OP),AL2 (unit¥*)

- checks the stack for following the unit.

- 181 -

4.6.6. PUNCH, PRINT, WRITE, READ

These statements are considered together since there is
basically one routine which compiles all four with some initialization
being done at each entry point. The main compilation routine, in itself,
consists for the most part of calls to utility routines, and so is fairly
straightforward. One complication is the fact that the READ entry point
must distinguish the three variations allowed in WATFOR

e.g. READ]1,X
READ(5,1)X
READ,X

Similarly PRINT and PUNCH each must distinguish two cases.

The following description is a paraphrasing of the coding for
these routines in the order it appears in the module.

1. PUNCH: Initialize a switch for punch unit number (&PUNCH) and
join coding for PRINT.

2. PRINT: 1Initialize a switch for print unit number (&PRINT). If a
non-blank character follows the keyword (PRINT or PUNCH)
in the stack the operation is formatted.

Otherwise initializing is done for free output and a branch to the

free I/0 operation test routine is taken. (See below under READ). In
case of formatted output, the stack fixup routine is called with a return
to the main compile routine. (The stack fixup routine changes the stack
configuration so that a statement of the form PRINT1 or READ2 is
transformed to look as if statement WRITE(6,1) or READ(5,2) were actually
being compiled.)

3. WRITE: The keyword is eliminated from the stack and initialization

is done for output before branching to the main compile
) routine. ;

4, READ: Initialization for input is performed. 1If there is a
concatenated format, e.g. READ]1, the stack fixup routine
is called with a return to the main compile routine.
Otherwise the free operation test is performed: if the
delimiter following the keyword is a ',' we have a free
operation; 1if not we have an error in the case of PRINT
e.g. PRINT+ or we assume a READ operation of the form READ(
and go to the main compile routine. For free operations,
the unit involved is processed by a utility routine with the
return set to the code output point in the main routine. This
way all checking for format, END/ERR returns is bypassed
since we know none are present.

- 182 -

Punch Print Write Read
i & N4
Set unit Set unit Eliminate Set switches
Keyword for input
1
Go
. Y Concatenated
Y fixup
Format?
stack
Y B

)

Go test for

free output

Y

Go process

unit

Set switche4

for output

¥

Test for

Y

free operation

Go process

unit

o

1

unit

Go process

Output code
for binary

operation

Output code

for free

operation

returns

Set standard
END, ERR

L

Go test for and
process END,ERR
returns and
next delimiter

a[fot)

Process
format

Output code
for formatted

operation

Go test for

and process
END/ERR returns
and next
delimiter

Not

Go test if
END, ERR used
with WRITE

Y

Error E

OQutput code
for free

operation

e—-

]

Go compile
I/0 list

Figure 4.6.2

- 183 -

5. Main compile routine: At the entry to this routine the stack
register points to the first delimiter after the keyword.
If this is '(' we set a flag to assume the operation is
binary. The unit processing routine is called. This checks
for and processes a valid variable or constant unit. Next
the skeleton object code is set for the default END and
ERR returns (XIOEND,XIOERR) and the utility routine TOENDERR
is called to check for the presence in the stack of either
or both. (This routine advances the stack pointer beyond
the END/ERR parameters if they are present and returns to
the first instruction following the call if the delimiter
pointed to is ')' or the second if no END/ERR parameters
are found and the delimiter is a ','. Thus binary operations
of either type e.g. READ(1) or READ(1,END=2) are easily
identified.)

In case of a binary operation we branch to output object code.
Otherwise a test is made for the presence of a format specification.
This is processed by one of two routines which handle the cases of
variable format or statement number. The former looks up the format
symbol and checks it as being an array. If so the number of dimensions
is placed in the skeleton object code for run-~time use. The latter
routine tests or sets the format bit in the symbol table in case the
statement number is old or new respectively.

The format address is entered into the skeleton code and the
END/ERR utility routine is called. Following this, if the next delimiter
is not ')' an error return is taken. Otherwise we proceed to output
object code.

Before producing object code a test is performed to see if
END/ERR parameters were present in a WRITE statement. Object code
depending on the operation is output prior to calling the I/0 list
compiler. For formatted.I/O the code is:

CNOP 0,4

BAL R14,XTOINIT

DC AL1(r),X'OP',AL2 (unit¥*)

DC AL1(r) ,AL3(END return)

DC AL1(r),AL3(ERR return)

DC AL1(r) ,AL1 (Dims) ,AL2 (format¥)

Object code for binary operations is the same except the
last 4 bytes are not output.

- 184 -

For free I/0 the object code is

CNOP 0,4

BAL R14 ,XIOINIT

DC AL1(r),X'OP',AL2 (unit*)
DC AL4 (XIOEND-START)

DC AL4 (XIOERR-START)

'OP' is as described above under REWIND etc. (Section 4.6.5.)

'Dims' is - 0 for a format statement
- 4 times the number of subscripts for a variable format

array

Here 'r' stands for various relocator codes which tell
Relocator Phase II how to process this object code.

XIOINIT is the runtime object code - FIOCS/FORMCONV interface
routine. (See section 3.20.).

Following the production of this code the I/O list compiler
is called to compile any I/0 list elements. This is described below.

Several examples follow showing the relocated object code
for the specification part of an I/0 statement.

e.g. 1. READ(5,1) CNOP 0,4
BAL R14,XIOINIT
DC AL1(0),AL3(=5 - START)
DC AL4 (XIOEND - START)
DC AL4 (XIOERR - START)
DC AL1(0),AL3(#1 - START)
e.g. 2. READ(I,END=2) CNOP 0,4
BAL R14,XIOINIT
DC X'02' AL3(I - START)
DC AL4 (#2 - START)
DC AL4 (XIOERR - START)
e.g. 3. DIMENSION A(20)
COMMON I
READ(I,A,ERR=3) CNOP 0,4
BAL R14,XIOINIT
DC X'20",AL3(=A(I - START))
DC AL4 (XIOEND - START)
DC AL4 (#3 - START)
DC AL1(4),AL3(.A)

Stages in scanning the stack are given for several cases.
(Stack links not shown)

- 185 -

1. reanl,a ()=

Position of stack pointer

2. READ(I,END=2) (:)-ﬂ_:ﬂ 01 | READ
OL [

®
®

Position of stack pointer.

02 | READ [1bbb (:)—a (f 8]),
, | 01 | Abbb G- .| 81 @,
-) [o1 a
[
(1) - on entry to READ processor.
(2) ~ after calling stack fixup routine and
for call to unit processor.
(3) - at processing of format.
(4) - before and after calling END/ERR processor

and before calling list compiler.

01 Ibbb
, | o1] EnDb
= | 81 (2)2
) 0
-
(1) - on entry to READ.
(2) - after test for free input and at
call to unit processor.
(3) - at call to END/ERR processor.
(4) - at return from END/ERR processor and

3. READ(1,ERR=3,16,END=4)

at call to list compiler.

(@ —{ = o1 [reap
(:) ¢ [e1 | @),
(:> , 101 [ERRD

= |81 | (3),
@__* ,» |81] (16),
, | 0L | ENDb
= 81 | (4)2
) | ¢

1), (2), (3), same as previous example.
(4) position of pointer at error exit in END/ERR processor. (Error
since ERR=3 not followed at (4) by ")'.)

- 186 -

4.6.7. DATA

This section processes DATA statements and initialdization in
Type Statement e.g. INTEGER A(10)/10*2/,B,C/3/. The processing is almost
the same for both statements except that there is a jumping back and
forth between the DATA compiler and the type statement compiler. The
result of this action is that in essence the type statement shown above
is treated as if it were really the statements

INTEGER A(10), B,C,
DATA A/10%2/,C/3/

For an ordinary DATA statement, control remains in this routine
until the end of the statement is encountered.

Data initialization statements present somewhat of a problem
for a one-pass compiler since at the time the DATA statement is processed,
no storage locations have been assigned for the variables involved. Thus
the information for initializing must be kept around until address
agsignment is completed. In the case of WATFOR, the initializing can
take place only following the processing of Relocator Phase III since
array and common/equivalenced storage is assigned then. The way this is
accomplished in WATFOR is to compile object code for DATA statements
which is 'executed' following phase III of the Relocator but preceding
the actual entry of the mainline programme.

Since initialization for all DATA statements, whether in main
or subprogrammes must be done before execution is initiated, the object
code for all such statements is chained together with the final DATA
statement being linked to the main entry point. Thus there are really
three distinguishable times in WATFOR's processing of a job viz.
compile time, DATA-statement pre-execution time and execution time.

The object code that is produced for a DATA statement is very
similar to that for a READ statement since the syntax of the variable
lists in both statements is virtually the same. The difference is that
when the DATA object code is executed, values are moved into memory
locations, not from buffers, but from other memory locations where

constants were stored at compile time.

Thus much of the machinery that

exists for other purposes in the
e.g. XSIMPELT, XENDLIST, the I/0

compiler is useable in DATA processing,
list compiler, etc.

It is probably instructive at this time to establish some of
the terms which will be used in the following discussion by considering

the DATA statement:

I/0 LIST CONLIST 1I/0 LIST CONLIST
DATA A, B, ¢/ 1., 2., 3./, X, Y/ 2%4,.)
—— S - — v - Replication
SUBLIST 1 SUBLIST 2 Factor

- 187 -

This statement is composed of two DATA sublists, each of which
is further considered as two parts, the I/0 list and the constant list
(conlist). The object code produced for this statement reflects its
structure and looks as follows (after relocation).

B AROUND
BAL R14,XISNRTN
DC AL2 (ISN)
CNOP 0,4
BAL R14,XDATA
DC A(next DATA statement in chain-START)
DC ALl1(s) ,AL3(savearea-START)
coding for
sublist 1
' [coding for
{sublist 2
AROUND EQU *

|
|
The instruction B AROUND insures that, after normal programme
execution has been initiated, the DATA statement object code is never
performed again.

Here 's' is the sublist count (s = 2 for the example) and
'savearea' is the address of the savearea for the subprogramme this
DATA statement appeared in. This is used by the initializer XDATA to
set up registers R5 - R10 for addressing of the variables involved in
the initialization. ‘

(XDATA is the 'pre-execution' DATA statement interpreter).

The coding for sublists is composed of three parts as follows:

DC AL1(0),AL1(n),AL2(p)
{I/O list

coding

conlist
{coding

The I/0 list coding is the same as would be constructed for
the I/0 list part of READ, A, B, C.

The conlist coding consists of a sequence of 8 byte constant
descripters, one for each of the n constants in the conlist. The value
p is a pointer to the first descripter in the conlist and is calculated
as the displacement in bytes of the descripter from the location of the
DC.

- 188 =~

Fach conlist descripter is constructed as follows:

DC AL1(0),AL1(% - 1),AL2(replication factor)
DC AL1(t),AL3(constant-START)

Here % is the length in bytes of the constant, t is the type
of the constant (t = 8 for literal, 9 for hexadecimal, same as variable
types for logical, integer, real and complex i.e. low 3 bits of Bl).

The byte switch CTYPESW is used for communication between the
DATA and type statement processors and can have the following settings
and meanings:

-X'00' - DATA statement to be compiled (entry from
SCAN)
or - an error was encountered in the conlist

compilation. (This is used by the type
processor as a signal to abandon this
statement e.g. REAL A/B/,C,D)

-X'01" - last entry from type processor to close out

the object code. Set by type processor.
-X'02" - first call from type processor (set by type processor
-X'03"' - subsequent calls from type processor (set

to this by DATA processor)

A rohgh flowchart of the processor is given in Figure 4.6.3.
and a description of it follows.

On entry CADSSW is set for ARITH to indicate a DATA statement.
A test on CTYPESW is performed to see what sort of an entry this is:

(i) if last call from type we branch to close out
the object code.

(ii) if from type processor we fixup the stack to make
it look like an ordinary DATA statement e.g. for
INTEGER *2A*4/3/,--— the stack pointer (R1)
received from type points to the opening '/' of
the conlist and R9 points to the symtab entry for A.

Thus ¢ 01 Abbb is transformed to
81 | (4), Rl —3 [[02] abbb | bbbb]
R1L——>]/ |81} (3), /8L 3,
/I 1¢ /19

which is the stack configuration for the statement

DATA A/3/,...

- 189 -

If this is the first entry from type we set CTYPESW to X'03'
and join the coding for the entry from SCAN, (iii) below, which first
puts out the statement initialization coding; if a subsequent entry
from type we bypass this processing.

(iii) if entry from SCAN we

- initialize the sublist count

- output the (unfilled) branch around, the
ISN coding, and the CNOP 0,4

- link this data statement in to the last one
compiled using CENTRYPD (initialized by
the new job initializer)

- output the statement initialization coding.

Next, the I/0 list compiler is called to process the list of
variables; this returns when the opening '/' of the conlist is encountered
and the conlist is compiled.

This compilation proceeds as follows: Output the (unfilled)
4 byte conlist count and pointer. Then: test the stack delimiter for
oY, (" or '+' which signal a possible numeric constant
e.g. ... A/+L./...

- test for logical constant of form .TRUE. or
.FALSE. (stack code is X'41"')

- test for undelimited numeric constant
...A/3./... (stack code is X'81")

- test for hollerith constant (stack code
is X'21")

- test for logical constant of form T or F
(stack operand is Tbbb or Fbbb)

- test for hexadeeimal constant. (1lst letter
of stack operand is Z)

If these tests fail an error exit is taken.

Numeric constants are processed by the calling of a special
entry point CONTEST in the constant collector with an error return in
RO in case no valid constant is found e.g. ... A/+B/ ...

Hexadecimal constants are converted to internal form by calling
the runtime input field scanner FRIOSCAN with a pointer to the start of
the first hex digit in R1, the length -1 of the field to be converted in
R3 and a code in R7 to specify hex conversion. Return is to the first
statement following the call in case of an error in the hex constant or
to the second statement for no error. In the former case the conlist
error exit is taken; in the latter, the converted constant, right
justified in a 16 byte field is looked up in the constant list by
routine CONLOOK.

- 190 -
Figure 4.6.3.

DATA

A

Initialize

N

From SCAN Determine
entry End of Type Statement

iLFrom Type

Eliminate Fix stack \\\\“k\

Keyword
L

N
(1st time from type?)
Ly z
!
Initialize

Output Branch around
data code

Qutput ISN code

L

Link this data statement
into the chain

N

Output code for statement
initializing
Qutput conlist pointer. Fix oﬁject l\
Bump conlist count code to
~ l -y kick off
N
Stash
Go compile I/O list End of Y ey
statement sublist
l N ‘ count in
object

- o5 SE Ul N B8 UL S5 G5 OF O U BN BN o

= Test for valid constant and code
possible replication factor
N
JLY

Output conitem descripter

L

Compiling a
Type statement?

Return

Advance stack pointer Updaté
;L conlist count
N 7 Fnd of J zdebJeCt '
K\ Conlist

- 191 -

For each type of constant the con-item descripter is prepared
and output to the object code. If the closing '/' is not encountered
we loop to process another constant, bumping the conlist count for each one.

When the closing '/' is encountered, we fill in the conlist
count and pointer and test if we are really compiling for a type statement;
if so return to the type processor if not test for another DATA sublist
and if present repeat the above process.

If no more sublists are present or this is the last entry from
the type processor we finish off by filling in the displacement part of
the branch around and the sublist count which were output previously and
then return by the INOUT exit routine which resets CTYPESW to X'00'.

The conlist error exit performs the same processing as
described in the previous paragraph, but in addition modifies the
initialization coding instruction BAL R14,XDATA to BAL R14,XBOOT to kick
off when this faulty DATA statement is encountered at pre-execution time.

An example of the complete relocated coding generated for a
data statement follows:

DATA A,B,I,J/1.,2.,2%3/,X/"ABCb'/,L/T/

B AROUND
BAL R11,XISNRTN
DC AL2 (ISN)
CNOP 0,4
BAL R14 ,XDATA
DC A(next DATA statement in chain - START)
DC AL1(3) ,AL3(savearea)
D DC AL1(0) ,AL1(3) ,AL2 (M-D)
I/0-1ist coding for A,B,I,J
M DC AL1(0) ,AL1(3) ,AL2(1)
DC AL1(4),AL3(=1.-START)
DC AL1(0) ,AL1(3),AL2(1)
DC AL1(4) ,AL3(=2.-START) CONLIST 1
DC AL1(0) ,AL1(3),AL2(2)
DC AL1(2) ,AL3(=3 —-START)
E DC AL1(0),AL1 (1) ,AL2 (N-E)
I/0 list coding for X
N DC AL1(0),AL1(1),AL2(1)
DC AL1(8),AL3(='ABCb'—START)}CONLIST 2
F DC AL1(0),AL1(1),AL2(P-F)
I/0 list coding for L
p DC AL1(0),AL1(1),AL2(1)
DC ALl(O),AL3(XTRUE—START)} CONLIST 3
BALR R11,0
AROUND EQU *

- 192 -

4.6.8. INOUT Utility Routines

The various utility routines mentioned in the previous sections
all follow INOUT's savearea and hence are addressable by R13 from any
part of the module. As well as utility routines, the skeleton object
code and some constants and work areas used by INOUT are in this section.

There are six utility routines and their entry points and
functions are tabulated below in order of appearance in INOUT.

I/0-1list compiler +es. IOLISTNT
ILISTCMP
Unit Processor .s.. ICHKUNIT
END/ERR processor TOENDERR
Stack fixup routine e... IFIXSTK
Error message routines too numerous to list
Exit routine «... too numerous to list

With the exception of the I/0 list compiler, these routines
are relatively short and straightforward and hence an attempt will be
made to keep their descriptions brief.

1. 1/0-1ist Compiler

The I/0-list compiler is a utility routine called by the
READ, WRITE, PRINT, PUNCH and DATA processors as mentioned above. Its
purpose is to construct object code which provides linkage to the
execution time conversion and/or data movement routines (e.g. FORMCONV,
INBINI, PDATA). The object code must also provide to these routines
location and type information about the items being handled, be they
simple variable names, subscripted array elements or array names.
Since the arithmetic expression compiler ARITH has the ability to ;
handle these sorts of entities, it was decided that ARITH would actually
produce the object code to generate item addressing while the list
compiler would merely produce linkage code. Thus, it was easy to allow
expressions in I/0 statements since the I/0-list compiler is really
more of an 'isolater' in the sense that its processing is roughly as

follows:

- isolate in the stack an expression (which might be
simply a variable name) and call ARITH to process it

- produce linkage coding for the item

- repeat for each item in the I/0 list.

It is also an isolater, in the sense that the processing just
mentioned may have to be interrupted occasionally to handle implied
DO-loops and the I/0-list compiler isolates the implied loop information
in the stack for processing by the DO-compiler DODO.

- 193 -

DODO and the list compiler communicate by the byte switch
CDOIO which is set to indicate that start—- or end-of-DO coding is
required.

Communication is carried on between the list compiler and
ARITH by means of the byte switch CADSSW and the stack. For example,
READ sets CADSSW to X'82' and ARITH uses this to give an error message
should the programme try to 'read' an expression e.g. READ, X+3.*Y

In short ARITH uses CADSSW to test for errors which are unique
to input, output or DATA lists.

The stack is used to communicate type and mode information
about the item ARITH has just processed when control is restored to the
list compiler. There are basically four things ARITH reports back
about the item compiled:

(i) coding was produced to put the item's run-time

address in R3 e.g. for X(I).

(ii) the item was a simple expression; its location
is in the stack.

(iii) the item was an array name; the location of its
dot-routine is in the stack.

(iv) an error was detected; don't produce linkage
coding.

Information about the item's type and length is also obtainable
from the stack.

In cases (i), (ii), (iii) above the I/0-1list compiler
finishes processing the item by producing coding which has the ultimate
effect of providing, in register R3, the memory location of the item to
be processed by the appropriate run-time routine and in R14 a pointer to
its type and length information.

An example may clarify this. (Assume Y, Z are arrays.) For
WRITE(6,1)X,Y,(Z(I),I=L,M) the relocated object code produced consists
of the following eight parts:

CNOP 0,4

@ { BAL R14,XTOINIT
DC's etc. (see above, section 3.20.)
CNOP 0,4

@ { BAL R14,XSIMPELT
DC AL1 (t) ,AL3(X-START)

- 194 -
CNOP 0,4
{ BAL R14 ,XARRAY
DC AL1(t) ,AL3(.Y-START)

Start of DO coding

Coding to leave A(Z(I)-START)) in R3

BAL R14 ,XSUBSELT

{ CNOP 0,4
DC AL1(t),AL3(0)

End of DO coding

OO © OO 6

BAL R14 ,XENDLIST

The coding (1) is the statement initialization coding
(described above) which establishes linkage to the proper runtime
routines depending on the operation to be performed.

XSIMPELT puts the location information A(X-START) in R3 and
goes to some runtime routine established by coding (1).

XSUBSELT merely goes to the runtime routine since PR3 already
contains the location of Z(I).

XARRAY repetitively generates in R3 the address of successive
elements of Y and goes to the runtime routine for each one. Control
returns to the object code above when the array is exhausted.

XENDLIST closes off activity for the statement (e.g. writes
out a buffer).

In each case above 't' is coded information about the item
type and length and in (3) also provides the number of dimensions of array V.

(See section 4.5 for description of coding (4) and (7).

The processing performed by the list compiler is somewhat
different for I/0 and DATA lists since the syntax of these is slightly
different e.g. an unbracketted '/' is end-of list delimiter for DATA
whereas it may be part of an expression for PRINT

e.g. DATA X/2/
PRINT , X/2/B

Also, for items in DATA lists, the symtab initialization bit must be
turned on but ignored for I/0 statement. In order for the list compniler
to accomplish these operations the call to it is followed by a set of
five instructions which'are executed by the list compiler. Thus, the
call from the I/0 statements looks like

- 195 -
BAL R11,IOLISTNT
B 12(R8)
NOP 0
Nop 0
B IERXIT
B INOINIT

while the call from DATA is essentially

BAL R11, ILISTCMP
B IBADEND

BZ 12(R8)

CLI 2(R1),X"4D"
B ITUFF

NOP 0

The first instruction following the BAL is executed (via R11)
when a 'F" is encountered in the list (e.g. PRINT,X is valid but
DATAX is invalid).

The second and third instructions are used to test for the
significance of '/' as mentioned above.

The fourth is used in case syntax errors occur in the list.
For DATA statements, the object code must be closed off. (See under
DATA above.) No special processing is required for I/0 statements.

The fifth is used to test if the initialization bit should
be turned on or ignored.

The actual instructions shown above have been designed to
accomplish these ends.

The entry point TOLISTNT is provided in the list compiler to
test for I/0 statements with no list e.g. READ(5,1).

A description of the routine now follows (See chart 4.6.4.)

Register 1 is assumed to point to the entry in the stack where
the I/0 list starts. The DO-loop counter is initialized to zero.

List item processing commences by checking if the stack
delimiter pointed to is '('. If it is, we assume this signifies an
implied DO, the current stack position is saved and a search is made
in the stack for an '=' !
it is overlaid with) (pseudo-comma or implied-DO mark), the DO-loop
counter is incremented by 1, a warning message is issued if this implied
DO is in a DATA statement and DODO is called with CDONIO set to X'0l' to
indicate start-of-DO coding is to be compiled for the loop specification
(e.g. I=M,N) starting in the stack entry pointed to by Rl. (The entry
which now contains ()).

at the same bracket level. The ',' which precedes

- 196 -

DODO returns with Rl pointing to the ')' which terminates
the implied DO. The link part of the stack entry containing(j) is
modified to point to the entry following the ')', thus effectively
eliminating the 'I=M,N)' part of the stack. The stack pointer is
restored to the opening '(' (saved above) and this item processing is

repeated.

If the stack delimiter is nmot a '"(' it is overlaid with a
'—'. A search is then made in the stack for the delimiter, say 6,
which marks the end of this expression (i.e. ',' or '¥' for I/0,
"' or '/' for DATA).

b

This is saved and overlaid with a 'p'. The expression is

now isolated between '~ ' and 'p' and ARITH is called with RO
pointing to the stack entry containing !

Upon return, the stack contents at R9 are examined to determine
the results of ARITH's processing. If ARITH has indicated an error we
skip to check for more items. Otherwise, the stack contains enough
pointers etc. to perform the following:

- turn on the initialization bit of a symbol table
entry if this is a DATA statement. Also test if
COMMON is being initialized and this is not a
BLOCK DATA subprogramme.

- prepare and output one of the following sets of
object code: (Stack entry returned by ARITH shown

to right).
o f\ié{ﬁ?lﬁfﬁf) AL2 (item#) ROYLinks | A4 B, | B, | iten*
o WINPT B sl] Ll 0
géL iii(fﬁRii§(8d+t) AL2(array*) Link{ —4AC B1 B2 array*

Here 'r' represents relocator codes, 't' is type and length
code, 'd' is number of dimensions. ARITH also adjusts the 'link' to
point to the '(—' at the end of the expression. Thus the delimiter 0
is easily restored and tested. 1If this is a ',' we repeat the processing
for another list item. If it is ' ', end-of-DO coding for an earlier
processed implied DO must be output. The DO- loop counter is decremented
by 1 and DODO is called with CDOIO set to X'FF' to unstack the DO-loop.
We repeat delimiter testing on the next delimiter.

- 197 -

If the tested delimiter is 'p=' (or '/' in a DATA statement)
the list compiler outputs the list closing object code

BAL R14 ,XENDLIST

and returns. Otherwise an error exit is taken.

The example which follows shows the various stages in the
compilation of the I/0-list for PRINT 1,X, ((B(I), I=1,5), J=1,3).
Figure 4.6.5. shows the stack as it appears at the various stages and
the object code for the statement: (The stack code field is not shown
and links not explicitly shown are assumed to point to the next stack

entry.)

Description of example:

(1)
(11)
(iii)
(iv)
v)
(vi)
(vii)
(viii)
(ix)
(x)
(x1)

2. Unit Processor

List compiler called by PRINT with input pointer(:>.

Expression X ispolated and ARITH called with pointer(:>.

causes scan for '=
and calls DODO with pointer GD.

DODO produces code 3 and returns pointer C);

list compiler sets new link.

The '(' at causes scan for '=', list compiler
calls DODO with pointer .

DODO produces code 4 and returns pointer (), list
compiler sets new link.

Expression B(I). is isolated and ARITH called

with pointer .

ARITH produces code 5, sets new link and returns
pointer .

List compiler produces code 6, restores © at Q:).
The O signals call to DODO for coding 7.

Upon return from DODO, list compiler advances stack
pointer to and calls DODO for coding 8.

DODO returns and list compiler advances stack
pointer to q:) , produces code 9 and returns to

PRINT.

ARITH returns ; list compiler produces code 2
restores ','. The '(' at 85 T="

This routine is called by a BAL R11,ICHKUNIT to check for
presence in the stack of valid constant or variable units in all T/0
statements and to set up the unit address in the skeleton object code.
The first 8 bytes of object code is the same for all 1/0 statements, viz,

BAL R14,XTOINIT
DC AL1(¢),X'OP',AL2(unit*) (unrelocated)

TOLISTNT

Is there
an I/0
list
present?

@EY/
Is this a DATA
~ statement?

ILISTCMP

- 197.1 -

count to zero

Initialize DO-loop

A

Does stack
code indicate a
list item is

present?
lJY
Put before

list item

L

Search for
delimiter which
terminates item

L

Save it and
replace with 'p'

Call ARITH to
process the item

i\

Save stack
pointer

—

N Is next Search for
delimiter '(29 '=' at same
bracket
N level
Is it "= "7
Does ','
Y N precede it?
4 Y
ErFor Replace it
Exit with)
Increment
DO-counter

L

r———--

Warn
. Y
(:Es this a DATA statemﬁiz)__i about
implie

Does ARITH indicate
an error?

D

T

-0

N

?

Figure 4.6.4.

d
‘L:N DO
Call DODO for
start-of-DO
coding
Adjust stack link Restore
to point from stack
& past ' pointer
3

N N U BN oE G5 SN am W

- 197.2 -

Turn on initialization
bit in symtab

L

Is this a

Output list
element linkage
coding

BLOCK DATA

(E%variable in COMMON?

K

subprogramme?

o8

Advance stack

-—_ﬂ Restore delimiter [Advance stack

pointer .
pointer
end of list?
Output
end of list
code
N Call DODO Decrement
for DO-1loop
end-of-DO counter
) coding

Figure 4.6.4, (Continued)

(i)

(iv)

()=

(|),
» (D),
) | Xbbb
(

(| Bbbb
(| Ibbb
)

, | Ibbb
=1 (D,
» | 5y
)

, | Jbbb
= W),
» | 3,
)

=

C {6,
s | W)y,
—{ | Xbbb
(

(| Bbbb
({ Ibbb
)

, | Ibbb
= { (1)
» 15,
)

@ | Jbbdb
=1),
» | 3,
)

—

- 198 -

Figure 4.6.5.

(i)
CT),
@,
@ —_ — | Xbbb
-
(
, (| Bbbb
(Ibbb
)
. | Ibbb
= (1)2__1
] ®),
)
s Jbbb
-1,
1 3,
)
—
)
((6)2
@,
— | Xbbb
(
(Bbbb
(Ibbb
)
| 1bbb
-1 @,
1),
)
» N Jbbb
-l @,
1 @,
)
I.__

O\ AT

(vi)

SECH
T,
— Xbbb
(

(Bbbb
(Ibbb
)
B
- T,
v
)

'0) Jbbh
= (1)2
s (3)2

i)

BE
7 ®,
T,
—} Xbbb
(

(Bbbb
(] Ibbb
) »

- G Ibbl;
-1 @,
1,
)

L 1 Q] Jbbb
-1,
T,
)

[

()

Figure 4.6.5. (Continued)
(vii)
1®,
> 1 (),
~{ | Xbbb
(
— —i} Bbbb @
(] Ibbdb
)
- |] 1bbb
- | @,
1),
)
2t 1o | bbb
= (11;_ﬂ
. | 3,
)
'...—

Object Code

- 199 -
(viii) (ix) - (xii)
C [, C 1,
. D, ., [,
— | Xbbb — | Xbbb
((
—>F | | bbb /, (| Bbbb
(| oD (| Ibbb
) e
=] Ibbb @-——-)/ & | Ibbb
- |, / - [D,
., 1, [,
))
f"@ Ibbb @——)V ® | Ibbb
- | w, =1 @,
| 3, | 3,
))
SINOR &=
BAL R14,XTIOINIT
DC
DC
DC
DC

DC AL1(r),AL1(t),AL2(X*)

{ BAL R14,XSIMPELT

Start-of-DQ coding for J
Start-of-DO coding for I

Coding to put A(B(I)-START) in R3

{ BAL R14,XSUBSELT

DC AL1(r),AL1(t),AL2(0)
End-of-DO code for 1
End-of-DO code for J

BAL R14,XENDLIST

- 200 -

Upon entry, Rl points to the stack where a unit operand
should be. The stack code is checked for being variable or constant
operand and one of two routines is used. A variable unit is looked up
in the symbol table and checked as a non-ASSIGNed, non-DIMENSIONed
integer variable. Bits are set in OP for COMMONed/EQUIVALENCEd and
half-word variables and unit* is set in the skeleton code before
returning via R11l. A constant is looked up by a call to the integer
constant collector COLINTGR and is checked for exceeding &NOUTILS
before unit* is set and return taken via RI11.

3. END/ERR Processor

This routine checks for the presence of END= or ERR=
parameters in the stack, sets up the skeleton object code and
advances the stack pointer Rl if so.

The routine is called by a BAL R11,I0ENDERR and the routine
returns to 0(R11) if input delimiter is ')' or if valid END= or ERR=
parameters are followed by ')'; the return is to 4(R1l) if the input
delimiter was ',' and no END/ERR parameters are present or are followed

A}

by ','.
The processing is most simply described by Figure 4.6.6.

The routine DCSTN2 looks up and checks statement numbers as
executable and for illegal branching into DO-loops (See section 4.5)

4, Stack Fix-Up

The purpose of this routine is to modify the stack configuration
for a statement of the form RFADY to look as if statement READ(5,1)
were being compiled. Similarly for PRINT, PUNCH. An example of this
process was given in section 4.6 above.

5. Error Message Routine

There are 8 different ERROR macros to call the error message
editor. They are included here as callable routines to save storage by
reducing the number of uses of the ERROR macro throughout INOUT.

6. Exit Routine

This routine has 3 entry points and merely serves to reset
the switches CDOIO, CTYPESW before returning and to call the DO-compiler
to unstack any implied DO-loops uncompleted because of syntax errors
in 1/0 lists

TOENDERR

1

Return
to Input delimiter is
N
Error
Exit

N
(:é?es 'END ="' follow? i

:\LN
Does 'ERR =' follow? *j:)

With a
statement

Return

- 201 -

Y With a

statement
number?

N

Error
Exit

number?

Call_DCSTNZ to
check statement
number

Set return address
in object code

Return

N

Y

Does 'END ='
follow?
N

Figure 4.6.6.

y 1Call DCSTN2
to check
statement
number

U

Set return
address in
object code

Return
0(R11)

N
é“—<:;oes '"ERR =' follow?ﬁi:>

N

With a statement
number?

D

I
Call DCSTN2 to

check statement
number

Set return address

in object code

- 202 -

e.g. READ(5,1) ((X(I,J) + I = 1,5), J=1,5)

Start-of-DO coding will have been output before the invalid
'+' which terminates compilation is discovered. The DO-loop must be
unstacked so that spurious DO-4 (redefinition of DO-par within range)
errors will not be issued in subsequent statements.

- 203 -

4.7 FORMAT
4.7.1. Introduction

The routine FORMAT processes both compile and execution time
FORMAT lists. This routine is the only statement processor that uses
the actual statement as input rather than having SCAN transform the
statement. The input list of specifications is transformed into a list
of codes which will be interpreted by the routine FORMCONV at execution
time.

4.7.2. Compile-Time Entry (FORMAT)

At compile time the input list is found in the STACK by SCAN
and the output list is placed in-line in the OBJECT code area.

If the OBJECT area is not full, enough space is left to output
a branch around the list of transformed specifications. SCAN has
previously set up a pointer to the statement number (CSTNOLK) in the
symbol table and this is now updated to point to the list of specifications.
Control now passes to the routine (FORSCAN) to transform the list. Two
returns are possible from this routine. The first indicates that an
error was encountered in the FORMAT statement. An error code is inserted
as the first entry of the transformed list. The branch around instruction
is inserted and control returns to SCAN. The second return indicates
that no errors were encountered. The branch around instruction is
inserted and control returns to SCAN.

- 204 -
4.7.3. Fxeccut ion-Time Fntry (FORMATEX)
The input list is, of course, stored in an array by the user,

The stack is used as the location to store the output list. The address
of the first element of the array is obtained using the routine

X1STELT (section 3,15) which also indicates the length of the array.
After checking that the first non-blank character is a left bracket,

control transfers to FORSCAN.

On an error free return the address of the new list is placed
in register 4 and control returns. TIf an error occurred in the list
(the error message has already been issued) control transfers to the
"trace back" (section 3.13) routine.

4.7 .4, Specification Converter (FORSCAN)

For each specification in the input list a one word coded
entry is generated. The codes have the following forms:

(i) k | wi al]

k group count 3F16.2
(set 1 for case F16.2)
w field width 3F16.2
d number of digits after decimal 3F16.2
c code for specification 3F16.2
(ii)' uj £ nil C
2 field count 32X
c code 32X
u unused
(iii) [ptr fulnil | <}

1f c indicates a right bracket a pointer (ptr) is set un to
the corresponding left bracket according to the rules given in the

FORTRAN manual.

e.g. (())
T
S]

- 205 -

In the case of Hollerith constants the appropriate word is output
followed by the Hollerith constant.

The codes are now listed

X'04"' Start of Format list
X'08' First level '('
X'oc! Invalid Format
x'10' P scaling

X'14! F Format

X'18"' E Format

X'ic! D Format

X'20!' I Format

X'24! T Format

X'28! A Format

x'2c’ L Format

X'30' X Format

X'34" H Format or ' '
X138 First level ')'
X'3c! / format

X'40' G Format

X'44! End of list

X'48! Z format

X'4¢C' Second level ')'
X's50! Second level '('

On entry to FORSCAN it is assumed that Register 4 contains the address

of the input list and Register 6 the address of the output area. These
have been set up by FORMAT or FORMATEX. The initial entry is placed in
the output list and now we can proceed to scan the list of svecifications.

A TRT instruction is used in conjunction with a table (FTPRAN).
This table has an entry of zero for 'blank', one for invalid characters,
(both bad punches, e.g. (#) and characters not allowed as specifications
in a format list (e.g. B)) and entries 2 - 27 for the various valid
characters. A set of routines is used to process each type of character.
Before describing these, the routines FGETSW and FCOLL, used for finding
and collecting constants, and the switch FSW will be described.

FCOLL (BAL R15, FCOLL)

This routine is given a pointer to a digit in register 1 and
proceeds to scan the list until a non-digit is encountered. The
collected number is converted, stored in register zero, and also, in the
output list as a possible field count. Control returns after checking
that the constant is not greater than 255. If it is greater an error
message is issued.

- 206 -

FOETWD (BAL R14, FGETWD)

This routine determines if a constant is of the form w or w.d.
(122 or F16.8) and returns to 0(R14) or 4(R14) respectively. It uses
the routine FCOLL to collect the required constant.

FSW

This is a one byte switch with settings used to determine various

error conditions

x'o1' We have already collected a constant
e.g. 5 PE16.8

X'02' We have a comma

X'04' We have completed collecting a specification
and are now ready to start on a new
specification

This switch is tested and set by the various character routines.

Processing of Characters

The following routines process the various types of specifications.

Each one inserts the appropriate code described above in the entry in the
object code.

FNUMA (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

After calling FCOLL the constant is stored in the list as a

field count.
FALFA (A, D, E, F, G, I, L, T, Z)

After possibly having changed a field count, stored by FNUMA
to a group count, the code is inserted in the output area. FGETWD is
then called and upon return the constant and specification type are
checked to see if a valid specification has been obtained.

FMINUS (=)

Since a minus must be followed by a constant FCOLL is called.
It is then determined if the next character is P. (If not an error
message is issued). Control now transfers to FP1.

FCOMMA (,)

Check if last character was a comma and if so issue an error.

- 207 -

FPALIGN (P)

Did a number precede and if not issue an error.
FERROR (invalid character)

Issue an error message.

FLT1 (left bracket)

The bracket count (FBCNT) was initialized upon entry to
FORSCAN to four. FLT]l increases this count by four and depending on
the count being 8 or 12 saves the current address of the output list
in FSAVEl or FSAVE2 respectively.

FRT1 (right bracket)

The bracket count is decreased by four. If it is zero the
end of the list has been encountered and control transfers to FDONE.
If non-zero the appropriate pointer is inserted from FSAVEl or FSAVE2.
FHOLL1A (H type holleriths)

FQUOTEA (Ouote type Holleriths)

The Hollerith constant is placed in the output area. Register

zero contains the length of the constant. The length is inserted in

the list at FQDONE and control returns to process the next specification.

Errors (FERROUT) BALR 14,9
DC (error code)

Register 9 contains the address of the error processor. The
error message is issued in the standard manner and upon return a check
is made to determine if it is a compile or execution time error. TIf
execution, FORSCAN returns (error return 0(R14) and if compile time the
object code register is re-aligned to a full word boundary and control
then returns to FORMAT via the error return.

- 208 -

4.8 Relocator
4.8.1. Introduction

The relocator can be thought of as a loader or "tidy-up"
phase for a programme segment and for the entire programme. It is
invoked each time an END card is encountered by SCAN and also for a
final time when the S$ENTRY card (or equivalent) is read.

The relocator deck of WATFOR is partitioned into three
phases which perform the following functions. Phase one scans the
various symbol tables generated by the statement processors and assigns
storage for the entries in the symbol table. Phase two passes over
the object code generated by the statement processors and changes
symbol table pointers into the addresses of the storage assigned by
phase one. Phases one and two are invoked by the compiler at the end
of every programme segment. Phase three processes the relocator phase
three variable list generated by phase one. This is a list of the
uncompleted tasks of phase one. Tt consists of the assignment of
storage for common, dimensioned and equivalenced variables and the
linking of external address constants with their entry points. In this
last respect, its operation corresponds to that of the LINKAGE EDITOR.

4.8.2. Phase One

Phase one of the relocator assigns storage positions in the
data area of the subprogramme. The data area has two sections; first,
storage for a save area and temporaries which are addressed by
register R13 at execution time. The rest of the storage area (addressed
by registers R5 through R10) is devoted to:

1. Simple variables not appearing in common oY equivalence statements.
Address constants pointing to simple variables appearing in common
and equivalence statements.

Dimensioning routines for dimensioned variables.

Address constants of subroutines/functions used.

Save areas and temporary areas for arithmetic statement functions.
Integer and floating-point constants. '

Address of the Hollerith constants used in the programme.

Addresses of statements branched to in the programme (including
pseudo branch points generated by DO statements).

[\]

W~ W

The Flow Of Logic Of Phase One Is As Follows:

1. Phase one assigns storage for the main save area and the main
temporary areas, and notes these addresses for later use by phase two.

- 209 -

If we are compiling a function subprogramme, the function list is
concatenated onto the front of the variable list. Remember that
the function list is a list of the entry point names of the
function. Corresponding function variable list entries already
exist in the variable list. Hence there are now two entries in
the variable list for each function entry. Note also, the first
entry in the variable list is that of the main function entry
point. This is required in the processing of the relocator phase
three variable list and will be explained in more detail at that
time.

The variable list is scanned and the following processing is done
on various elements.

(a) Dimensioned Variables.
A dimensioning routine is generated in the data area

from information supplied by the dimension list of the entry.
The base/displacement (B/D) address of this routine is stored
over the variable name and the element placed in the relocator
phase three variable list for phase three storage allocation
and patch up. If the array is equivalenced, we transfer to
the equivalence list processor.

(b) Simple Variables, Not Commoned or Equivalenced.

Storage in the data area is assigned according to the
type and mode of the variable and the B/D address is stored
in the primary address field of the entry. The undefined
quantity is placed in the storage allocated.

(c) Simple Variables, Commoned or Equivalenced.
A word is set aside in the data area for the address of
the storage to be assigned by phase three. If the variable
is equivalenced we transfer to the equivalence list processor.

(d) Equivalence Lists (See Figure 4.8.1.)
If an equivalenced variable is encountered in the VLIST,
control 1s passed to RVGENEQL after the normal processing
for a simple-equivalenced variable or array name has been
completed.

The equivalence list of which the variable is a member
is scanned if the equivalence offset of the variable is
negative. The maximum negative offset is found, and each
variable is tested to see if any are in common. If any of
the variables are in common, no further processing is done
on the list.

After the list has been scanned to find the maximum
negative offset it is scanned again, adjusting the offsets
s0 that all are positive or zero. The offsets are checked
and a warning message given if equivalencing causes any

- 41U =

Tlow Diagram for Egquivalence List Processor

In Relocator Phase One

Equivalenced
element
encountered
in VLIST

Also
in common?

Get equivalence information

element

Is
offset
egative

Put offset in R3

4

Get next équivalenced

variable

Calculate new

back . Yes] offset in RO

to first
element

R3 from old
offset

by subtracting

Get equivalence information

element

A

in R3

variable
in common?

Put variable originally encountered into GVLIST
and continue scanning VLIST.

Set RO = -1
and turn off
equivalenced
bit

V4 N

it properly :
dimensioneq//>\\\\\§s\
Yes |

(N

variable
an array

Give a warning
message if
equivalence '

causes bad |
alignment ?

) N
Get equivalence
information elemen:
N Store next offset.
Get next equivalenced
variable

“,
.
No Back tB‘\\
first element ™
2 -~

Yes

Fionre 4 R .1

(e)

(£)

(g)

(h)

- 211 -

variable not to be aligned on the proper boundary. Arrays
are checked to make sure they have been properly dimensioned,
and if not, the offset is set negative as a signal to the
equivalence processor in relocator phase three to ignore the
variable. The equivalence bit of the variable is also turned
off.

After the processing of the equivalence list has been
completed, the variable which was originally encountered in
the VLIST is added to the GVLIST and the processing of the
VLIST continues.

Main Programme Entry.

The programme name is looked up in the library list and
entered as a valid entry point name. The entry point address
is placed in the library list for phase three processing.
Checking is done if the name already appears in the library
list (caused by a previous external reference) to see that
the type and mode agree. If they do not, this entry takes
precedence and an error message is given. The address of
the data area (effectively) is stored in this element and the
element shifted to the relocator phase three variable list to
serve as a marker for the beginning of the sublist for this
programme segment.

Multiple Entry Point.

The same processing is performed for this entry as for
a main entry point except that the entry is not shifted into
the relocator phase three variable 1list.

External Entry Point.

A word is assigned in the data area for the address of
the routine (to be inserted by phase three). Then a library
list lookup is performed and a link (to the library entry) is
inserted into the variable list entry. The entry is then
shifted into the relocator phase three variable list.

ASF Entry Points.

The entry point address is moved into the data area and
its relocated address stored in the variable 1list entry. A
save area is created in the data area, and its address stored
also in the entry. Storage for temporaries for this entry is
assigned and the offset of the floating point temporaries is
stored in the variable list entry. All this is done as a
preliminary to the phase two relocation of the object code.
Note that a full save area need not be generated, as the base
registers R5 to R10 for the data area do not need to be
reloaded at execution time, when the ASF is called.

(1)

- 212 -

Common Block Names. (See Figure 4.8.2.)
If a common block name is encountered in the VLIST,
control is passed to RVGENCBL.

RVGENCBL scans the list of variables in common and
assigns common offsets for them. The offset of the first
variable is zero. The offset of any variable in the list
is equal to the offset of the variable preceding it plus
the length of the variable preceding it. A warning message
is given for initializing a variable in blank common. A
warning is also given if the offset of a variable indicates
that it will not be aligned on the proper boundary.

If a variable in the common list is equivalenced the
equivalence list of which it is a member is added into the
common list being processed; see figure 4.8.3. The equivalence
offsets of the variables are adjusted to make them common
offsets. Error messages are given for:

1. Variables which were subscripted in an equivalence
statement but not dimensioned.

2. Variables in the equivalence list which are.also in
common.

3. Variables which have negative common offsets.

(i.e. extending common downwards with equivalence.)

Warning messages are given for initializing blank
common and for bad alignment.

RVGEN6MX is set equal to the common offset of the
first byte of storage not used by any element in the equivalence
list. (This will be the length of the common block if the
equivalence list extends past the end of the common list.)
When all elements of the equivalence list have been processed,
the processing of the common list continues.

When all elements of the common list have been processed,
the length of the common block is calculated. The common
block name is looked up in the LLIST. The common block length
is stored in the LLIST entry if the name had not occurred
before or if the length is longer than the previous value.

The offset address of the LLIST entry is stored in the VLIST
entry.

; An error message is given if the common block name was
previously used in a different context. A warning message is
given if the length is not the same as the previous value.

The common block name is put in the GVLIST and the
processing of the VLIST continues.

- 213 -

Common Block Processor<19,Relocator Phase One

Common Block
name

encountered in
VLIST

Set RO=0, get
first
variable in
common

Warning messages %or initializing

i
(4

| 17

+

i
Samar

blank common and for bad alignment

N3

Put length of variable into R2

variable

also equivalenced Yes

?

No

Store RO (common offséfi in common
information element. Add R2 to RO

Set RVGEN6CU = next common offsetymake link of
common and equivalenced variable negative to detect
end of equivalence list. Interchange pointers to
common and equivalence information elements. Set
RVYGEN6MG = the common offset for a variable whose
equivalence offset is zero.

the variable

subscripted but not
dimensioned?

Set offset -1

Turn off equivalenced bit and turn on common bit.
Store offset at common information element.
Get next equivalenced variable

A

variable
also in common?

Error EC-0, drop
ariable out of

Reset link to positive

et next)
ariable load RO from RVGEN6CU
n common Fix last equivalenced

variable to point to
next commoned variable

| Set RO=max (RO,RVGENGMG)

equivalence list

the lengtﬂ

of the block

. ! New
l Lookup common block name in LLISng;}f—j
‘ N Q14

Warning message if initializing blank common.
Set p(common info.elt.) = p(equiv.info.elt.)
Set offset
Message if common offset negative or causes
bad alignment

equivalence offset + RVGEN6MG

[Error if not a common block before]

Yes/Warning

it longer
han before

[Store P(LLIST) in VLIST entry

No

pa—

L

Yes

Y

ubscripted but not
dimensioned?

Set R2 = length of variable + RO

[?ut common block name in GVLIST

N3

Store length in
LLIST entry

Continue processing VLIST

Fioure 4.8.2.

(offset) = offset of lst byte
following variable.

(D
‘.

Yes
Set RVGEN6MX = R2

- 214 -

Example of a Combined Common-~Equivalence List

DIMENSION N(10), M(5)
Fortran Statements: COMMON/€BLOCK/A,B(10)C,D

EQUIVALENCE (M(3), C, N(4))

VLIST Before Entering VLIST After RVGENCBL
RVGENCBL
L 1 JcBrock j» | | | [4A147JCBLO?E‘ga;;L__L__J
L fcla 1 1g1 | gI 1c la 1 1s1 |
Lt 1 1 | Lel [1 o

IcTz | 11 1 §| lc |8 L Te] |

4 s MTTM

G -
[(Exg] Yeno[| | 48]

GTTM Kn 5
T T 71 ST T

\
\-‘_—/IrJle ﬁLisej
' -/

C Indicates common bit on
E 1Indicates equivalence bit on

Length of common block = 72 (bytes) because N extends past D.

Figure 4.8.3.

- 215 -

(j) Subroutine Parameters.
These entries are treated in the same manner as other
variables except that the entry is not shifted into the
relocator phase three variable list.

4. The constant list is scanned and the constants moved down into the
data area. For constants of length eight and 16 bytes, two
relocated addresses are stored into the constant list entry, one
for the first and second half of the constants (i.e. the real and
complex parts). Constants of length eight are aligned on a double
word boundary but are also treated as complex, single word entries
since they may be both. e.g. The constants 1.DO and (1.,0.)
require only one constant list entry as they both have the same
length and the same bit pattern.

5. The statement number list is scanned, and those executable statement
numbers which are referenced, have an address constant generated
in the data area. The relocated address is stored in the list entry.

6. The Hollerith constant list is scanned (Hollerith constants are
treated as single dimensioned real *4 arrays) and an appropriate
dimensioning routine is generated (except for Hollerith constants
used in DATA or PAUSE statements and marked by INOUT).

At this point, all storage for the data area has been
allocated and a check is made that this area has not overflowed the
maximum permitted (6 pages = 24K bytes) before control falls through
to phase two.

- 216 -

4.8.3. Phase Two

As stated before, the purpose of phase two of the relocator
is to pass over the code generated by the various statement processors
and to perform such actions as are necessary to change this code into
an executable programme. This consists largely of transforming
pointers from symbol table pointers to base/displacement addresses
in the data area. This transformation was determined by phase one.

The decision process used in passing over an instruction, is
two stage. That is, firstly the opcode is interrogated and control is
passed to a corresponding routine. These routines fall roughly into
four classes.

No relocation necessary, skip over instruction.
Relocation may be necessary.

Additional processing necessary.
Pseudo-operations requiring special relocation.

£~ W

Rather than list all the instructions, in this manual, only
a few examples from each class will be given. Class one contains
register to register operations, and the load and store multiple
instructions. Class two contains most register-indexed instructions.
Class three contains instructions such as "BAL'" and "BALR" which may
change the value of the base address register for the programme (R11).
Class four has opcodes which were assigned from the section of unused
opcodes (they were assigned as needed and in an arbitrary manner).
Their hex values start at X'AO' and increase sequentially.

The second stage of the relocation comes into play at the
point when control is passed to the specialized routine. Class two
opcodes interrogate the base register of the second operand of the
instruction and if it lies in the range 1 to 10 then symbol table
relocation is performed. This consists of looking at the symbol table
entry pointed to by the second operand and replacing it with the
corresponding address pointer. Thus relocation of the bulk of the
code is a rather simple matter.

- 217 -

OBJECT CODE (BEFORE RELOCATION)

OPCODE ‘ r ‘ pointer to symbol table
V4

L

SYMBOL TABLE .~

LINK é pointer to data area
£ 4 bytes 37 bytes) (determined by phase 1)

DATA AREA

DATA FOR SYMBOL TABLE ENTRY

b W

—

OBJECT CODE (AFTER RELOCATION)

OPCODE //, B/D address pointing to
data area

Second stage relocation processing for class three opcodes
involves merely noting the new value to which register R1l 'is set in
register R8 and possibly doing the class two relocation as well.

A list of these special opcodes follows along with a brief
explanation of the action performed. The majority of these have a
constant format (referred to as ''mormal form'"). The first byte is a
relocator code. The second byte is a modifier byte used in constructing
the high order byte of the address constant which will replace this
word. The third part (a half word) is a symbol table pointer.

Relocator Modifier Symbol Table
Code Byte Pointer

€1 byte ——— 1 byte —————— 2 bytes -———

- 218 -

Relocator Codes

X'A0'

X'Al'

X'A2'
X'A3'
X'A4'
X'AS'
X'A6'
X'A7'

X'a8'

X'A9'
X'AA!
X'AB'
X'AC'
X'AD'
X'AE'

X'AF'

X'BO’

X'Bl'

Replace this word with the address of the save area for
this subprogramme. Skip over entry point name.

Replace this word with the address of the save area for

this arithmetic statement function. The location of the
temporary storage area is noted for use in relocating
temporaries. Skip over entry point name.

Temporary address (Normal form).

Variable list address (Normal form).

Statement number address (Normal form).

Hollerith constant address (Normal form).

Variable list address (from model argument list) (Normal form).

Statement address (from model argument list) (Normal form).

Subscripted variable (address to be filled in at execution
time). (Normal form).

Constant or subscript address (Normal form).

Terminate phase two of the relocator (At end of object code). .
Last argument for subroutine model argument list (Normal form).
Last argument for function model argument list (Normal form).
Not used.- Reserved for

possible expansion.

Omit relocator processing for following code. Change relocator
code X'AF' into opcode X'47' (BC).

Internal statement number. Change relocator code X'BO' into
opcode X'45' (BAL). Update register R8 to reflect result of
BAL instruction on Rll at execution time. Skip over 6 bytes
of ISN code.

I/0 list entry address (Normal form).

X'B2"
X'B3'

X'B4'

X'B5'

X'B6'

- 219 -

Last argument in calling programme argument list. (Normal form).

Statement number address in I/0 list (Normal form).

Address of save area for initial coding in a DATA statement.
It is similar in some respects to the relocator code X'AO'.
The address is used during the execution of the DATA
statements to load registers R5 thru R10 with the address
of the data area.

Address of hollerith constant as required by DATA statement
at execution time (Normal form).

Indicates end of ASF routine. Restore the temporary pointers
to their original condition. Change relocator code X'B6'
into opcode X'05' (BALR) and update register R8 to reflect
the result of the BALR instruction at execution time.

In addition to the above series of relocator codes, the

code X'00' was set aside to indicate that no relocation be done on
the word following. 1In essence, this allows the statement processors
to store integer constants of a magnitude 0 < K < 224 directly in

the object code. 1In addition, this code is used by some execution
time routines to indicate kickoff due to an error at compile time.
(KO - 0 error message.)

- 220 -

4.8.4, Relocator Phase Three

As stated earlier, the function of Relocator Phase Three is
to finish up all the unresolved tasks of Relocator Phase One. This
includes the linking up of subroutines and assignment of storage for
equivalenced and common variables and for arrays. The processing for
members of the global variable list, from which it gets its tasks,
is as follows.

1. Subprogramme Header

This element, which was constructed from the main entry point
element in the variable list, contains the address of the beginning of
the data area for the list elements which follow it. This quantity is
used in reconstructing the address of the address constants which
point to variables whose storage is to be assigned during this phase.
Remember that this address constant is pointed to by a halfword
base/displacement address located in the third halfword of the list
element.

2 2 2
i.e. LINK B1,B2 B/D ADDRESS i;
oapwd
2. External References

An external element contains a pointer which points to
the corresponding library list element. From the library list
element we get the address of the entry point for the subroutine/
function. This is placed in the address constant for this element
in the data area of the subprogramme.

2) 2 6 4
|~
LINK B1,B2 | B/D % A(Lib. Element)
7
2 2 6 —2 4
LINK Bl,BZAII NAME : ‘//j::: A(Entry point)

ADDRESS CONSTANT

- 221 -

3. Simple Arrays

Storage is assigned according to information contained in the

dimension routine for this variable. This dimension routine is
pointed to in the same manner as all the information in the data
area of the subprogramme, by the third halfword of the list element.

4. Equivalence List Processor In Relocator Phase Three (RVGEQL)

(See Figure 4.8.4.)

When an equivalenced variable is encountered in the GVLIST,

control is passed to RGVEQL to assign storage for the variables in the
equivalence list.

R5 is aligned to a double-word boundary, so that the

variable(s) with an equivalence offset of zero will fall on a double
word boundary.

follows:

(a)

(b)

(c)

(d)

(e)

The variables in the equivalence list are processed as

The equivalence bit is turned off, and the commoned bit
turned on. This is done so that storage will not be assigned
again if the variable is encountered in the GVLIST.

The address of the word in the data area which should contain
the offset address of the variable is calculated using the
primary pointer in the GVLIST entry. (See 2.4)

If the equivalence offset is negative, no further processing
is done for the variable. [This condition exists only when
the variable was equivalenced using subscripts but was never
dimensioned.]

The address to be stored in the data area is calculated by
adding together the contents of R5, the equivalence offset
and (for arrays only) the array base offset. This quantity
is stored at the address calculated in (b).

The offset address of the first byte after the variable is
calculated by adding together the contents of R5, the
equivalence offset and the number of bytes occupied by the
variable. If this number is larger than RGVEQLMX, it is
stored at RGVEQLMX. After processing all variables in the
list, RGVEQLMX will contain the offset address of the next
variable storage position.

After all the variables in the equivalence list have been

processed, R5 is set equal to RGVEQLMX and the processing of the
GVLIST continues.

= LiL T

Equivalence List Processor in Relocator Phase Three (RGVEQL)

A variable 1N
GVLIST has its
equivalence

bit on

Align R5 to a double-word
boundary and stored at
RGVEQLMX

Turn off equivalenced bit and turn on common

bit for variable being processed -

5

Put in R15 the address of the word in the data area which
is to contain the address of the variable

Is
the

equivalence Yes

' 4

offset
neg.?

No

Calculate in RO the offset address of the variable using
R5, the offset and the array base offset if an array

4

Put the offset address of the next quantity after the
variable in storage into R2

Store R2 in
Yes ‘
) RGVEQLMX

No ¥
Store RO
in the ——

data area

A

Get the next

(NOt done variable in o

the equivalence
list

‘)L done

Set R5 equal
to RGVEOLMX

I

Continue
processing
GVLIST

Figure 4.8.4.

- 223 -

5. Common Block Processor in Relocator Phase Three (RGVSC50)
(See Figure 4.8.6.)

When a common block name is encountered in the GVLIST,
control is passed to RGVSC50.

The entry in the LLIST for the common block name is obtained
and checked to see if the address has been assigned. If the address
has been assigned, R7 is set equal to this address. TIf the address
has not been assigned, storage is assigned by storing R5 in the address
portion of the LLIST entry and adding the length of the common block
to R5. R7 is also set equal to the offset address of the common block.

The list of variables in the common block is scanned and the
offset address of each variable is calculated by adding R7 to the
common offset and array base address for arrays. This address is
stored in the proper word in the data area.

After assigning addresses for the variables in the common
list, the processing of the GVLIST is continued.

The example below and figure 4.8.6, show the handling of
a common block name which occurs in several programme segments.

FORTRAN STATEMENTS:

COMMON/CBLOCK/A,B

END
SUBROUTINE SUB1

COMMON/CBLOCK/X,Y,Z

END
SUBROUTINE SUB2

COMMON/CBLOCK/M,N

END
$ENTRY

"Grgry 2andTy
\\- MOOTED 30
M N UOT3®BO07 TBNnjlOE
* /..
y pud ¢ N \ "o39 fuoumod
// ! ‘sheaae
W ?>,,..\/\/ “M\b.,.\\/\/ 1! A 2
O - . wa .A\M ﬂ PERY \ kY ' /.\
o RGNS
. 4
. 207140 M)
| i .
- / A’
<
S : ~—
i 7 8 puo . Z cdlls 203
apod 129[qp
ot :
7 e A
, .
K ZT ¥007140 § zg) T4 | qurt 2
e]
A i .
ssa2ippe Yasdual 0) : i
~
d >
- B9a® BlEB(
¢} MDOTAD _ 1das 103
| 2pod 3129[qQ
t pua . q
L 4]vw
Pl 1
0 < . v
o 3
. - B21BR BlE(
L ® D0T9D TIeN d07
apoo 399lqp

w1y opon 309[qQ

- 225 -

Common Block Processor in Relocator Phase Three

f/Eommon block name \

{ encountered in GVLIST 4//

\ -
P A

3
i !

Get entry in LLISTi

“r-

/ﬂgé" ;Set address in LLIST entry!
e -

4 beent-. N equal to R5. Set R7 = R5,
<:fé ress S~—2 3 Add length of cblock (in
assigned? -

- - {LLIST entry) to R5.
~
Yes
e e N
; Set R7 = offset ?
i address of cblock
from LLIST entry. Y

1

I 7 e
Get first variable
in common

—-—:—(.qw———

N4
P
- I s .
common \\\\ Yes

et 3 RO AR o e e

Get next variable Lf‘~»»-«\
! ~

of fset nepative ™ - eI e

\i;ﬁo
! Calculate offset address
i of variable = R7 +
{Vcommon offset

Get address of word in data i
!

area where address of variable
is to be stored

|

q.m{.m‘...- it et 5

N
) S Is T o
.~ variable " ._ Yes P!
Q‘an arrav? />__,_;Add array base i
S offset to address |
\‘,/ !
w.No Y i

pr

i Store offset address of variable e
i in data ares
LS . R e e e ————rins ek e [SES——

| |

~Tnd \w\
No .~ of common ™

- { U
ist?
in commen : ‘\‘llgt'
S N ,
—
: Yes
e e
.
/ Continue processing j
! CVLIST /

e

Figure 4.8.6.

- 226 -

Since storage is assigned but not initialized by this stage
of the compiler, the addresses of the beginning and the end of this
area are stored in locations XBEGDATA and XENDDATA for initialization

to the undefined value just prior to execution.

As well, the main entry point of the programme is found and
moved into location XENTRYP.

- 227 -

5.1 FUNCTION

The deck FUNCTION contains the in-core function library.
Included in the library are the standard FORTRAN mathematical functions
(e.g. SIN, EXP) and the functions normally compiled as in-line
functions (e.g. ABS, REAL).

5.1.1. THE MATHEMATICAL FUNCTIONS:

The mathematical functions used were obtained from the
Release 6 FORTRAN H compiler, and were modified to conform to WATFOR
conventions. The entry and returning sequences were modified to use
WATFOR's register conventions, and the entry sequence was changed to
check the number, mode and definition of the arguments and the mode
of the function in the calling programme.

In order to save core space, only the double-precision
functions were used and a special entry sequence was written for single
precision routines. This sequence is used to call the corresponding
double precision routine with the result truncated for the single
precision value.

A tree structure was drawn, indicating which routines are
called by ather routines (See Figure 5.1.1.). Those routines which do
not call any further routines are called level-0 routines. Routines
which call only level-0 routines are called level-1 routines, etc. The
highest level is two.

Two 19-word save areas, XSAVEFNl and XSAVEFN2, are set up in
FUNCTION. Level-2 functions store their registers in the calling
programme's save area and use XSAVEFN2 as their save area. Level-1
functions store their registers in the calling programme's save area
and use XSAVEFNl1 as their save area. Level-0 functions do not restore
the registers they use except for F6. [F6 must always contain zeros
in the low-order half. See section 4.4.]}. The other registers used
by the level-0 routines are FO, F2, F4 and RO-R4 (depending upon the
routine).

- 228 -

Figure 5.1.1,

Function Dependency Table

S0J9va
NIS¥vd

SOJYY
NIS¥v

¥od
k. (]
aNv

INVIVA
NVLvVd

INVLV
SEVad e
019071¢D!
) 2071QD

JHOAQ
TIFAANO

019014
201d

01907V VRRVO1d
20TV VHHVOA

VIAVOTV
VHRVD

ONIRV
OXVIV
* ONIR
OXVH
$00d
/ NISQ

243¥3a
4¥3a

- 229 -

5.1.2. Macros Used By Function:

(a) NAME FENT (ARGL,MODE1),(ARG2,MODE2), ..., LEVEL

FENT is used to generate a WATFOR-like entry sequence for
level-1l and level-2 functions. The entry sequence is:

NAME STM 14,12,12(13) store registers
BAL R11,XENTSPEC go to argument passing routine
USING * R11
DC A(XSAVEFN1 (or 2)-XTART) save area
DC CL6 'NAME'
DC H'O'
ARG ARG1,MODEl see ARG
ARG ARG2 ,MODE2 see ARG
LARG NAME ,MODE1 see LARG
CLC XUNDEF (LMODE1) ,ARG1 is argument 1 undefined?
EX 0, XNOPDEFN
CLC XUNDEF (LMODEn) , ARGn
EX 0,XNOPDEFN

Control is passed to XENTSPEC to pass the arguments to the
function from the calling programme. XENTSPEC is an entry point in the
routine XENT and does the same argument-checking as XENT except that it
does not check for recursive calls. R1l is set up as the base register
for the function, and the arguments are passed (by value) to the
locations ARGl,ARG2,..., etc. After returning from XENTSPEC the
arguments passed are compared with XUNDEF to make sure that they are
defined. FENT assumes that the function has the same mode as the first
argument. ‘

(b) ARG ADDR,MODE

ARG is used to generate an argument in the entry sequence in
FENT. The word generated indicates that the argument is a simple
variable of mode MODE, called by value, and to be stored at ADDR.

(c) LARG ADDR,MODE

LARG is used to generate the last argument in the entry
sequence in FENT. The word generated indicates that the function has
the mode MODE, and the entry point is at ADDR.

- 230 -

(d) FCALL (NAME,MODE) , (ARG1,MODE1) , (ARG2,MODE2), ...
FCALL generates a call from a level-1l or -2 function to
another function. The code generated is essentially the same as the

code generated for a call in a WATFOR programme.

The calling sequence is:

LA R14 ,RETURN
L R3, ADDRFUNC
BAL R1, START (R3)
ARG ARG1,MODE1
ARG ARG2 ,MODE2
ADDRFUNC LARG NAME,MODE

RETURN .o
(e) FRET
FRET is used to generate a return from a level-1l or -2 function.
It generates a 'B XFRET' instruction. XFRET restores the calling
programme's registers and returns to the calling programme.

(f) CALLDUB DNAME, LEVEL, TWO

CALLDUB generates the special sequence for a REAL*4 routine
to call the corresponding REAL*8 routine.

The sequence is:

NAME BAL R15,XCALLDUB
DC CL6"NAME' ,H'0"
DC AL1 (NARGS-1) ,AL3 (DNAME~-XTART)

where NARGS is the number of arguments and is assumed to be one unless
the argument TWO is present.

The routine XCALLDUB is in FUNCTION. The arguments are
checked to make sure they are REAL*4 and are defined. The values of

the arguments are then placed in double-word locations which have been
initialized to zero.

Rl is set to point to an argument list which indicates the
new locations of the arguments and has REAL*8 as their mode and the
mode of the function being called. Control is passed -to the routine
DNAME as though it had been called directly from a WATFOR programme.

- 231 -

(g) NAME CALLDC DNAME, LEVEL

CALLDC generates the special sequence for a COMPLEX*8 routine
to call the corresponding COMPLEX*16 routine. The sequence generated
is:

NAME BAL R15,XCALLDC
DC CL6'NAME',H'0'
DC AL4 (DNAME-XTART)

The routine XCALLDC is in FUNCTION. It assumes that the COMPLEX*8 routine
has only one argument. The argument is checked to make sure that it
is COMPLEX*8 and is defined. The values of the real and imaginary
parts of the argument are placed in consecutive double-word locations
which have been initialized to zero.

Rl is set up to point to an argument list which indicates the
new location of the argument and has COMPLEX*16 as its mode and the
mode of the function being called. Control is then passed to the
routine DNAME as though it had been called directly from a WATFOR
programme.

(h) NAME FENTZ

FENTZ is used as the entry sequence for a level-0 routine.
The code generated is:

NAME BAL R15,START+10(R3)
USING *,R15
DC CL6'NAME'

The result of the BAL instruction is simply to branch around, the name
leaving R15 set up as a base register (which also points to the name
of the routine), since upon entry R3 contains A(NAME-START).

(i) CHCKA ADDR,MODE

CHCKA is used by level-0 routines to check the mode of an
argument in a list. ADDR indicates the base displacement address of
the argument in the calling sequence. MODE is the mode expected for
the argument.

The code generated compares the argument in the list with a
simple variable of mode MODE. If not equal, error message SR-4 is
issued and execution is terminated.

- 232 -

(3) CHCKL ADDR,MODE

CHCKL is used by level-0 functions to make sure the argument
in the list at ADDR is the last argument of a function with mode MODE.
If this is not so, error message SR-7 or SR-2 is issued and execution
is terminated.

(k) CHCKLSR ADDR

CHCKLSR is used by level-0 subroutines to make sure the argumeht
in the list at ADDR is the last argument of a subroutine. If this is
not so, error message SR-7 or SR-2 is issued and execution is terminated.

(1) CHCKDEF ADDR,MODE

CHCKDEF is used by level-0 routines to check if arguments are
defined. The LMODElbytes located at ADDR are compared with X'8080...80'.
If equal, the variable was undefined, so message Uv-5 is issued and
execution is terminated for RUN = CHECK.
CHCKDEF2, CHCKDEF3 and CHCKDEF4 are variations of CHCKDEF .

(m) FOMIT NAME

FOMIT is used to omit routines which are not required by the
installation. If the function NAME is in the list of functions to be
omitted (set up by the FUNCOMIT macro - see Implementation Guide), the
instruction 'ORG NAME' is generated.

5.1.3. THE 'IN-LINE' FUNCTIONS

The functions handled by most FORTRAN compilers as in-line
functions are actual routines in WATFOR. They are all level-0
functions.

As well as performing the desired operations, they check
the number, mode and definition of the arguments.

1. LMODE. The mode concatenated with L (L integer 4 is equated to 4)

- 233 -

Following is a description of the library functions added
or modified by the WATFOR group.

1. AMAXO, AMINO

AMAXO and AMINO are real*4 functions having two or more
integer*4 arguments. A branch instruction is set to branch not low
for AMAXO or branch not high for AMINO. The same routine is then
used for both functions to find the maximum or minimum of the arguments.
The result is placed in Rl and the routine XFLOAT10 is used to float
the integer, placing the result in FO. Control is then returned to
the calling programme.

2. AMAX1, AMIN1

AMAX1 and AMIN1 are real*4 functions having two or more
real*4 arguments. A branch instruction is set to branch not low for
AMAX1 or branch not high for AMINl1. The same routine is then used for
both functions to find the maximum or minimum of the arguments. Control
is then returned to the calling programme.

3. DMAX1, DMIN1

DMAX1 and DMIN1 are real*8 functions having two or more
real*8 arguments. The operation is the same as for AMAX! and AMINI
with real*4 instructions changed to real*8 instructions.

4. MAX0, MINO

MAXO and MINO are integer*4 functions with two or more
integer*4 arguments. The operation is the same as for AMAX! and
AMIN1 with real*4 instructions changed to integer*4 instructions.

5. MAX1, MIN1

MAX1 and MIN1 are integer*4 functions with two or more real*4
arguments. A branch instruction is set to branch not low for MAX1 and
branch not high for MINl. The same routine is then used for both
functions to find the maximum or minimum. The fix routine in the
function INT is then used to fix the result in RO. Control is then
returned to the calling programme.

6. MOD
MOD is an integer*4 function with two integer*4 arguments.

If ARGl is positive the value of the function is the
remainder resulting when ARGl is divided by ARG2.

- 234 -

If ARGl is negative the value of the function is ARG2 + the
remainder of ARG1/ARG2.

7. AMOD

AMOD is a real*4 function with two real*4 arguments.

The value of the function is:

ARGl - [ARG1/ARG2]*ARG2 where [X] is the integer
portion of X.

8. DMOD

DMOD is a real*8 function with two real*8 arguments. The
operation of DMOD is the same as that of AMOD except that all
instructions are done in double precision.

9. INT, IFIX

INT and IFIX are integer*4 functions with one real*4
argument. (They are in fact the same function.)

1f |ARG| is in the range O < |ARG| < 231 _ 1 the value of

the function is the sign of ARG times the largest integer SIARGl.

If IARGI is 2 231, the value of the function is the remainder

of IARG|/231, times the sign of ARG.

10. HFIX

HFIX is an integer*2 function with one real*4 argument. 1f
|TFIX(ARG) | is > 21° - 1, the value of HFIX is unpredictable. Otherwise

HFIX (ARG) = IFIX (ARG)

11. IDINT

IDINT is an integer*4 function with one real*8 argument.

If |ARG| is in the range of 0 < |ARG| < 231 - 1 the value of

the function is the sign of ARG times the largest integer SIARG|.

31 56

If 277 < IARGI < 2°° the value of the function is the remainder

of IARG‘/Z31 times the sign of ARG.

1f IARGI 2 256 the value of the function is the sign of arg
times the positive integer formed by the last 31 bits of ARG.

- 235 -

12. AINT
AINT is a real*4 function with one real*4 argument.

The value of the function is equal to the sign of ARG times
the largest integer SIARG

.

13. FLOAT
FLOAT is a real*4 function with one integer*4 argument.

The value of the function is the floating-point representation
of the argument.

14. DFLOAT

DFLOAT is a real*8 function with one integer*4 argument. The
value of the function is the real*8 representation of the argument.

15. DIM

DIM is a real*4 function with two real*4 arguments. The
value of the function is ARGl - ARG2 if ARGl > ARG2, and zero if
ARGl < ARG2.
16. IDIM

IDIM is an integer*4 function with two integer*4 arguments.
The value of the function is ARGl - ARG2 if ARGl > ARG2, and zero if
ARGl < ARG2.
17. SIGN

SIGN is a real*4 function with two real*4 arguments. The
value of the function is the sign of ARG2 times IARGlI.

18. DSIGN

DSIGN is a real*8 function with two real*8 arguments. The
value of the function is the sign of ARG2 times |ARG1|.

19. ISIGN

ISIGN is an integer*4 function with two integer*4 arguments.
The value of the function is the sign of ARG2 times IARGll.

20. IABS, ABS, DABS

IABS is an integer*4 function with one integer*4 argument.
The value of the function is IARGI. ABS and DABS are similar functions
for real*4 and real*8.

- 236 -

21. SNGL

SNGL is a real*4 function with one real*8 argument. The
value of the function is the real*4 representation of the argument.

22, DBLE

DBLE is a real*$ function with one real*4 argument. The
value of the function is the real*8 representation of the argument.

23. CMPLX, DCMPLX

CMPLX is a complex*8 function with two real*4 arguments.
The value of the function is the complex number whose real part is
ARGl and whose imaginary part is ARG2.
DCMPLX is a similar complex*16 function with real*8 arguments.

24, REAL

REAL is a real*4 function with one complex*8 argument. The
value of the function is the real part of the argument.

25. AIMAG

AIMAG is a real*4 function with one complex*8 argument.
The value of the function is the imaginary part of the argument.

26. CONJG, DCONJG

CONJG is a complex*8 function with one complex*8 argument.
The value of the function is the complex conjugate of the argument.
DCONJG is a similar complex*16 function.

27. Sense Light Routines SLITE, SLITET

The subroutine subprogrammes SLITE, SLITET are provided for
setting and testing the states of 4 pseudo-sense lights which are
implemented as bit switches in storage at the label SLITES. .

Subroutine SLITE is entered with the standard WATFOR entry
macro FENTZ followed by checks for a single defined integer argument.
If these tests pass, the value of the argument, j say, is screened for
range 0 < j < 4 with terminating error LI-2 for failure. If j equals
zero, all sense lights are turned 'off' by setting all bit switches
to 0; otherwise the jth light is turned 'on' by setting the
corresponding bit switch to 1. SLITE then returns to the calling routine
via R14.

Subroutine SLITET is entered via FENTZ. Checks are performed
for two integer arguments of which the first, say j, is also tested for

- 237 -

being defired. Then j is tested for range 1 < j < 4 with terminating
error LI-2 given if not. The jth bit of SLITES is tested: if 0 (light
j 'off') the value of the 2nd argument of SLITET is set to 2; 1if

1 (light j 'on'), set 2nd argument to 1 and jth bit to O (turn light

j 'off') SLITET returns to caller via R14.

Registers Rl, R2, R3, R15 are used, without saving or
restoring, by SLITE, SLITET.

28. Bit-manipulating Functions EOR, OR, AND, COMPL

These real-valued function subprogrammes were provided in
WATFOR for compatability (except of course for word size) of programmes
converted from University of Waterloo's 7040 operations. They provide
for bit-wise 'exclusive or', 'or', 'and', inversion respectively of
word size arguments of any type. Functions EOR, OR, AND require two

arguments; COMPL requires one.

EOR, OR, AND are each entered via FENTZ macro and at each
entry point, checking is performed to insure that only two arguments
are present in the calling sequence. (This test is done at each entry
point ' to insure R15 points to the routine name should there be an error
message to print.) The opcode of an instruction in a section of coding
common to the three routines is then initialized before the common
coding is jointed.

This common coding then checks that both arguments are
defined before performing the appropriate bit modificatiomns. This is
done by loading the lst argument into RO and performing a machine
'and', 'or' or 'exclusive or' as initialized above, (N,0,X) of the
2nd argument. Floating register FO is then loaded from RO since the
functions are real. Return is taken via R14.

COMPL is entered via the FENTZ macro and checks are performed
for a single, defined argument which is loaded into RO. The bits of
RO are inverted by exclusive oring with a full word of 1's and RO is
transferred to FO since COMPL is real. Return is via Rl4.

These routines destroy the contents of registers RO, R1l, R2,
R3, RI15.

29, Execution—-terminating Routine EXIT

Subroutine subprogramme EXIT is entered via the FENTZ macro
and a check is performed that no arguments are included in the call.
Execution is terminated by branching to XSTOP. Thus, for WATFOR, a call
to EXIT functions exactly like a simple STOP statement.

30. Interrupt Count Routine TRAPS

The original intent of WATFOR was to terminate execution of
the compiled programme on the lst of a floating point overflow, underflow

- 238 -

or fixed or floating divide exception since these are usually programme
errors. This exceptions are noted by issuing a SPIE macro, just before
execution commences, to return to routine XRUPT for processing.

Later it was decided that, to accommodate more experienced
programmers, more interrupts of the type mentioned above could be
allowed by letting the programmer specify the maximum of each type he
would tolerate. Thus XRUPT decrements a count for each interrupt
processed and terminates execution when the first such count reaches
zero. The routine TRAPS is used to modify these count fields to other
than the default 1 set by the job initializer in 'MAIN'. A call to
TRAPS appears as follows

CALL TRAPS (i, j, k, &, m)
where the arguments have the following significance:

i - number of fixed-point overflows to be allowed
- initializes field XFXOFLOW (This interrupt is masked
off in standard WATFOR and hence this argument is, in
essence, ignored.)
j - number of exponent overflows to be allowed
- initializes field XEXOFLOW
k - number of exponent underflows to be allowed
- initializes field XEXUFLOW
¢ - number of fixed divide exceptions to be allowed
- initializes field XFXDVCNT
m - number of floating divide exceptions to be allowed
- initializes field XFLDVCNT

TRAPS may be used with 1 to 5 arguments and only those
present will be used for initialization. TRAPS may be called and
subsequently recalled from any part of a programme.

Since it was assumed that TRAPS would be used by only
experienced programmers, no checking of arguments is performed. Each
is treated as an integer value made positive if negative and taken
as 1 if zero if necessary.

TRAPS destroys the previous contents of registers R1, R2,
R3, R4, RI15.

31. Interrupt Indicator Routines DVCHK, OVERFL

These routines are provided to retrieve the status of
pseudo-divide check and overflow indicators implemented as byte fields
XDVCHKSW, XOVRFLSW. These indicators are initialized to 'off'

(X'02') by the job initializer in MAIN, are set by the interrupt
processor XRUPT when exponent overflows, underflows or divide checks
occur and are turned off by DVCHK, OVERFL respectively.

- 239 -~

XRUPT sets these fields as follows:

XDVCHKSW - set to X'0l' for fixed divide exception
- set to X'01' for floating divide exception
XOVRFLSW - set to X'Ol' for exponent overflow

- set to X'03' for exponent underflow.

DVCHK and OVERFL share coding since each operates in the same
way. Each entry point merely establishes a pointer register to the
'indicator' to be processed. The current setting of the indicator is
transferred (expanded to a full word) to the argument of the routine
and the indicator is turned 'off'. Return is via Rl4. Registers RO,
R1, R2, R3 are modified.

5.2 Execution Time Format

This is described in section 4.7.

- 240 -

5.73. FRIOSCAN

5.3.1L. Introduction

The main function of the FRIOSCAN routine in WATFOR is to
convert input data into a fixed format suitable for conversion to
internal machine representation. FRIOSCAN processes logical, integer,
real, complex and hexadecimal variables in free or format I/0. Invalid
data characters or invalid data formats are caught in FRIOSCAN and
result in termination of the object programme. Characters punched on
a 26 or 29 keypunch are made equivalent.

FRIOSCAN is closely linked to another WATFOR routine
FORMCONV. FORMCONV sets up certain registers to describe the input
data to be converted and then passes control to FRIOSCAN. When FRIOSCAN
converts the input data into the required format, control is passed
back to FORMCONV where the data is converted into internal machine
representation. There are 3 basic steps in FRIOSCAN:

1. Initialization of switches, storage areas and special table.

2. SCAN of input characters using the TRT (translate and test)
instruction and special table to select routines to process the
input characters.

3. Routines chosen in step 2 check for invalid data format, store the
input data in the required format and then either reset the
special table to continue scan step 2 or if at the end of
the field, return to FORMCONV.

A flow chart (see Figure 5.3.1.) and a more detailed
description of these 3 basic steps follows.

- 241 -

Flowchart of Frioscan

Entry from
1 FORMCONV

Initialize
switches storage
area and special
table

No Error

routine should

routine Routine Set up error

process next input Imessage

B

character

Right
routine

Valid
Format

Store input
in required
format

)

Return to FORMCONV

Reset table

Figure 5.3.1.

w4

Return to
FORMCONV

- 242 -

5.3.2. INITIALIZATION

As mentioned above the routine FORMCONV sets up registers
to describe the input data which FRIOSCAN is to convert. These
registers and their purposes are described in table 5.3.1.

REGISTER PURPOSE

REG 1 pointer to next input character

REG 3 length of input field

REG 6 indicator as to whether variable is
in free or format I/O

REG 7 indicator of type of variable

Table 5.3.1.

FORMCONV sets the starting address of the input field in register 1 and
its length in register 3, so that the first step in the initialization
process is to calculate the end address of the field and store it in

a free register (register 4).

Next the 256 byte table 'FRIOTABL' is initialized according
to the type of variable being scanned so that when the TRT instruction
is executed the proper routines will process that variable. 1If the
variable is in free I/0 the table is again altered.

A 2 byte switch 'FRIODUPL' (see table 5.3.2.) is used to
store the duplication factor. It is always initialized to 1 and altered
only if necessary for a hexadecimal variable.

A 1 byte switch 'FRBUFEND' (see table 5.3.2.) is the name of
a 16 byte storage area used to pass the converted input data to FORMCONV.
It is initialized to zero.

'FRIOTABL' is altered at this point so that 26 and 29
keypunch characters are considered equivalent.

- 243 -

5.3.3. SCAN OF INPUT FIELD

The length in bytes from the end of the input field to the
character being scanned is calculated. The table 'FRIOTABL' has had
every byte in it set to an appropriate value. If a non-zero byte is
found in the table for a given character using the TRT instruction,
this byte is used to select a given routine. If a zero byte is found
the TRT instruction uses the next input character to obtain a routine.
If no field is found in a card, a buffer is requested in free I/0 or
the field is assumed to be all zeros in format I/0. If an invalid
character is found, an error message is set up and control is passed
back to FORMCONV where the object programme is terminated.

5.3.4. Routines to PROCESS THE INPUT DATA

These routines check for invalid data format and store the
input data in a fixed format. This format consists of a store area
for the actual numerical value of the variable. Various switches and
counters used are explained in table 5.3.2.

NAME POSSIBLE VALUES PURPOSE
FRIOTEMP ZL16'0’ - to clear area for new data

represents numeric value of
data passed to FORMCONV

up to 16 decimal digits

FRIOEXP H'0' -~ to clear area for new data
2 byte binary number - represents binary value of
exponent if present.
FRIOBLNK H'O' - to clear area for new data
up to 2 decimal digits = contains count of number of
leading blanks or zeros.
X'80' - upper bit set on if a decimal
‘ point is found.
FRIOVSGN X'00' -~ indicates positive variable.
X'80' - indicates negative variable.
FRIOESGN xX'00' - indicates no exponent found.
X'40' - indicates presence of exponent.
x'80' - indicates presence of a negative
exponent.
FRBUFEND X'00' - set to zero during initialization.
X'FF' - indicates end of buffer in free I1/0.

Table 5.3.2.

The card format of the different types of variables is shown in
table 5.3.3 where d represents a decimal digit and any symbol in square
brackets may be omitted.

- 244 -

Type of Variable Incoming data format
Integer [+] ddd
Real [+] dd [.] ddd [;][+][dd]

Complex in Free I/0 ([i]dd[.]ddd[g][i][dd],[i]dd[.]dd[g][1[adl),
Logical any string of characters [containing a T or F]
Hexadecimal .[d][Z]ddd (where Z is required in free I/0)

Table 5.3.3.

The 5 different variable types are stored in the following
format by the routines in FRIOSCAN:

1. Integer Variable

The upper bit of 'FRIOVSGN' is set on if a minus sign is
detected. The leftmost 16 digits are stored right justified in
'FRIOTEMP' .

2. Real Variable

The upper bit of 'FRIOVSGN' is set on if a minus sign is
detected in the first position. The leftmost 16 digits before the
exponent are stored right justified in 'FRIOTEMP'. The high order
bit of 'FRIOBLNK' is set on if a decimal point is found. 1If no
decimal point is found in free I/0, the decimal point is assumed
after the last digit before the exponent part if present. Leading
blanks or zeros are omitted in format I/0 to allow FORMCONV to place
the decimal point but a count of the leading blanks or zeros is stored
in 'FRIOBLNK'.

If an E or D is found, the second bit of 'FRIOESGN' is
set on. If the exponent sign is negative, the upper bit of 'FRIOESGN'
is set on. The exponent is calculated as a binary value to normalize
a number with a decimal point before the first digit and is stored in
"FRIOEXP'.

3. Logical Variable

If the variable is found to be true, the high order byte of
'FRIOTEMP' is set to the value X'FF' otherwise 'FRIOTEMP' is left at
zero as set during the initialization step. If no T or F is found
the variable is assumed to be false.

- 245 -

4. Complex Variable

Complex variables in format I/0 are passed to FRIOSCAN as
real variables. Complex variables in free 1/0 enter in the format
shown in table 5.4.3. The comma must be at the end of the first
field and there must be a right bracket at the end of the second
field. The comma after the right bracket is ignored. The data is
passed back to FORMCONV in the same format as 2 real variables.

5. Hexadecimal Variable -

If a duplication factor is found 'FRIODUPL' is set to its
value. The leftmost 16 digits are stored right justified in
'"FRIOTEMP'.

- 246 -

5.4 FORMCONV

5.4.1. Introduction

FORMCONV is the formatting and conversion routine for the
execution phase of the compiler. It is called by routines in the STARTA
to perform output conversion and formatting and input conversion. The
routine calls the FRIOSCAN (5.3) routine to handle the input
scanning of data cards during the processing of READ statements and
the FIoCS (5.5) routine to perform input and output operations.

WATFOR allows non-formatted input/output statements for the
'reader' and 'printer'. This allows the user who is learning the
FORTRAN language to run and test programmes without having to learn the
concept of the FORMAT statement. It is also very useful for the
experienced programmer when he is debugging a programme. To avoid
confusion this type of I/0 will be referred to as free I/0 to distinguish’
it from the normal un-formatted (binary) I/0. Binary I/0 requires no
conversion and hence is not mentioned in the following discussion but
is presented in section 5.4.8.

FORMCONV is called by the routine XIOINIT to do initialization
for processing a read or write operation or by XSIMPELT, XSUBSELT or
XARRAY to do an actual input or output formatting and conversion
operation.

For initialization the routines called are respectively:

OUTBCDI ~- for an OUTPUT-FORMATTED operation
INBCDI - for an INPUT-FORMATTED operation
OUTFREEI - for a FREE OUTPUT operation
INFREEI - for a FREE INPUT operation

The formatting and conversion routines are respectively:

OUTBCD+4 - for FORMATTED OUTPUT

INBCD+4 for FORMATTED INPUT
OUTFREE+4 for FREE OUTPUT
INFREE+4 for FREE INPUT

FORMCONV's base register R15 is assumed to have been loaded
with the correct value by the calling routine and all of the above-
mentioned routines begin by loading R13 with the save area pointer
which also addresses the second half of the programme.

As has been explained in section 4.7. the format specifications
of the form nSw.d have been broken down into a Format Stack entry of
the form

ALl (n),ALl(w),AL1(d),ALl(code for S)

- 247 -

Throughout the routine FORMCONV

n 1is referred to as FIELDCNT
w 1s referred to as LFIELD
d 1is referred to as NDEC

The relative address of the routine for X is referred to as ROUTNUM.

The routines that process an I1/0 list element have the
following characteristics in common.

1. First check the end of I/0 list switch (ENDSW) to see if the end
of list has been signalled.

2. Check the variable type and give an error message (FM-5) if the
format type does not match the variable type.

3. Go to the LENCHECK routine to see that the field will fit in the
output buffer.

The formatted output routines perform all the above functions. The
free input and output routines perform item 3 only, while the formatted
input routine performs items 1 and 3.

Following is a description of the routines to process each
type of format specification for the four types of I1I/0. Several
service routines are used for the various codes and are described
in section 5.4.6.

- 248 -

5.4.2. FORMATTED OUTPUT

Control is first passed by XIOINIT to OUTBCDI with

Rl = A(format stack - START).
R2 = address of output buffer.
R3 = 1length of output buffer.

Rl is stored in FORMPTR, R2 is stored in ABUFFER (same as XBUFFER)
and in BPOINT and R3 is stored in LBUFFER.

The count in the duplication factor FIELDCNT is zeroed.
The instruction SUPEXECl is initialized to select a routine from the.
table ORTNTBLE in the common routine for OUTBCD and INBCD to process
the present specification. NBDOT is zeroed and OUTBCDI returns
control to the object code.

For each I/0 LIST item control is passed to OUTBCD+4 by
a sequence, for example

BAL R14,XSIMPELT
DC AL1(code),AL3(address of variable-start)

OUTBCD saves the code in CODEBYTE and examines the FIELDCNT to determine
if the format specification is the same as the last time.

If not FORMPTR is fetched and incremented and the FORMAT
stack entry broken out. Using the fourth byte of the stack entry a
code is selected which gets the relative address of the appropriate
routine from ORTNTBLE. This value is saved in ROUTNUM in case of
future duplication factors. The routine is then entered.

This section describes the routines to process the various
format specifications for formatted output. Some of the routines will
also be used for formatted input.

(a) STFRBRK - FIRST LEVEL LEFT BRACKET PROCESSOR (CODE=X'08")
The format stack entry for 'n(' is of the form
DC AL1l(n,0,0),X'08'

where n, which has been saved in FIELDCNT, is moved to FRBRCNT, the
first level bracket count.

(b) - BOOTOFF - INVALID FORMAT PROCESSOR (CODE=X'0C")

This is the code for an invalid format and causes an ERROR
FM-5 to be issued.

- 249 -

(c) SCALESET - SCALING FACTOR PROCESSOR (CODE=X'10"')
The format stack entry for 'nP' is
DC H'n',AL1(0),X'10'
The first half word of the stack entry is moved into NBDOT.
(d) PRFROUT - OUTPUT F FORMAT PROCESSOR (CODE=X'14'")

1. Do initialization and checking and mark as F format (PRINMSK).

2. Get relative address of variable stored by OUTBCD and convert
it to an absolute address.

3. If the type is double precision go to PRDPF. Otherwise go to
SPCON to do single precision conversion. The number is sent
down in TEMP and results come back in R7 and EXP such that

TEMP = R7*10°%F

4. Convert R7 to decimal, unpack and put the address of first
significant digit in RS5.
5. Calculate the number of digits before the decimal point
(Exp + Length of Integer from R7 and Scaling Factor) and
put it in R3.
6. Put the length of output field (LFIELD) in R6.
7. Set exit address from COMPRSET as the cleanup routine (SUPCLEAN).
8. If G format go to PRGROUT1, otherwise go to COMPRSET.

(e) PRDPF - Handles double precision F

1. Put the double precision number in floating register O.
2 Go to the double precision conversion routine (DPCON) with

FRO = INTEGER*1023%

where INTEGER is in R2 and R3.

3. Go to CONVDP to convert the number to unpacked decimal and
return the address of first significant character in R5.
4, Calculate the number of digits before the decimal point

(EXP + Length of integer from R2 and R3 + scaling factor)
and put it in R3.
5. Proceed to step 6 above.

(f) PRDROUT - OUTPUT D FORMAT PROCESSOR (CODE=X'1C')

1. Do initialization and checking and mark as D format (PRINMSK).
2. Convert the relative address to an absolute address.

(g)

(h)

9.

10.

- 250 -

Put the double precision number in floating register 0 and
go to the double precision conversion routine (DPCON).

FRO = INTEGER*lOEXP

where INTEGER is in R2 and R3.

Go to CONVDP to set the number of digits before the decimal
point equal to the scaling factor (NBDOT) and put it in R3.
Set length of field in R6 to be total length of field
(LFIELD) minus four.

Call COMPRSET to put number in buffer and insert the '0'.
Set R3 to end of unpacked double precision number.

Use the value in R3 and the value in R5 (Start of Digits),
along with EXP and NBDOT to evaluate the exponent.

Convert the exponent to decimal, unpack and insert in last
two digits of field.

Insert a minus sign if necessary and go to cleanup (SUPCLEAN) .

PREROUT - OUTPUT E FORMAT PROCESSOR (CODE=X'18")

Do initialization and checking and mark as E format (PRINMSK) .
Convert the relative address to an absolute address.

Move the single precision number into TEMP and go to single
precision conversion routine (SPCON) where

TEMP = R7*10°%F

Place the number of digits before the decimal (NBDOT) in

R3 and convert R7 to decimal, unpack and put address of the
first significant character in RS.

Set the length of field in R6 to be total length of field
(LFIELD) minus four.

Call COMPRSET to put the number in the buffer, and insert E.
Set R3 to end of the unpacked single precision number and go
to step 3 for double precision.

PRIROUT — OUTPUT I FORMAT PROCESSOR (CODE=X'20')

N

Do initialization and checking.

Convert the relative address to an absolute address.

Place the integer in RO using 'LH' for integer*2 and 'L' for
integer*4 and convert RO to decimal. Unpack and locate the
first significant digit.

Calculate the length of the number minus one and put it in
R5 and calculate the relative position within the field
where the sign will go. If the number doesn't fit in the
field go to the asterisk genmerator (BLOTOUT).

Insert the sign if necessary and move in the digits. Update
the buffer pointer and go to cleanup (SUPCLEAN).

(1)

(3

(k)

2)

(m)

- 251 -

TABULATE - T FORMAT PROCESSOR (CODE=X'24")

The buffer pointer (BPOINT) is set to the value of the start
of the buffer (ABUFFER) + LFIELD = 1 and RECLEN is set to
LFIELD - 1 where LFIELD is the value of n in 'Tn'.

PRAROUT - OUTPUT A FORMAT PROCESSOR (CODE=X'28')

4.

Do initialization and checking and convert the relative
address to an absolute address.

Get the address of the next buffer position (BPOINT) in R4
and get the length of variable in R3.

Output MIN characters into the buffer where

MIN = MIN(LFIELD, number of characters in variable).

Update the buffer pointer and go to cleanup (SUPCLEAN).

PRLROUT - OUTPUT L FORMAT PROCESSOR (CODE=X'2C')

1.

2.

Do initialization and checking and get the address of the
last position in the field.

Convert the relative address to absolute address and insert
'T' or 'F' depending on variable.

SPACERT - X FORMAT PROCESSOR (CODE=X'30')

1.

2,

Call LENCHECK routine to check if there is enough room in
the buffer and increment buffer pointer (BPOINT) by LFIELD
if there is.

Go to OUTBCD1l to pick up the next entry.

PRHROUT - H FORMAT PROCESSOR (CODE=X'34')

The format stack entry for a Hollerith H is as follows:

DC AL1(0,n,0), X'34'
DC CLn'Hollerith'
DS OF

Call the LENCHECK routine and place the length of the Hollerith
minus one in R2.

Put buffer pointer (BPOINT) in R3 and use the routine ROUTCODE
to index a table of displacements with the value 0 for output
and 6 for input.

Execute a MVC instruction to move the information in or out

and round the length up to a full word.

Update the format stack pointer by the length of the Hollerith.
Return to OUTBCD processor.

(n) |

(o)

(p)

- 252 -

ENDFRBRK - FIRST LEVEL RIGHT BRACKET PROCESSOR (CODE=X"38")

The format stack entry for a first level right bracket is
of the form

DC AL2(*-Address of start of format loop),AL1(0),X'38"

Cet the first level bracket count (FRBRCNT) and decrement

by one. If the count is zero return to OUTBCD1 to pick up
next sequential stack entry.

Otherwise store the first level bracket count. Using the

first half-word of the stack entry, calculate the address

of the stack entry following the corresponding 'n(' stack

entry.
Return to the point in OUTBCD just after where the stack

pointer is updated.

NEWLINE (NEWCARD) - / PROCESSOR (CODE=X"3C")

1.

1.
2‘

Set the exit address from OUTREC as return to OUTBCD1 and
go to OUTREC.

PRGROUT - OUTPUT G FORMAT PROCESSOR (CODE=X"40")

Check for end of I/0 list.

If the type is integer, go to the entry point in the integer
routine (PRIROUT1).

If type is logical go to entry point in the logical routine
(PRIROUT1).

If type is real or complex mark as G FORMAT (PRINMSK) and go
to F FORMAT routine at entry point PRFROUT1l. Control will
be returned to the G FORMAT routine at point PRGROUT1 when
the PRINMSK is tested by the F FORMAT routine.

A check is made to see if the magnitude of the number is
greater than or equal to zero and less than or equal to NDEC
which comes from the 's' of nGw.s and is the number of
significant digits to be generated. If this check fails then
a branch is taken to the E ROUTINE at PREROUT1 + 4 for single
precision or to the D ROUTINE at PRDROUT1 + 4 for double
precision.

If the check is successful then NDEC is saved in NDEC1 and
NDEC is set to the number of digits after the decimal point
(number of significant digits requested 's' minus magnitude
of number).

The PRINMSK is set to F FORMAT and the routine COMPRSET 1is
called to output the number, NDEC is restored and the buffer
pointer is updated. Go to CLEANUP (SUPCLEAN).

(q)

(r)

- 253 -

ENDSTAT (ENDSTATI) ~ END OF FORMAT PROCESSOR (CODE=X'44"')

1.

2.

7.

The format stack entry for the end of format right bracket
is

DC AL2(*~Address of return stack entry),AL1(0),X'44’'

The ENDSW variable is checked.

If both bit 6 and bit 7 are off then the end of the I/0 list
has not been reached. Bit 6 is turned on and then the entry
is treated as a first or second level right bracket by the
routine COMBRK1 which is entered after the OUTREC routine

has been called to output the record.

If the end of the I/0 list has been reached (bit 7 of ENDSW = 1)
then GO TO ENDROUT to finish up and return to the object code.
Otherwise bit 6 of ENDSW = 1 and the error message FM-7, non-
terminating format is issued, since this is the second time
through ENDSTAT with no I/0 list items processed.

PRZROUT ~ OUTPUT Z FORMAT PROCESSOR (CODE=X'48"')

Do initialization and checking and convert the relative
address to an absolute address.

Get the buffer address (BPOINT) in R4 and using the CODEBYTE,
put the variable's length in R6 and double it (number of
characters to be output).

Set R3 to end of unpacked hexadecimal number to be plus one
and put the length of the field (LFIELD) in R7.

If field length (LFIELD) is less than or equal to the number
of characters available, then go to PRZROUT1 and output the
last (R7 = LFIELD) characters of the number.

Otherwise increment the buffer pointer (R4) by the number of
blanks to be output (LFIELD (in R7) - number of characters
(in R6)).

Set R7 to number of characters (in R6), and go to PRZROUT1
and output the last (R7 = number of characters) characters
of the number.

Update buffer pointer (BPOINT) and go to cleanup (SUPCLEAN).

ENDSCBRK - SECOND LEVEL RIGHT BRACKET PROCESSOR (CODE=X'4C')

The format stack entry is
DC AL2(*-start of format loop),AL1(0),X'38'

This routine is the same as the first level right bracket
routine except that it is the second level bracket count
(SCBRCNT) that is tested.

- 254 -

STSCBRK - SECOND LEVEL LEFT BRACKET PROCESSOR (CODE=X'50')

The format stack entry for a second level left bracket "'n('
is

DC AL1(N,0,0),X'50"

N, which has been saved in FIELDCNT is moved to the second
level bracket count (SCBRCNT) and return to OUTBCDI.

5.4.3. FORMATTED INPUT

Initialization
Control is first passed by XIOINIT to INBCDI with

Rl = A(format stack-start)
R2 = Address of input buffer
R3 = Length of input buffer

Rl is stored in FORMPTR, R2 is stored in ABUFFER and BPOINT and R3 is
stored in LBUFFER.

1. The duplication factor (FIELDCNT) is zeroed.

2. The routine code (ROUTCODE) is set to 2.

3. The record length (RECLEN) is zeroed.

4. The instruction SUPEXEC1l is initialized to select a routine from
the table INTNTBLE in the common routine OUTBCD and INBCD.

5. The pointer to the input routine is initialized to the address
of FRIOSCAN.

6. The scaling factor is zeroed.

7. The routine BUFFIN (BUFFINIT) is called.

8. Return to object code.

For each input list item control is passed to INBCD + 4.

RDEROUT - INPUT E FORMAT PROCESSOR (CODE=X'18")

1. Do initialization and checking and put the code for real(8)
in R7 for INFRIO.
2. Call INFRIO to get number from buffer (see common subroutines

section) and check if a decimal point was found (bit O of
FRIOTEMP + 18 = 1).

3. If no decimal point was found, call the routine IMPLDOT to
adjust the exponent using the format specification.

4. Call INSPCON to convert the number in TEMP and EXP to a
floating point. The number returned in floating register

- 255 =~

0 satisfies
FRO = TEMP*lOEXP

with the sign of the number determined by NEGSW.
. Put the relative address of the variable in R3.
FRO is stored in the variable pointed to by R3 and is also
saved in TEMP.
7. Go to cleanup (INCLEAN).

[e)W, |

RDDROUT - INPUT I FORMAT PROCESSOR (CODE=X'20')

1. Do initialization and checking and put the code for
integer (4) in R7 for INFRIO.

2. Call INFRIO to get number from buffer. The unpacked decimal
integer is sent back right justified in TEMP and is packed
into TEMP2.

3. If the number is negative (bit 0 of NEGSW = 1) then set the
sign of the packed number to minus. If the number is too
small, issue error KO-8 (integer out of range), otherwise
proceed to step 5.

4. If the number is positive and larger than a full word issue
error KO-8.

5. Convert the number to binary and put the relative address
of the variable in R3.

6. The value is stored in the variable pointed to by R3 and

is also save in TEMP.
7. Go to cleanup (INCLEAN),

RDAROUT - INPUT A FORMAT PROCESSOR (CODE X'28')

1. Do initialization and checking and convert the relative
address to an absolute address.

2. Get buffer pointer and the length of variable and if the
variable length is greater than the field length move in
LFIELD characters.

3. If not, move variable length characters from buffer into
variable and go to cleanup (INCLEAN).

4. Fill out to end of variable with (VARIABLE LENGTH - LFIELD)
blanks, and go to cleanup (INCLEAN).

RDLROUT - INPUT L FORMAT PROCESSOR (CODE=X'2C')

1. Do initialization and checking and put the code for logical
(0) in R7 for FRIOSCAN.

2. Call INFRIO to get number from the buffer. A logical variable
is sent back in first byte of TEMP.

3. Convert the relative address to an absolute address and move
the variable from TEMP into storage.

4. Go to cleanup (INCLEAN).

- 256 -

RDGROUT - INPUT G FORMAT PROCESSOR (CODE=X'40")

1. Do initialization and checking and get the code bhyte and double
it.

2. Use the doubled code byte to get the routine address from the
table IRTFRIO (same as free input routines) and go to the
routine. ’

RDZROUT - INPUT Z FORMAT PROCESSOR (CODE=X'48')

1. Do initialization and checking and put the code for hexadecimal(1l6)
in R7 for INFRIO.

2. Call INFRIO to get number from buffer. The most significant 32
hexadecimal digits are returned (right-justified) in TEMP.

3. Convert the relative address to an absolute address and get

variable length and the address of the end of the variable
(i.e. TEMP * 16).

4. Locate start of variable to be moved and move the variable from
TEMP into storage.

5. Go to cleanup (INCLEAN).

- 257 -

5.4.4. Free Output

OUTFREEI - Control is first passed by XIOINIT to OUTFREEI for
initialization with

R2 = Address of the output buffer

R3 = Length of the output buffer
1, Set up R13 to point to the save area.
2. Call the buffer initialization routine (BUFFINIT).
3. Leave the control character in the first position and

update the pointers.

4, Set the routine code (ROUTCODE) to 1 to indicate free
output.

5. Zero the scaling factor, restore registers and return to
object code,

OUTFREE -~ For each I/O list item control is passed to OUTFREE + 4.
For end of I/0 list, control is passed to OUTFREE + 0, which
branches to ENDFREEO. This routine outputs the last record
and then returns to the object code. For each I/O list

item:
1. Set up R13 and save the relative address of the variable.
2. Get the code byte of variable and only keep the lower 3 bits

which indicate the type and length.

3. Put the code byte in R3 double it and use the double code byte
to select the routine address.

4, Double R3 again and use R3 as an index to get the LFIELD
and NDEC specifications from a table of free output format
specifications (FRIOSPEC).

5. Go to the routine.

Note: 1In all cases the routine which is called is an entry point in
the corresponding formatted output routine which bypasses the
type and end of I/0 list checking.

5.4.5.

INFREET -

N

INFREE -

DUPROUT -

1.

w

- 258 -

Free Input

This is the initialization routine for free input. Control
is first passed to INFREEI by XIOINIT with

R2 = Address of the input buffer.
R3 = Length of the input buffer.

Set up R13 and call the buffer initialization routine (BUFFIN).
Save the record length in LFIELD to be passed later to
FRIOSCAN.

Initialize the pointer to the input routine to the address

of FRIOSCAN and set the routine code (ROUTCODE) to 3 to
indicate free input.

Zero the duplication factor, zero the scaling factor, restore
the registers and return to the object code.

For each I/0 list item control is passed to INFREE+4. For

end of I/0 list control is passed to INFREE + 0 which branches
to ENDFREEI, which returns to the object code. For input

list items:

Set up R13 and save the relative variable address.

Cet the code byte of variable and only keep the lower 3 bits
which indicate type and length.

Get the duplication factor and decrement by one and test for
positive.

1f not positive, double the code byte and use to index a
table of free input routines (IRTFRIO) .

Go to selected routine which is an entry point in the
corresponding formatted input routine.

This routine handles duplication factors in free input.

Get the length of the variable and decrement by one for MVC
instructions.

Record the updated duplication factor and convert the relative
address to an absolute address.

Is variable complex?

If not, move variable from TEMP (where it has been stored
just for this case) into storage and return to the object
code.

If so, move first half of complex number from COMSAVE (where
it was stored by complex routine just for this case) into
storage.

Increment the address by the variable length and move in the
second half from TEMP.

Return to the object code.

- 259 -

5.4.6. COMMON SUBROUTINES AND UTILITY ROUTINES
(a) LENCHECK

(b)

This subroutine gets the record length (RECLEN) and increments
it by the field length (LFIELD) and compares it to the

buffer length (LBUFFER). 1If the field will not fit, then

the free record out routine (FREERECO) is entered for free
output. Otherwise the error message (I0~3, output record too
long) is issued.

OUTREC (INREC)

This subroutine is the interface to the FORTRAN input/output
subroutine (FIOCS). A code required by FIOCS is selected
using the ROUTCODE as an index. This code (which equals 2 for
output, and 1 for input), is stored in the line after the call
to FIOCS. The buffer initialization routine (BUFFINIT) is
then entered to record the buffer address and length and
initialize the record length (RECLEN).

These are the cleanup routines for an I/O list entry. They

perform the following operations:

(c)

(d)

(e)

(£)

SUPCLEAN

1. Store the buffer pointer R4 in BPOINT.

2. Check the variable type for complex and branch to the
complex routine COMPRIN if type is complex.

3. Turn off ENDSW (bit 6) to indicate that an I/0 list item
has been processed.

4. Return to object code.

INCLEAN

1. Add field length (LFIELD) to buffer pointer (BPOINT),
2. Go to SUPCLEAN.

FREERECO
1. Save the return address and go to OUTREC to output current

record.
2. Initialize BPOINT, ABUFFER, LBUFFER and RECLEAN,

COMPRTN

1. Change the variable type from complex to real (CODEBYTE).

2. Update address of variable by length of real part (4 - for
complex*8,8-for complex*16).

3. Save the VALUE of TEMP in COMSAVE in case of free input.

()

(h)

(1)

- 260 -~

4. For formatted I/0 return to COMPRET, which is an entry
point in OUTBCD. This makes the second half of a complex
number look like a second call to OUTBCD.

5. For free I/0 separate into input and output and go to the
appropriate routine according to single or double precision.
This looks like a call from INFREE or OUTFREE.

ENDROUT

1. For output (bit 6 of ROUTCODE + 1 = 0) call the OUTREC
routine to output the last record. Then return to the
object code.

BLOTOUT

1. This routine is called when a number, to be output, will
not fit in the space left for it.

2. The field pointed to by R4 and of length LFIELD is filled
with asterisks.

3. Go to cleanup (SUPCLEAN).

DPCON

This subroutine takes the double precision floating point
number, say F, in floating register O and expresses it in
the form

EXP

= *
F INTEGER16 10

where EXP is a half-word decimal exponent and INTEGER is in
the range 1613 < INTEGER < 1615 unless F is 0 in which case
INTEGER equals 0. TINTEGER is returned in the combined
register pair R2 and R3. A floating point number, say F,
has the form

EXP I
* 7 bits 56 bits
where .1 = —lIZ (I is a fourteen hexadecimal digit integer
16
with the first digit non-zero). This means .I is in the range
1
_— <
16_.I<l

If any two numbers of the form .I are divided, say .Ij/.Ik

- 261 -

the answer is of the form

.1, s
—L =1 = 16~ where
.Ik 2

§ =0 if .Ij < .Ik or § =1 if .Ij > .Ih

Divide here is a /360 floating point division with the
implied truncation.

The seven digit exponent field is excess 64. i.e. an
exponent of 65 would mean the .I part of the number would
be multiplied by 161,

DPCON splits this 7 bit exponent field into two parts, a
3 bit lower field j and a 4 bit upper field 1i.

Thus the exponent can be represented as 8i + j.

Thus
I R

1
or F=.1, * 1650 7 8) 4 1¢

1 h|

1, * 1614
or F = ,
1678 = 8) 17T & 1614

DPCON makes use of two tables indexed by i (represented by
(DTIR1)) and an integer qq (represented by DTR1A) which express
-8(i - 8)

16 in the form:
-8(i - -q
1678 - 8) 1, * 10 L for i =0 to 15.
Thus F now equals
14
*

_q (s
I, * 10 167G - 14

and carrying through the division

- 262 -

13 * 16 s 1614
F = q where él =0orl
10 a1
14
*
_ .13 16
-q -(3 + 6, - 14)
10 1% 16 1
We now employ two more tables of constants .I4 - (DTR2)
and integral 4y ~ (DTR2A) indexed by (§ + 61) such that:
-(3 + 68, - 14) -q
16 1 = .14 * 10 2

for (j + 61) = 0 to 8.

Now F =
-ql
LI % 10 * 10

I % 16 2 % 1617
= where 6, = 0 or 1
—ql 'qz 2
10 * 10

S q, + q
(1, * 16 2y 101 2

which is the product of a 14 or 15 hexadecimal digit integer
and some integral power of 10 which is our desired result.

The evaluation of the constant 9, consists of expressing

16" in the form .I * 10 ¢

IfC+ms= log10(16n) where C is the integral characteristic

and m the mantissa we have

109 = 16"

lO(C +1)+ @m-1) _ ..

16

or

c+1

or 10 * .1 = 16"

- 263 -

where I = 10m-'1
Since 0 < m < 1
1 1 m—~1
16 <1010 <1

and hence lOm-l is of the required form .I

qg=-(C+ 1)

(i) SPCON

This subroutine takes the single precision floating point
number in the variable TEMP and expresses it in the form

TEMP = INTEGER * 10 ** EXP

where EXP is a half word decimal exponent and INTEGER is in

the range (231)/10 < INTEGER < 231.

(k) INDPCON

This subroutine does the reverse of DPCON. It takes as input
the 16-character unpacked decimal number in TEMP, a decimal
exponent in EXP and a sign indicator in NEGSW. The 16-
character number in TEMP is considered to be a l6-decimal
digit integer with value such that

INTEGER * 10 ** EXP

has the same value as the number on the input card modified
by any scaling factors that apply. This routine generates
the equivalent floating-point number and returns it in
floating register zero.

The number is packed in such a manner so as to generate a
fourteen-hexadecimal digit integer in the range 1613 o 1614-1
unless the number is zero.

This is then floated by concatenating X'4E' anto the front to
produce the floating value of the integer part.

The sign is then inserted.

If the exponant is less than ~64, then FRO is divided by

10 ** (64) and the exponent incremented by 64.

The exponent is split into two indices, one consisting of the
last four bits of the exponent which is used to index a table
of the form 10 #* N for N from O to -15, which is divided

into FRO, the other consisting of the first three bits plus

a constant which is used to index a table of the form 10 *%* 8N
for N from -4 to +4.

- 264 -

(¢) INSPCON

This subroutine is virtually the same as ILDPCON except that
a single-precision number is returned in FRO.

(m) COMPRSET

This subroutine rounds F type numbers and takes as input:

1. R5 - a pointer to the first non-zero character of an unpacked
decimal number.
2. R3 - the number of decimal digits to occur before the

decimal point (can be negative).

3. R6 - the length of the output field.

4, NPLACE - the maximum number of significant digits that can
be output.

5. NDEC - the number of digits after the decimal point.

6. NEGSW - the sign of the number (i.e. X'80' for negative,

X'00' for positive).
7. BPOINT - the address of the next buffer position to be filled.

It outputs the rounded number into the buffer with sign,
(R3) digits before the decimal point, and NDEC decimal places

after the decimal point.

THE ALGORITHM

ROUNDING
1. The number of significant digits requested is calculated
(R3 + NDEC).
2. The relative address of the first significant digit not to

be used is calculated and if it is not positive and less
than the number of significant digits available, then rounding
is bypassed.

3. If this digit is .GE. 5, then the string 1is scanned backwards
looking for the first digit .NE. 9 and this digit is incremented
by 1. All intervening 9's are set to O.

4. A check is made to see if the final address is less than the
original starting address (happens when 0999 goes to 1000).
If so, the starting address is updated, and for F-type format
only, the number of digits before the decimal is incremented
by omne.

INSERTING THE NUMBER

1. Find the address where dot will go.

2. R3 contains address relative to dot where first significant
digit will go. Save R3 in R2 and then set R3 = MIN (1, R3)
which is address relative to dot where first significant
digit or leading zero will go, i.e. take note of fact that
1/2 is output as 0.5.

- 265 -

3. If a negative number then go back one space and insert minus
sign.
4, Find the address where first character is go to +1, and save

its value of R7.

5. Initialize the remainder of the field to zero's.

6. Find the address of where the first significant digit will
go and copy into that address the minimum of the number of
significant digits available and the number of digits
required to complete the field.

7. Shift the field starting at the address computed in step 4
and with the length computed in step 2 to the left by one
place.

8. Insert the decimal point at the address computed in step 1.
9 Return to caller.

(o) INFRIO

This subroutine is the interface to the card scan routine
(FRIOSCAN) which picks up a number from an input card, and puts it into
a standard format. The first time FRIOSCAN is called, it enters at
entry point FRIOSCAN whose address has been put into the variable
FRIOROUT by the initialization routine. Thereafter FRIOROUT is
updated by storing the contents of R5, which is returned by FRIOSCAN
to inform FORMCONV where it should return the next time. FORMCONV
sends to FRIOSCAN the following information.

pointing to the START of the field to be scanned.
containing the length of the field to be scanned
minus one

R6 - contains a code indicating FORMAT(4) OR FREE(0)
R7 - contains a code describing the type of entry to
be picked up.

R1
R3

0 - LOGICAL
4 - INTEGER
8 - REAL
12 - COMPLEX
16 - HEXADECIMAL

FRIOSCAN returns to FORMCONV with the following information stored
in FRIOTEMP.

First 16 bytes
FRIOTEMP

~- for integer the character representation of the integer
right justified in the field.

- for REAL and COMPLEX a 16 character decimal integer.

- for logical, the first byte is set to X'FF' for FALSE and
X'00' for TRUE.

- for hexadecimal the most significant 32 hex digits packed

- 266 -

and right justified in the field.

FRIOTEMP+16
- for REAL and COMPLEX a half-word exponent whose value is
such that the integer above multiplied by 10%* exponent
equals the number read in.
FRIOTEMP+18

If bit 0 = 1 then a decimal point was found and
if bit O 0 then it is the number of blanks from the start
of the number to the first non-blank character.

FRIOTEMP+20
~ a byte indicating the sign

X'80' « for negative

X'00' - for positive
FRIOTEMP+21
- a switch for the exponent
BIT 0 - on if exponent is negative
BIT 1 - on if exponent found
FRIOTEMP+22

- duplication factor in free I/0.

The normal return from FRIOSCAN is a B 8(R5). A BR R15 is the error
return which transfers to the ERRFRIO routine which stores the.last

character from RO in an FM-error message which is then issued.

The return B 4(R5) is for free hexadecimal format (not
implemented yet).

INFRIO then loads R4 with the address of FRIOTEMP and moves
the first 16 bytes of FRIOTEMP into TEMP, gets the exponent from
FRIOTEMP+16 and modifies it with the scaling factor (NBDOT) if an
exponent was not specified (Bit 1 of FRIQTEMP+21 = 0). The sign is
moved from FRIOTEMP+20 to NEGSW and the duplication factor to DUPFAC.
The routine then returns to the caller,

(p) CONVDP

1. Set the number of significant digits available (NPLACE) to 16.

2. Convert the l4-hexadecimal digit integer in R2 and R3 to
decimal in two steps and unpack.

3. Put the address of the first significant character in R5.

- 267 -

(q) IMPLDOT

5.4.7.

FORMPTR

FIELDCNT
LFIELD
NDEC
ROUTNUM
ABUFFER
BPOINT
LBUFFER
RECLEN
ROUTCODE

NBDOT
CODEBYTE

FRBRCNT
SCBRCNT

Routine to adjust exponent according to format specification

when to decimal point is found in the input field.

Get the exponent and increment by length of the field.
Subtract the number of decimal places and subtract the
number of blanks before the first digit.
Record the modified exponent and return.

IMPORTANT VARIABLES AND SWITCHES

(the address of the next format stack entry — START).
(initialized to the start of the format stack - START) by
the OUTBCDI and INBCDI processors.

duplication factor n on the specification nSw.d.

the field width of the specification nSw.d i.e. (w).

the number of decimal digits after the decimal place. 1.e.

address of routine for code 8.

the start of the output buffer.

the next position in the output buffer to be filled.

the length of the current buffer.

the number of bytes output in the current record so far.
code for current routine.

- for BCD OUTPUT
- for FREE OUTPUT
- for BCD INPUT
- for FREE INPUT

wNHEO

(a).

the number of decimal digits to come before the decimal point.

code to define variable type

- for LOGICAL*4
- for LOGICAL*1
- for INTEGER*4
for INTEGER#*2
- for REAL*4

- for REAL*8

- for COMPLEX*8
- for COMPLEX*16

~NoumbswNhE O
i

- the current value of the first level bracket count.
- the current value of the second level bracket count.

ENDSW

NPLACE

PRINMSK

NEGSW

|

- 268 -

Bit 0 - Bit 5 - always zero
Bit 6 - used to detect non-terminating formats
- tested by end of format routine.
If on, ERROR FM-7, non-terminating format is issued.
If not on, then turned on.

- it is turned off by initialization and by the
processing of an 1/0 list item.

Bit 7 - End of I/0 list reached.
Tested by I/0 list format processors and end of
format stack processor
Turned on by XSIMPELT etc. by branching to OUTBCD
etc. instead of OUTBCD+4.

the maximum number of significant digits capable of being
generated for a given number.

Set to 7 for single-precision.
Set to 16 for double-precision.

marks a field type as E or D, F or G

= X'00 for E or D
= X'01' for G format
= X'02' for F format

SIGN INDICATOR FOR INPUT AND OUTPUT NUMBERS

- X'80'" - TFOR NEGATIVE
- X'00' -~ TFOR POSITIVE

- 269 -

5.4.8. Non-formatted (Binary) I/0 INBINI, OUTBINI,
INBIN, OUTBIN

These routines perform the binary I/O operations. The
routines are basically a copy of the routines in IBCOM (FORTRAN H
routine).

Again as in the rest of FORMCONV three entry points are
used (set by XIOINIT in STARTA) for both read and write.

The entries INBINI and OUTBINI are the initialization entries
and merely save buffer pointers for future use.

XIOSWN - Input (X'00') vs. Output (X'OF') indicator
R6 - record count
R7 - work register
R8 - address of the end of the buffer
R9 ~ address of the next available word of
the buffer (R10+4 to start)
R10 - address of the start of the buffer.

These registers are initialized and stored in XKEEP.

The entry points INBIN+4 and OUTBIN+4 are used to fetch a
variable or place a variable in the buffer. Using the mode and type
byte of the variable and the switch XIOSWN the variable is moved to or
from the buffer after checking that we are still within the buffer
range. If we are over the end of the buffer and the operation is write,
the length of the record is stored in the first word (green word) of
the record. A call to FIOCS causes the record to be written and control
returns to move in the next variable. If the operation is read a test
is made on the 'green word' to see if anything follows and the
appropriate read is performed. The pointers are updated and control
returns to the object code.

The entry points INBIN and OUTBIN are used to process the
end of the list of variables. 1If the operation is read, the rest of ghe
logical record is read (if not already read) and control returns to the
object code. On write the green word (the actual number of physical
records) is stored and the final record is written.

- 270 -

5.5 FI0CS

This routine is used by the compiler for all its I/0 at
both compile and execution time. The routine FIOCS is a copy of the
FIOCS routine used by the IBM H-level compiler. Several changes and
additions have been made to do more error checking and page and line
control.

5.5.1. Error Messages

The method of handling error messages has been changed to
make it more suitable for WATFOR. A one byte error code is inserted
in location PARAMS. FIOCS has previously inserted the address of the
data set reference number (DSRN) in PARAMS. Hence the return sequence
in case of an error in FIOCS is

L R15,=V(MYIBCOM)
CNOP 2,4
BALR 14,15

PARAMS DC X'code',AL3 (DSRN)

where MYIBCOM is the address of the I/0 error processor in STARTA
(Section 3.13.). The error code is a numeric value from 0-9
corresponding to WATFOR'S'UN' errors.

5.5.2. Switches added
CURUNIT The current unit number dis saved here.
INHIBIT Set off unless a control card has been read

from the 'input' unit at which time it is
turned on. This switch is used only at
execution time.

CTYPE - Branch/NOP switch. Set to Branch unless
current unit is 'input' and we are reading
at execution time.

PCONTROL The control card character (§).

PPRINT Equated to the print unit (e.g. 6)

PREADC Equated to the read unit (e.g. 5)

PPUNCH Equated to the punch unit (e.g. 7)

- 271 -

5.5.3. Line and Page Control (PRITE)

After checking that the unit is the printer, register 15
is set up to point to a set of constants in MAIN, These constants
contain the following:

PLINES DS F lines per page allowed
PLNCOUNT DS F lines so far on the current page
PPAGES DS F pages allowed
PPGCOUNT DS F pages so far
DS F not used
PXCARD DS C was the punch used?

Register 14 is get to point to the output buffer. The
control character is checked for one of the types (+, blank, 0, -, 1)
and if any other is present it is set to blank. The appropriate line
and/or page counts are increased. If the page count becomes too
large and WATFOR is in the execution phase, the appropriate error
return is taken.

5.5.4. Entry Coding Added

WATFOR uses FIOCS for both its compile and execution time
I/0 and hence several changes were required upon entry to FIOCS.

(a) Compile Time

The two switches INHIBIT and CTYPE are initialized. Control
then transfers in the same manner as the IBM version with the exception
of the "initialize entry'". 1In this case the unit number is saved
first and in the case of output, line and page control coding is
performed.

(b) Execution-Time

Before going to the various routines some checking is
performed.

(i) 1Initialize Entry (PINIT)

The unit number is saved and several checks are made to see
if the unit is being used incorrectly.
e.g. 1 (If the input unit is 5, the statement WRITE(5, 300)A would
cause an error message to be issued.)
e.g. 2 (If we already have taken a return of the type END= as the
result of an end-of-file on the input unit the switch INHIBIT is
used so that no further input can occur from the 'input' unit.)

- 272 -

(ii) Input (FRITE)

If the unit is the 'input' unit again test INHIBIT to see
if a read is allowed.

(iii) Output (PRITE)

The switch CTYPE is set off. If the unit is the output unit
a check is made for a valid control character and line and page
counting are performed.

(iv) Control (PCNTRL)

If input, output, or punch is referred to, issue an error

message.
e.g. REWIND 5

(v) Execution Time

For the case of input from the 'input' unit a check is made
for the control character ($).

- 273 -

6 MATIN

6.1. Introduction

This routine's main function is supervisory. It controls flow
between the compile and execution phase of the compiler. It also performs
the necessary job accounting, initializing of constants and switches,
opening and closing of data sets and timing of jobs. Figure 6.2.
describes the main flow of the routine. This chapter also includes a
description of the library subprogramme processor MLIBR.

In order to provide addressability for the communication regions

MAIN uses several routines in the STARTA and COMMR as 'links' to the next
required step. (Figure 6.1 describes the flow of these routines)

XSTART
This routine is used just previous to the start of execution.
It issues the execution SPIE macro to get control of interrupts 1-7,9-13,15

It then links to assign values defined in DATA statements (if‘present).
Finally the object code (M/PROG) is called to execute the users programme.

XSTOP

A STOP or CALL EXIT statement causes a transfer to the routine
XSTOP which resets register 12 and 13 and calls CSTOP.

STOP
This routine is used when a batch is complete and the compiler
wishes to return control to the caller (0.8.?7). The value in register 13

and the caller’s registers are restored and control returns via register 14.

START

This is the entry point to the compiler. The registers are
saved and the save areas (WATFOR's and the caller's) are linked and
control now transfers to CSTART (in COMMR).
CSTART

This routine merely sets up register 10 for COMMR and transfers
to MAINP (in MAIN).

CSTOP

XSTOP transfers to CSTOP where register 10 is set up and control
transfers to MSTOP (in MAIN).

- 274 -

START

CSTART

R4
MAINP

i)

v
L

Yes
End of Batch STOP

lNo

No

“\
Do we execute _A//

Yes
A\
XSTART

. 4

Execution

i/

XSTOP J(

K

CSTOP

N7

MSTOP

Figure 6.1.

- 275 -

MATIN &

MAINP
Open library file No Do we
get buffer execute >
Yes
A Execution

End of Executjon

Close files Via XSTOP e 1

Print Accounting

Line

Start of Compile
Initialize
Programme segment
(LENDPROG)
Close all files
Read a . No and release
card Buffers
Return to System

L | Sto A
<i JOB or STOP

JOB

Analyse JOB card
Options and set
switches

b

Call
SCAN

l {
Call
LENDS

Last card No $STOP \ Yes
SENTRY

No

Yes
Call
MLIBR

Relocator
Phase 3
called

Figure 6.2.

- 276 -

6.2 Initial Batch Entry (MAINP)

This routine is used only at the beginning of the first
WATFOR job. It checks if the user or installation hag inserted a
DD card for the library data set and opens the data set if present.
The required buffer is obtained by issuing a "GETMAIN" where the
length is obtained from the library (WATLIB) DCB. Pointers are set
up to point to the beginning and end of the buffer (CUFF & CBUFFE).

6.3 End of Batch (MAIN60)

When a $STOP card is encountered by MAIN the 'I have got a
card switeh' (CIHGACRD) is turned on and control transfers to MSTOP
(to print the accounting for the last job compiled and/or executed).
Control then transfers to MAIN60Q where the $STOP card is printed.
The library data set is closed and the buffer is freed. All other
data sets are closed by issuing a call to FIOCS. We now transfer to
STOP in STARTA which in turn returns to the system.

6.4 Start of Compilation (MAIN)

This portion of coding can be broken into three main parts:

1. Initialization for the complete programme.
2. Job Card analysis.
3. Compilation of the programme.

Following this depending on several error conditions the user
programme may or may not execute.

1. Initialization:

Most of the switches and constants have been described in
other parts of the manual. This portion of code in addition
to the routine LENDPROG performs the initialization. :

(i) The standard 0.S. STIMER and TTIMER macros are used by

WATFOR to determine compilation and execution time.
A STIMER is issued to indicate start of compilation
using the value in MTIMERIL.

(ii) A SPIE macro is used to ignore compiler interrupts
8, 10, and 14.

(iii) The following constants and switches and registers are
initialized:

- 277 -

XERRSWT error switch - off

XEXECSW execution switch - off

Reg's 5 & 6 point to object code and symbol table
CMOSWTCH memory overflow - off

XISNRTN+1 reset timer overflow switch - off
CSRSWTCH main-line programme entry - off

XISN statement counter set to zero

Control also transfers to LENDPROG (Section 4.2.13.) for more
initialization.

2. Job Card Analysis:

After checking that the last job did not read the $JOB (if
it did, don't read another card) read cards until a $JOB
card is encountered. Before analysing the possible options
the following switches and constants (installation defaults)

are set:
CMODESWT X'00' for BCDIC
X'06' for EBCDC
CUNDEFSW undefined variable switch
X'00' for RUN=NOCHECK
X'OF' for RUN=CHECK
X'FF' for RUN=FREE
XNOPDEFZ+1 X'00' for RUN=FREE or CHECK
XNOPDEFN+1 X'80' for RUN=NOCHECK

The following constants are set to one

XEXUFLOW number of floating point underflows
XEXOFLOW number of floating point overflows
XFXOFLOW number of fixed point overflows
XFXDVCNT number of fixed divide checks
XFLDVCNT number of floating divide checks
XDVCHKSW divide check indicator set X'02’
XOVRFLSW overflow/underflow switch set X'02'

The above settings may be changed by information obtained from
the $JOB card or by the programmer by the appropriate library
function call (e.g. DVCHK).

Counters for the number of lines per page allowed (XLNCOUNT),
number of pages allowed (XPAGES) and the execution time (XTIME)
of the user programme are also set to default values (obtained
from OPTIONS).

The $JOB card options are now analysed. The present parameters
allow the user to specify:

- 278 -

1. Keypunch used (KP = 26 or 29)
2. Lines per page (LINES = number)
3. Pages for a job (PAGES = number)
4, Maximum execution time (TIME = number)
5. Run type RUN = FREE, CHECK, NOCHECK

These options are described in detail in the WATFOR
Implementation Manual.

The coding and logic to process the above parameters are
relatively straight forward and will not be described in
detail. Several points, however, should be mentioned:

1. If at any point an error is encountered an error message
is issued. The parameter in error and any parameters
not processed as yet will not be processed. Hence the
default values will be assumed.

2. The routine FRIOSCAN (section 5.4.) is used to collect
and convert constants used on the $JOB card.

Compilation of the Programme:

Another card is now read. If it is a $STOP card control will
transfer to the end of batch processor;if not, the CIHGACRD
switch is turned on and control transfers to the routine SCAN
which maintains control until a $JOB, SENTRY or a $STOP card
is encountered at which time it returns to MAIN. If the

"END' statement was not the last statement processed (use
CSRSWICH) go to the routine LENDS and generate the appropriate
action. A check is now made to determine what type of control
card caused the return from SCAN. If it is not $ENTRY control
transfers to MXSTOP where the end of compile time is determined.
We can now possibly proceed with the next job or finish the
batch. If it is SENTRY, the card is printed and a test is
made to see if a programme has been compiled (if CGBEG is

zero - no programme). Control now transfers to MLIBR

(section 6.6.) to process unresolved subroutines from the.
library. The third phase of the relocator is now invoked to
set up the necessary arrays. Checks are now made to determine
if the programme and associated data areas are too large and
if this is true, the programme will not be executed.

The error switch (XERRSWT) indicates if any fatal errors that
might inhibit execution were encountered in the programme.

A TTIMER is issued to obtain the compile time. An STIMER

ig issued to set the maximum execution time and we are now
ready to execute the programme. At the end of execution
control will transfer to XSTOP.

- 279 -

6.5 End of Execution (MSTOP)

This routine is used at the end of execution of a job, and
at the end of compile if the programme did not execute. A TTIMER is
issued if the job went into execution to obtain the execution time.

Closing of data sets

The routine FIOCS as used is not serially re-useable or
re-enterant. Hence, if files were closed a new copy of FIOCS would be
required for each job in the batch. More important is that this
would require extra unnecessary time in a batch environment and hence
the following approach has been taken.

Each unit is checked to see if it has been opened (i.e. used
by a programme). If not no action is taken. If yes, then a check is
made if the unit is the "input" or "output' and again if yes no action
is taken since the compiler uses these units for its output and input.
If the punch unit was used, two blank cards are punched to clear the
buffers. This is done by simulating the statement

PUNCHn
n FORMAT(//)

If the unit is a disk or tape utility and it has been used a REWIND
is issued on the unit.

Printing The Accounting Line
The compile and execution time are now determined and stored

in the output line. The object code space, data areas and free area
space are computed and stored. The line is now printed.

- 280 -

6.6 FORTRAN and User Library Subprggramme . (MLIBR)

WATFOR allows the user two types of library subprogrammes
The standard FORTRAN library functions are available. These are all
core resident (section 5.1.) and merely require that the address be
resolved. It is also permissable to have a FORTRAN source library
(WATLIB) available for the user. In this case WATFOR will compile the
subprogramme obtained from the library. The routine MLIBR maintains
control over this processing.

MLIBR sets the switch CSUBRDS to indicate that card
images will come from the library and saves the present card image in
MXCARD.

Using the LLIST of the symbol table B2 is tested if the
entry is resolved and if it is the next entry is checked. 1If not then
the 'name' is checked against a table of available FORTRAN library
functions. This table contains the name, type and address of the
function. If the 'name' is found a check is made to see if the types
correspond using Bl of the symbol table entry and the function table
type. (An SR-2 error message is given if the types do not correspond.
The address of the function routine is placed in the symbol table and
control returns to check the next entry in the LLIST.

If the entry is not found in the function list, a 'FIND' is
issued in the source library data set. If the 'nmame' is not found an
SR-2 error message is issued. If the 'name' is found the 'FIND' macro
has set up the WATLIB DCB to point to the required member.

Since the CREAD routine can use blocked input the current
record pointer (CPOINT) is set to point to end of the buffer (CBUFFE)
to force a read. CMODESWT (keypunch mode) is set to X'0C' to specify
that the keypunch mode will be the same as the user's. Control now
transfers to SCAN and subsequently the statement processors to compile
the subprogramme. On return the next item in the LLIST is checked.

When the end of LLIST is encountered the original card image
is restored, the read switch reset and control returns to MAIN. Note
that if library subprogrammes call other library subprogrammes the
"names' would have been added to the end of the LLIST and hence would
be resolved as they are encountered in the LLIST.

- 281 -

Chapter 7

Debugging the Compiler

Certain debugging facilities have been built into the
compiler to make our work easier. These facilities would only be
used by an installation if it wishes to make major changes or
additions to the compiler. It should be noted that all WATFOR's
debugging facilities are removed (assembled out) when the compiler is
released. This is accomplished by setting certain parameters in the
'OPTIONS' deck.

Option Release Debug
&WATTYPE SETC 'DISTR' 'TEST'
&TRACE SETC 'OMIT' 'USE'
&SNAPS SETC 'OMIT' 'USE'’

Note: If an installation wishes to include this facility the entire
compiler must be reassembled.

Three major debugging aids are used and these are now
described.

1. SNAPSHOT

The first aid involves a snapshot (dump) in hexadecimal
format. This allows the various processors to display information
that they have produced at compile time. For a particular FORTRAN
statement this would include a dump of the stack, the ISN code
generated (if statement is executable), any object code generated
by the processor as well as any symbol table modifications or additions.
Finally, at the end of the programme segment the complete object code
generated plus the symbol table for the segment is displayed. The
relocator is invoked at the end of programme segment to assign
storage and fill in B/D addresses. The object code and symbol table
are displayed again following this process.

A routine wishing to display information uses the CSNAP macro
described below: :

CSNAP IDENTIFIER,AREA,n

- 282 -

IDENTIFIER - a BCD name to identify the output
(max. length 8 characters)

AREA - the address in the programme where
the snapshot is to start
n - the number of output bytes.

e.g. CSNAP STACK,0(R9),8

would output

STACK 00080101C1C2C3C4 (a possible first entry in stack).

Each of the processors and routines has inserted CSNAP's to display
information pertinent to the module.

1f the user wishes to display this data when running a test
programme he merely punches the letter 'S' in column 7 of the $JOB
card for the programme.

2. TRACE

The second facility involves a /360 assembler trace programme.
This programme provides an instruction-by-instruction trace displaying
the location of the instruction, the instruction itself, and the
contents of the registers and data areas affected by the instruction.
(The manual Trace [36Q available from the Computing Centre describes
the features of this programme.) Placing 'S' in column 7 of the $JOB
card initiates the trace routine for the object code generated and
any associated routines subject to the restrictions discussed below.

Several problems arose after a period of time while using
the Trace programme.

1. The volume of paper generated by the trace was often unnecessary.
2. No convenient facility was available to trace at compile time.
3. Usually a particular statement in the FORTRAN programme was the

cause of the error. Hence, we wished to trace particular
statements rather than the whole programme.
4, If a bug occurred in a particular processor at a low level
(i.e. called by many levels of routines) again the volume of
paper generated was prohibitive.
5. Tracing the I/0 routine for each or any statement became ridiculous.

The above problems were solved in the following ways:
1. Six new statements, recognized by SCAN, were added to WATFOR.

These statements could be inserted in the FORTRAN programme
for test purposes.

- 283 -

ONCOMPILEL turn on trace at compile time.
OFFCOMPILE turn off trace at compile time.
STARTRACE turn on trace at execution time.
ENDTRACE turn off trace at execution time.
ONSNAPS turn on snapshot information at compile time.
OFFSNAPS turn off snapshot information at compile time.
e.g.
STARTTRACE
ONSNAPS
ONCOMPILE
A = B*C + SIN(Z)
PRINT,A
OFFCOMPILE
ENDTRACE
OFFSNAPS

would trace both execution and compile time as well as displaying any
snapshots generated for the two FORTRAN statements. Hence, the
tester can limit his output as well as debugging both compile and
execution time routines.

A second scheme was initiated to prevent tracing of debugged
routines as well as the I/O routine FIOCS. This scheme requires a
special assembler language routine (RELFORM) to be included as the
initial entry point to WATFOR. The routine uses two methods to

inhibit tracing. The first involves the order of the Linkedit
INCLUDE cards. All modules "included" after the include card for
RELFORM are not traced.
e.g. INCLUDE OBJLIB(MAIN) These routines are
INCLUDE OBJLIB(SPECS) traced
INCLUDE OBJLIB(RELFORM)
INCLUDE OBJLIB(FIOCS) These routines are
INCLUDE OBJLIB(SCAN) not traced
This method allows us to eliminate tracing by processor
routines. However, we also did not want to trace certain debugged

routines (LOOKUP, OUTPUT, CONSTANT COLLECTOR etc.) located in the

communications regions.
set up in RELFORM.
compiler,

Hence a table of areas not to be traced is
Finally RELFORM transfers control to the

1. In each case only the first four letters need be used.

-~ 284 -

These methods of selective tracing have allowed us to
determine bugs in difficult cases.

3. TEST DECKS

In order to test a compiler a large number of test decks
are required. Since one of WATFOR's main design philosophies is to-
produce good error diagnostics, the test decks should test most of the
possible errors that a programmer would make. We have at present
approximately 1000 test decks the majority of which test error
conditions. These have been collected for the past several years.
They include decks used to test the 7040 WATFOR compiler as well
as decks generated by our group. Finally, any installations
reporting bugs supply us with more test programmes. After the
reported bug has been corrected, the programme is added to our
test library.

- 285 -

Chapter 8

Conclusion

When writing a programme as involved as WATFOR new ideas,
better methods, and faster routines are often suggested by the
compiler writing team as well as by our users. However, in our
modern computer environment it seems that while ideas should be easy
to implement, it always takes longer than anticipated. (In fact, as
someone has stated if a change or addition is implemented requiring
more than two instructions it should be considered a "major" change
to the programme.)

For these reasons the WATFOR group decided in April 1967 to
stop all new development on the compiler and release it for use at
our installation and others with the requirement that we would attempt
to correct any bugs. All new developments were grouped together and
basically a new project was started to implement these ideas into
WATFOR as a new version of the compiler (Version 1). To avoid
confusion we decided to name the new project WATFIV.1

Following is a list of new features and changes included as
part of WATFIV.

1. Several features of FORTRAN as defined by C28-6515 had not been
implemented in April 1966 when we released WATFOR. These features
listed below have been included in WATFIV

(i) Direct Access I/0
(ii) The NAMELIST statement

2. The SHARE FORTRAN Project proposed that IBM adopt the type
CHARACTER as an additional variable type (See SSD 164 C-4653).

We have included the CHARACTER variable type as defined by SHARE
in WATFIV.

3. A facility has been included to permit an installation to display
"English error messages' instead of WATFOR's normal scheme of
issuing a coded error message. This of course will require more
core to store the messages. For users who do not have the extra
core the old scheme may still be used.

4, Since most installation changes to WATFOR involve accounting and
JOB card analysis, "handles'" have been placed in WATFIV for an
installation accounting routine. This routine will be a separate
module to be maintained by the installation. This means that our
updates shouldn't conflict or cause problems with installation
modifications in this area.

1. At the time WATFIV was chosen for seemingly obvious reasons
(i.e. 5 (FIV) is one greater than 4 (FOR)). However since that
time someone has pointed out that WATFIV could stand for
WATerloo Fortran IV.

10.

11.

- 286 -

We have had many requests regarding WATFOR's dependency on the
operating system. Installations often wish to convert WATFOR

to run under a different operating system (e.g. DOS). WATFIV

will isolate most of system dependent functions to one particular
routine so that conversion will be easier. (This will not include
the I/0 routines FIOCS or DIOCS (Direct Access 1/0 routine).)

The structure of the compiler has been re-organized so that
assembly times will not be as long. This basically involves
including the extended START area (STARTB) as part of MAIN.

Also STARTA and COMMR have been changed to be used as DSECTS
when they are assembled with any of the statement processors
routines. This means that object decks are smaller and hence
less space is required for the WATFIV object data set (WATFOR.
0BJLIB).

An attempt is being made to reduce compile time.

(i) Most of the algorithms and routines were
re-examined for efficiency as well as for
how much space they required.

(ii) The LOOKUP routine for variables has been
made faster by introducing a pseudo-hashing
scheme.

An attempt is being made to compile larger programmes for the same
size area. This is accomplished by performing a clean-up on the
symbol table for each programme segment by only retaining the '
GVLIST (Global Variable List). Hence symbol table space is
recovered at the end of each programme segment allowing the

user to compile larger programmes as long as he used subprogrammes.
The clean-up takes time and hence compile-time is slightly

degradated but this should be compensated for by the faster lookups.

The object code for DO-loops and subscripting has been improved
slightly to give faster execution times.

Several new 'OPTIONS' have been added to allow the installation
more flexibility.

Other suggestions and ideas are being considered and may be
implemented if time allows.

Paul Cress gave us an added incentive to reduce the size of our
routines by offering one beer for each 100 bytes of code we could
remove. (He still hasn't paid off.)

- 287 -

APPENDIX A - Subprogramme Linkage Conventions in WATFOR

The purpose of this appendix is to explain in detail
subprogramme linkage conventions used in WATFOR for those installations
who may wish to add their own functions and subroutines to the core-
resident library to make them available to users in the way SIN, EXP etc.,
presently are.

Al Subprogramme Calling Sequence

The calling sequence generated by WATFOR may be illustrated by
the following example.

Suppose subroutine or function 'rtn' is referenced by a CALL
or function reference in a Fortran Statement e.g.

(i) CALL rtn (argl,arg2,arg3, ..., argn)
(ii) Y = rtn (argl,arg2,arg3, ..., argn)

The calling sequence generated by WATFOR for either is essentially

CNOP 0,4
L R3,=V(rtn-START)
LA Rl4,retaddr
BAL R1,START(R3)

" DC ALl(cl),ALB(locl)
DC ALl(cz),ALB(locz)

Argument list { -

DC ALl(cn),AL3(locn)

\ DC ALl(cn+1),AL3(junk)

retaddr EQU *

, . . . th
where c, represents a code byte that contains information about the i

1
element of the argument list and loci contains addressing information
for argi.

In addition, R13 of the calling programme points to an 18 word
0S5-type save area.

Thus, on entry to the called programme

- R3+R12 points to the entry point 'rtn' (since R12
always contains A(START) throughout execution of WATFOR).
- Rl points to the argument list located on a fullword
boundary in the calling programme.

- 288 -

- R14 contains the return address.
- R13 points to a save area for register storage in
the calling programme.

Upon return, the calling programme expects that:

- the result of a function subprogramme (as in (ii)
above) is returned in

- RO if logical or integer
- FO if real
- (FO,F2) if complex

- its base registers R5-R13 are restored before returning.

~ the low-order half of floating register F6 will contain
zero as it did on entry. (WATFOR uses F6 to 'double'
single precision numbers. e.g. to accomplish D1 = X + D2
where D1,D2 are REAL*8, X REAL*4 WATFOR generates

LD F0,D2
LE F6,X
ADR FO,F6
STD FO,D1 .)

In short if a subprogramme uses F6 it should zero it before
returning.

The 6 possibilities for code byte c; and associated meaning
of loci are:

(i) Simple quantity: c; = lO]Oll[Olklmlnﬂnﬂ

- mmm is the 'type' of the quantity as in Bl of the symbol table

i.e. 000 for LOGICAL*4
001 for LOGICAL*1
010 for INTEGER%*4
011 for INTEGER*2
100 for REAL%*4
101 for REAL*8
110 for COMPLEX*8
111 for COMPLEX*16

- k is 1 if the quantity is a constant, temporary, DO-parameter
or ASSIGNed variable (i.e. should not be changed by the
called subprogramme).

- in this case AL3(loci) = AL3(argi—START)

- 289 -

(11) Arrny name X: Cp IOIl[n]n[n[mlm m

- mmm is the type of the array (as in (i))
- nnn is the number of dimensions of X
- AL3(loci) = AL3(.X~START) where .X is the name of the

'dot routine' for array X (see below).

(iii) Subroutine name R: ci = |Q|Q|0|l|0|0|0|u

- AL3(loci) = AL3(addr-START) where addr is a full word
containing A(R-START)

(iv) Function or EXTERNALed name F: c; = lOIOIOllIlIglm]m]

- mmm is the type of the function (as in (i))
- AL3(loci) = AL3(addr-START) where addr is a full word

containing A(F-START)

(v) Statement Number Argument (multiple return): &n

|
- AL3(loci) = AL3(addr-START) where addr is the address of

the statement labelled n in the calling programme.

(vi) Argument List Terminator

There are 2 cases:- 1if the called programme is to be a

$ubroutine,
c, = Wiololilolofofi]

1

- if the called programme is to be a function of type mmm,

Note that the accompanying adcon contains no useful information.

- 290 -

A2 Subscripting and the use of the Dot Routine

All array references in WATFOR are done via the so-called
'"dot routine' which is constructed by the compiler for each array that
is declared in the programme. This dot routine contains information
pertinent to the array (e.g. its subscript ranges, address in memory)
and is used for indexing into the array and for checking for out of
range subscripts.

The format of a dot routine for an array, say X, declared in
the programme in which it is defined (i.e. not a dummy parameter) is:

CNOP 2,4 } Not present if
DC CL6'X' RUN = NOCHECK
CNOP 0,4
.X BAL R15,xrtn
DC AL1(f),AL3(basaddr-START)
DC AL1(s),AL3(number of bytes in array)
DC A(d.)
1
DC A(dz)
only n present
DC A(dn)
Here - n is the number of dimensions of X
- xrtn is XAl if n = 1 or XAN if n > 1 (XAl, XAN are in STARTA)
- £ = 4n-4

- s = logy® where & is the length of an array element,
i.e. s is 0,1,2,3,4 for 1, 2, 4, 8, 16 byte elements.
basaddr is the base address of X i.e. the 'location' of

X(0,0, ..., 0) and is calculated as
n j-1
AX@,1, ..., 1))-2 2 7 d, d = 1)
: i 0
3=1 i=0

- di are the actual dimensions declared.

The dot routine constructed for an array name which is a
dummy parameter in a subprogramme entry list has the format:

CNOP 0,4 } Not present if
DC CL6'X' RUN = NOCHECK
CNOP 2,4

.X BALR R15,0
L R3,8(,R15)
B START(R3)
DC A(%=%)

where the last adcon is filled in by WATFOR's entry sequence routine
XENT (cf. 'prologue') with the address of the dot routine for the actual

- 291 -

argument obtained from the call. (See coding generated by LINKR,
section 4.2.)

The dot routines are contained in the programme segment local
data area whereas the array storage is in the 'array area'. The use
of the dot routine for subscripting is shown by the following example
which indicates that WATFOR handles subscripting much like a subroutine
call. The object code for statement Y = X(I,3,R) is (RUN = NOCHECK)

CNOP 0,4

BAL R14,.X

DC AL1(X'4C"),AL3(I-START)
Subscript List { DC AL1(X'4C'),AL3(=3-START)

DC AL1(X'0C'),AL3(R-START)

LE FO, START (R3)

STE FO,Y

Note that the result of the call to .X is that the address
(relative to START) of the element in X, specified by the subscripts,
is returned in R3.

In general, an array reference for an array with n dimensions
is made by the code:

CNOP 0,4
BAL R1l4,dotrtn
e AL1(t,),AL3(s ~START)
DC AL1(t,),AL3(s,~START)
Subscript List
L DC AL(t_),AL3(s_-START)

where 8, is the name of the actual subscript and ti is a code which

describes its type (used by XAl and XAN) as follows:

INTEGER*4 subscript has ti = X'4C'" (=AL1(XSSI-XSSD)
INTEGER*2 subscript h?s ti = X'3A' (=AL1(XSSH-XSSD)
REAL*4 subscript has ti = X'0C' (=AL1(XSSR-XSSD)
REAL#*8 subscript has t, = X'00' (=AL1(XSSD-XSSD)
Note that calling the dot routine of a dummy array merely
passes control up one level to the dot routine of the calling programme,
continuing until the dot routine of the array is reached in the programme

in which the array was declared. (This in essence means that WATFOR
ignores, at execution time, the dimensions declared for dummy arrays and

- 292 -

is the reason why object-time dimensions don't work exactly as described
on page 93 of C28-6515-5).

Because a subprogramme has no readily available method of
finding the address of the true dot routine or the address of the
array itself, the routine X1STELT (in STARTA) was written. The inputs
to X1STELT are:

- 4 times the number of dimensions of the array in RO
- A(dotrtn—START) in R3

Call X1STELT by BAL R1,X1STELT (X1STELT returns on R1l). The outputs are:
—~ R15 contains the address +4 of the true dot routine
- R2 contains the total length in bytes of the array
- R3 contains the address (relative to START) of the first

element of the array.

As can be seen there are several ways by which a hand written
subprogramme can reference arrays.

A.3 Adding Subprogrammes to WATFOR

There are several steps which should be followed.

1. Code the subprogramme to use the conventions described above.
Declare each entry point with an ENTRY statement.

2. If the subprogramme uses routines in STARTA, for convenience place
the coding in source module FUNCTION since csect STARTA is copied
(assembler COPY feature) in that module. (There may be some

difficulty if many new entry points are added to FUNCTION since
the assembler allows a maximum of 100. It is a fairly simple
matter, however, to create another source module which uses the
basic structure of FUNCTION.) Reassemble FUNCTION.

3. If the step 2 is not necessary or convenient, assemble the routine
separately.
4. To make the new routine known to WATFOR update the list of known

in-core routines in source module MAIN, at label FBEG (sequence
number 00005880) using the FLIST or SLIST macro for a function or
subroutine subprogramme respectively. This must be done for each
entry point should there be multiple entry points to the routine.
(The 1list is not ordered.) Reassemble MAIN.

5. Re-linkedit WATFOR, including any new object modules.

A problem exists if an assembly language subroutine calls a
Fortran subprogramme since WATFOR will not be able to discover that it
is necessary to compile this routine.

- 293 ~

Moreover a missing entry point will occur in the linkedit of
the compiler in step 5 above if the routine is EXTRNed. For example
consider the following programme set up

~ S$JOB
Presented .
EZO rammer { CALL ASPRG(A,B) ASPRG is an incore routine added to

g . WATFOR as described above. ASPRG
contains a call to FPROG
\ END
SENTRY

(SUBROUTINE FPROG(X,Y,Z)
On direct
access
library { RETURN
WATLIB .

\ END

: There are several ways of getting around this problem
fairly simply. Force WATFOR to know that FPROG is required by the
programme by EXTERNALing it or iné¢luding a CALL to it which will not
be executed. Then include the name of FPROG in the call to ASPRG or
have an entry point in ASPRG which is called with the name of FPROG
as argument to initialize a linkage adcon in ASPROG.

For example. $JOB or $JOB
EXTERNAL FPROG GO TO 2
. CALL FPROG
. 2 CONTINUE

CALL ASPRG(A,B,FPROG)

. CALL ASPROG(A,B,FPROG)

END

SENTRY
END
$ENTRY

- 294 -

A.4 Notes and Cautions

1. WATFOR assumes that R12 always contains A(START). Thus coding
such as B START(R3) is really the same as B O0(R3,R12) and
installation written subprogrammes can refer to START by including
the statement USING START,12 since, if the routine is called by a
WATFOR-compiled programme, this will be true. (START is EXTRNed
as XTART in deck MAIN.)

2. The assembly language subprogramme may simulate a multiple return,
e.g. RETURN I, by searching down the calling programmes argument
list for the Ith statement number argument (taking care not to
run off the end of the argument list). Obtain the address of the
statement number and

(i) store it in the Rl4 position of the calling programme's
save area and do a normal return
or (ii) with the address of the statement number in, say Rl4,
reload the calling programmes base registers R5-R13 and
return on R14.

For example, suppose Rl points to the argument list entry of the
Ith statement number argument, in case (ii):

L R14,START(RL) Load A(stat. num-START)

L RI13,4(,R13) Restore calling save area pointer
LM R5,R11,40(R13) Restore calling registers
B START(R14) LA R14,START (R14) Return
BR RI14 }
3. WATFOR does not provide automatic function typing, i.e. the

programmer must declare library routines
e.g. REAL*8 DEXP

Thus installations must advise their users that any functions
added to WATFOR must be declared if the implicit typing rule will
not supply the proper function type.

4. Logical values are treated in WATFOR in the following way:-

~ the 1°° byte only of the variable contains the logical
value, i.e. the low-order 3 bytes of a LOGICAL*4 variable
are essentially ignored by WATFOR in logical operationms.

- .TRUE. is X'FF'

- .FALSE. is X'00'

5. A hollerith constant in a CALL statement is treated as a REAL%4
vector, i.e. a dot routine as described above is created for each
hollerith constant. It should be noted that WATFOR right pads
hollerith constants with blanks to a multiple of four bytes;

e.g. for CALL NAME ('ABCDE'), 'ABCDE' is treated exactly like a
real vector with 2 elements. (This was done for compatability with
7040 WATFOR.)

10.

11.

- 295 -

There are a number of useful macros available which may be used
by assembly subprogrammes. See section 5.1.2. of this manual or
the coding in deck FUNCTION.

WATFOR handles specification interrupts at execution time by the
routine XRUPT in STARTA. Boundary alignment of operands is
treated here and this routine uses R14 as a work register. Thus
user routines should be cautious on problems that might involve
improper operand alignment or other specification interrupts.
Note that there is a difference in WATFOR's treatment of the
following statements. (A is a vector):

CALL RTN(A(1))
CALL RTN(A)

In the former, A(l) is the name of a single simple quantity; in
the latter, A is the name of a collection of quantities. The
calling sequences generated by WATFOR reflect this distinction.
(See Section A.l1l above.)

Register usage:

(i) RO,R1,R2,R3,R4,R14,R15,F0,F2,F4, may be used by the
called subprogramme without restoring them upon return.
However if subscripting is done within the routine using
the dot routine method, it should be noted that R2,R3,

R4,R15,F4 are used by the subscripting routines XAl, XAN.

(ii) In addition X1STELT uses RO and R1.

(iii) Be careful of F6 and R12.

(iv) The calling routine (if compiled by WATFOR) uses R1l as
a programme base register and the value in R1ll points to

the ISN (halfword) of the statement which contains the call.

R5-R10 cover the local data area of the calling routine.

Assembly language routines can very easily clobber the compiler
if arguments are used improperly.

Installations should be careful to keep their entry and return
sequence coding as separate as possible from the body of the
routine being added since some of the conventions mentioned in
this Appendix will be changed in Version 1 of WATFOR.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

