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Abstract

In this paper, we compute certain sums involving the inverses of binomial coef-
ficients. We derive the recurrence formulas for certain infinite sums related to the
inverses of binomial coefficients.

1 Introduction

As usual, the binomial coefficient (TZ) is defined by

(n) _ 7m!(ﬁm)!, if n>m;
m 0, it n <m;
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where n and m are nonnegative integers.

There are many identities involving binomial coefficients. However, computations related
to the inverses of binomial coefficients are difficult. For some results involving the inverses
of binomial coefficients, see [, fl, [, B, B, H, [, L0]. In order to compute sums involving the
inverses of binomial coefficients, using integrals is an effective approach. This idea is based
on Euler’s well-known Beta function defined by (see [§])
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with this method, a series of identities related to the inverses of binomial coefficients is
obtained (see [B, [, [, [0]). In this paper, we also use Eq. ([]) to evaluate the sums
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where |¢| = 1, and k is an arbitrary positive integer with & > 1. For convenience, we put
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In the next section, we evaluate the sums above. In the third section, we define W, =

[o.¢] 1 1 '
———and X, =- Wp; our aim is to compute lim X,.
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2 Some Results For S;(k) And Tj(k) (1 <i<?2)

Theorem 2.1. Let k be a positive integer with k > 2. Then
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It is well known that
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On the other hand,
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From Eqgs. (B-f) we get Eqgs. () and ().




Now we give the proofs of Eqs. ([H]).
One can verify that
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Next, we extend S;(k) and T;(k)(i = 1,2) to the following forms:
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we give the corresponding results as a corollary:

Corollary 2.1. Let k and m be positive integers. Then

In[l — t™(1 — t)™ —I—Zt”” — )™
1 1
Si(k,m) = (E - Qm) /0 (1 = t)mk dt
—%/lln[l —t™(1 — t)™]dt, (9)
k
L+ (=)™ + D (= — i
So(k,m) = (—1)’f(% — Qm) /0 tmk(liilt)mk dt
1 1
_E/o In[1 + t™(1 — t)™]dt, (10)
Tkm) = _%/0 ln[l—ttg(i;t)m]dt_%Sl(lﬁm)’ (1)
ribom) =t [BLEEOCOT L. (12)



Proof. We only give the proofs of Eqgs. ([IH[J), and leave the proofs of Eqgs. (BHLT) to the

reader. We can immediately obtain that
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Owing to the conclusions (see [])
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It is evident that Eqs. (JH[J) are the generalizations of Eqs. (B-f), respectively. Now we

give the recurrence relation for S;(k) and T;(k).

Theorem 2.2. Let k be a positive integer with k > 2. Then
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Proof. For 0 < a <1, we consider the integrals:
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where I;,(0) = 0 and J,(0) = 0. It is clear that

(k) = I(1) + 1 (2 - %) and Sy(k) = Je(1) — %(ﬁm ‘/3; Lo 1).
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In the meantime, we note that
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From Egs. (I9R0J) we can derive Eqs. ([3H[4). According to Eqs. ([HH) we can obtain Egs.
([3H9). O

We note that the recurrences given in Egs. (L3HL4]) are similar to [{, Eq. (28)].

Theorem 2.3. Let k be a positive integer with k > 2. Then
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Proof. We only give the proof of Eq. (B])). The proofs of Eqs. (E2H2]) follow the same pattern
and are omitted here. It follows from Eq. () and Eq. ([) that

R b Rk T RN
) = > T /0 (1 — 1)
tn k 1—t tn o n+k
- 1——) dt+<1+ ) dt.

—(L+%)A%1—ﬂﬂﬂ1—ﬂl—ﬂut

Hence Eq. (BI]) holds. O

By computing integrals of Eqs. ([7HLY) and Eqs. (BIFE4), we can establish a series of
identities involving inverses of binomial coefficients. In the final part of this section, we
evaluate special cases of S;(k), T;(k), and R;(k)(1 < i < 2) according to the particular
choice of k. For example, when k& = 2 in Egs. (LZ}LJ), we have
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Hence, we get
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By means of S;(2), 7;(2), and Egs. ([3[@), we can compute other values of S;(k) and
T,(k)(1<i<2k>2).
If £ =2 in Eqs. (F3£7), we can obtain
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3 The Value of lim X,
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We know that W, = ——, W, = 5 and W, = 391

know how to evaluate W), in closed form when k > 5. In this section, we are interested in
the average X, of W;. We compute hI_P X, by Eq. ().
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(see []). However, we do not
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