Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.7

A Recursive Formula for the Kolakoski Sequence A000002

Bertran Steinsky
Fürbergstrasse 56
5020 Salzburg
Austria
steinsky@finanz.math.tu-graz.ac.at

Abstract

We present a recursive formula for the nth term of the Kolakoski sequence. Using this formula, it is easy to find recursions for the number of ones in the first n terms and for the sum of the first n terms of the Kolakoski sequence.

1 Introduction

The Kolakoski sequence K_{n} [6, 7], which we study here, is the unique sequence starting with 1 which is identical to its own runlength sequence. K_{n} is Sloane's sequence A000002. Kimberling asks 5 questions about this sequence on his homepage [5]. The first one is, whether there exists a formula for the nth term of the Kolakoski sequence. For a survey of known properties of the Kolakoski sequence we refer to Dekking [罒]. Cloitre wrote the formulas

$$
K_{N}=\frac{3+(-1)^{n}}{2} \text { and } K_{N+1}=\frac{3-(-1)^{n}}{2}, \text { where } N=\sum_{i=1}^{n} K_{i}
$$

in the entry of Sloane's sequence A000002, where we also find block-substitution rules, which where posted by Lagarias. I.e., starting with 22 we have to apply $22 \rightarrow 2211,21 \rightarrow 221$, $12 \rightarrow 211$, and $11 \rightarrow 21$, as it was mentioned by Dekking [3, (1). Culik et al. [2] proposed the double substitution rules $\sigma_{1}(1 \rightarrow 1,2 \rightarrow 11)$ and $\sigma_{2}(1 \rightarrow 2,2 \rightarrow 22)$, which are applied alternatingly to each letter of a word. These substitutions can also be found at Allouche et al. [1], p. 336]. Cloitre added the relationship

$$
f_{1}(n)+f_{2}(n)=1+\sum_{i=0}^{n-1} f_{2}(i)
$$

to Sloane's sequence A054349, where $f_{1}(n)$ denotes the number of ones and $f_{2}(n)$ denotes the number of twos in the nth string of Sloane's sequence A054349.

2 A Recursive Formula for the Kolakoski Sequence

We will now derive a recursive formula for K_{n}. Let $k_{n}=\min \left\{j: \sum_{i=1}^{j} K_{i} \geq n\right\}$.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
K_{n}	1	2	2	1	1	2	1	2	2	1	2	2	1	1	2
k_{n}	1	2	2	3	3	4	5	6	6	7	8	8	9	9	10

Table 1: K_{n} and k_{n}

Lemma 2.1.

$$
k_{n}=k_{n-1}+n-\sum_{i=1}^{k_{n-1}} K_{i}, \text { where } n \geq 2
$$

Proof. We first notice that

$$
n-1 \leq \sum_{i=1}^{k_{n-1}} K_{i} \leq n
$$

The left inequality holds by definition and the right one is valid, since if

$$
\sum_{i=1}^{k_{n-1}} K_{i} \geq n+1
$$

we would have

$$
\sum_{i=1}^{k_{n-1}-1} K_{i} \geq n-1
$$

which is a contradiction to the minimality of k_{n-1}. So, as the first case, we consider $\sum_{i=1}^{k_{n-1}} K_{i}=n-1$ which implies $k_{n}=k_{n-1}+1=k_{n-1}+n-\sum_{i=1}^{k_{n-1}} K_{i}$. In the second case $\sum_{i=1}^{k_{n-1}} K_{i}=n$ leads to $k_{n}=k_{n-1}=k_{n-1}+n-\sum_{i=1}^{k_{n-1}} K_{i}$.

We notice that Lemma 2.1 holds in general for every sequence, whose only values are 1 and 2.

Lemma 2.2.

$$
k_{n}=k_{n-1}+\left|K_{n}-K_{n-1}\right|=1+\sum_{i=2}^{n}\left|K_{i}-K_{i-1}\right|, \text { where } n \geq 2
$$

Proof. The following well known construction produces a sequence which is identical to K. Start with K_{1} ones, continue with K_{2} twos, followed by K_{3} ones, and so on. In this construction, after k_{n-1} steps two cases can appear, as described in the proof of Lemma 2.1. The first possibility is that $\sum_{i=1}^{k_{n-1}} K_{i}=n-1$, which means that we have constructed $n-1$ terms of the sequence. Therefore, by construction, K_{n} must be different from K_{n-1} implying $k_{n}-k_{n-1}=\left|K_{n}-K_{n-1}\right|$. In the second case that $\sum_{i=1}^{k_{n-1}} K_{i}=n$, it is necessary that $K_{k_{n-1}}=2$, for if otherwise $\sum_{i=1}^{k_{n-1}-1} K_{i}=n-1$, contradicting the minimality of k_{n-1}. So our construction has added 2 equal numbers at the k_{n-1} th step, such that $K_{n}=K_{n-1}$ and finally $k_{n}-k_{n-1}=\left|K_{n}-K_{n-1}\right|$. The second equality follows by induction.

Corollary 2.1 is an implication of Lemma 2.2.

Corollary 2.1.

$$
K_{n} \equiv k_{n}(\bmod 2) \text { or } K_{n}=\frac{(-1)^{k_{n}}+1}{2}+1 \text { respectively. }
$$

Corollary 2.2 uses Lemma 2.1 and Corollary 2.1.

Corollary 2.2.

$$
k_{n}=n-\frac{1}{2} \sum_{i=1}^{k_{n-1}}\left((-1)^{k_{i}}+1\right), \text { where } n \geq 2
$$

Corollary 2.3 follows from Corollary 2.2.

Corollary 2.3 .

$$
k_{n}=k_{n-1}+1-\frac{1}{2}\left(k_{n-1}-k_{n-2}\right)\left((-1)^{k_{k_{n-1}}}+1\right), \text { where } n \geq 3
$$

Theorem 2.1. For $n \geq 3$ we have

$$
\begin{align*}
K_{n} & =K_{n-1}+\left(3-2 K_{n-1}\right)\left(n-\sum_{i=1}^{1+\sum_{j=2}^{n-1}\left|K_{j}-K_{j-1}\right|} K_{i}\right) \tag{1}\\
& =K_{n-1}+\left(3-2 K_{n-1}\right)\left(n-\sum_{i=1}^{1+\sum_{j=2}^{n-1} \frac{K_{j}-K_{j-1}}{3-2 K_{j-1}}} K_{i}\right) \\
& =K_{n-1}+\left(3-2 K_{n-1}\right)\left(1-\frac{1}{2} \frac{K_{n-1}-K_{n-2}}{3-2 K_{n-2}}\left(1+(-1)^{\left.\left.K_{1+\sum_{j=2}^{n-1} \frac{K_{j}-K_{j-1}}{3-2 K_{j-1}}}^{K_{j-1}}\right)\right) .} \$.\right.\right. \tag{2}
\end{align*}
$$

Proof. From Lemma 2.1 and Lemma 2.2 we obtain

$$
\left|K_{n}-K_{n-1}\right|=n-\sum_{i=1}^{1+\sum_{j=2}^{n-1}\left|K_{j}-K_{j-1}\right|} K_{i}
$$

and use the fact that

$$
\left|K_{n}-K_{n-1}\right|=\frac{K_{n}-K_{n-1}}{3-2 K_{n-1}}
$$

to complete the proof of (11) and (2). The third equation (3) follows from Corollary 2.3 and Lemma 2.2.

3 Concluding Remarks

Let $s_{n}=\sum_{i=1}^{n} K_{i}$, which is Sloane's sequence A054353, $o_{n}=\left|\left\{1 \leq j \leq n: K_{j}=1\right\}\right|$, and $t_{n}=\left|\left\{1 \leq j \leq n: K_{j}=2\right\}\right|$, which is Sloane's sequence A074286. With Theorem 2.1 and the equations

$$
\begin{aligned}
K_{n} & =s_{n}-s_{n-1}, \\
K_{n} & =-o_{n}+o_{n-1}+2, \text { and } \\
K_{n} & =t_{n}-t_{n-1}+1
\end{aligned}
$$

it is easy to produce recursive formulas for s_{n}, o_{n}, and t_{n}.
By Lemma 2.1, we obtain $k_{n}=n-t_{k_{n-1}}$, from which it follows that t_{n} / n converges if and only if the limit of k_{n} / n exists. The definition of k_{n} gives the equations $k_{s_{n}}=n$ and $k_{s_{n}+1}=n+1$, which yield that the limit of k_{n} / n exists, if and only if s_{n} / n converges. Therefore, if we assume that one of the sequences $t_{n} / n, o_{n} / n, k_{n} / n$ or s_{n} / n converges then all sequences have a limit. If $a=\lim _{n \rightarrow \infty} t_{n} / n$ then $\lim _{n \rightarrow \infty} o_{n} / n=1-a, \lim _{n \rightarrow \infty} s_{n} / n=1+a$, and $\lim _{n \rightarrow \infty} k_{n} / n=1 /(1+a)$.

Using the recursion of Corollary 2.3, we computed k_{n} / n up to $n=3 \cdot 10^{8}$. Figure shows k_{n} / n for n from 10^{8} to $3 \cdot 10^{8}$, where only each 1000 th point is drawn, i.e., the subsequence $k_{1000 n} /(1000 n)$, for $n=100000, \ldots, 300000$. The x-axis is positioned at $2 / 3$.

Figure 1: $\frac{k_{n}}{n}$ for n from 10^{8} to $3 \cdot 10^{8}$.

If we assume that the limit of o_{n} / n exists and is equal to $1 / 2$ then k_{n} / n must tend to $2 / 3$. Thus, the graph in Figure [1 does not support the conjecture that o_{n} / n converges to $1 / 2$.

4 Acknowledgement

We thank the referees for fruitful suggestions and Benoit Cloitre for helpful email discussion.

References

[1] J.-P. Allouche, J. Shallit, Automatic Sequences, Cambridge Univ. Press, Cambridge, 2003.
[2] K. Culik, J. Karhumäki, Iterative devices generating infinite words, Lec. Notes in Comp. Sc. 577 (1992), 531-544.
[3] F. M. Dekking, Regularity and irregularity of sequences generated by automata, Sém. Th. Nombres Bordeaux '79-‘80 (1980), 901-910.
[4] F. M. Dekking, What is the long range order in the Kolakoski sequence?, The Mathematics of Long-Range Aperiodic Order, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 489, Kluwer Acad. Publ., Dordrecht (1997), 115-125.
[5] C. Kimberling, http://faculty.evansville.edu/ck6/integer/index.htm]
[6] W. Kolakoski, Problem 5304: Self Generating Runs, Amer. Math. Monthly 72 (1965), 674.
[7] W. Kolakoski, Problem 5304, Amer. Math. Monthly 73 (1966), 681-682.

2000 Mathematics Subject Classification: Primary 11B83; Secondary 11B85, 11Y55, 40A05. Keywords: Kolakoski sequence, recursion, recursive formula.
(Concerned with sequences A000002, A054349, A054353, and A074286.)

Received January 13 2006; revised version received August 19 2006. Published in Journal of Integer Sequences, August 192006.

Return to Journal of Integer Sequences home pag.

