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Abstract

We give the generating function for the number of independent sets on the class of
well-based path-schemes (a kind of regularly structured graph), which generalizes the
known result in this direction.

1 Introduction

Let G = (V,E) be a simple undirected graph with vertex set V = {1, 2, . . . , n} and set of
edges E. An independent set (also called a stable set in the literature) of G is a subset S of
V such that no two vertices in S are adjacent. The set of all independent sets of a graph
G is denoted by I(G). An independent set is maximal if it is not a subset of any larger
independent set, and maximum if there are no larger independent sets in the graph. The
independence number α(G) (also called the stability number) is the cardinality of a maximum
independent set in G.

The two problems of determining maximal and maximum independent sets have received
considerable attention, particularly since the computation of the independence number is
known to be an NP-complete problem [8]. These problems were extensively studied for var-
ious classes of graphs, including trees, forests, (connected) graphs with at most one cycle,
bipartite graphs, k-connected graphs, and others (see [7] for a survey). The most efforts
are made for the number of maximal independent sets rather than for finding α(G). How-
ever, counting cardinality of I(G), being a very challenging and interesting enumerative
combinatorics problem, received even less attention, and very few papers deal with it (see,
e.g., [1, 2, 3, 5, 9] and references therein). A motivation for finding |I(G)| is, for instance, the
fact that for some classes of graphs, the set of independent sets I(G) has an interpretation
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in terms of other combinatorial objects (see [1, 3]). For example, Ehrenborg and Kitaev [3]
showed that there is a bijection between the set of independent sets of a symmetric Ferrers
graph on 2n vertices and the parts of all compositions (ordered non-empty partitions) of
n+ 1.

The main objective in this paper is to obtain the generating function for the number
of independent sets on the class of well-based path-schemes (see Section 2 for definitions),
which generalizes the known result in this direction [9]. Although it is possible to provide
an entirely self-contained proof of our main result, we proceed by reformulating the problem
in terms of combinatorics on words, and then by applying a known result. Providing such
a proof we give an approach to solve some graph theory problems using combinatorics on
words (there are other examples in the literature when a combinatorics on words approach
solves a graph theory problem, e.g., Evdokimov [4] constructed chains of maximal length in
the n-dimensional unit cube reducing the problem under consideration to a combinatorics
on words problem).

2 Preliminary

Let V = {1, 2, . . . , n} andM be a subset of V . A path-scheme P (n,M) is a graph G = (V,E),
where the edge set E is {(x, y) | |x−y| ∈M}. See Figure 1 for an example of a path-scheme.

1 2 3 4 5 6

Figure 1: The path-scheme P (6, {2, 4}).

Note that from the definition, P (n,M) is a simple graph, and thus its adjacency matrix
A is symmetric. Moreover, if the columns and rows of A are ordered naturally, that is,
node i corresponds to the i-th column and to the i-th row, then for 1 ≤ i < j < n,
A(i, j) = A(i+ 1, j + 1), since |i− j| is in M if and only if |(i+ 1)− (j + 1)| is in M . Thus,
we can construct the upper triangular part of A by shifting the first row to the right, that is,
we place the first row, and row i + 1 is obtained by shifting row i one element to the right.
Then we use the symmetry to fill in the remain entries of A.

Suppose k ≥ 2 and A = {A1, A2, . . . , Ak} is a set of words of the form Ai = 10 . . . 0
︸ ︷︷ ︸

ai−1

1,

where ai ≥ 1, and ai < aj if i < j. Moreover, we assume that for any i > 1 and Ai ∈ A, if
we replace any number of 0’s in Ai by 1’s, then we obtain a word A′i that contains the word
Aj ∈ A as a subword for some j < i. In this case, we call A well-based set, and we call the
sequence of ais associated with A well-based sequence.

Any well-based set must contain the word 11. Indeed, if we replace all 0’s by 1’s in, say,
A2 then A1 must be a subword of the obtained word. So, we may extend our definition to
the case k = 1. We define A = {11} to be a well-based set. We see that any well-based
sequence starts from 1, and, clearly, if we take any number of consecutive initial elements of
a well-based sequence, we get a well-based sequence. A few examples of well-based sets and
associated with them sequences are given in Table 1 (i copies of 0 is denoted by 0i).
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Well-based set Corresponding well-based sequence
{11, 101, 1001, . . . , 10k−11} 1, 2, 3, . . . , k

{11, 1001, 100001, . . . , 102m1} 1, 3, 5, . . . , 2m+ 1

{11, 101, 1001, 1000001, 10000001} 1,2,3,6,7

Table 1: Examples of well-based sets and well-based sequences

We call a scheme P (n,M) a well-based scheme, if the elements of M listed in increasing
order form a well-based sequence.

It is known [9], that |I(P (n, {1}))| = F (n+ 2) and, more generally,

|I(P (n, {1, 2, . . . , k − 1}))| = Fk(n+ k), (1)

where F (n) is the n-th Fibonacci number and Fk(n) is the n-th k-generalized Fibonacci
number defined, in our context, as Fk(1) = · · · = Fk(k) = 1 and Fk(n) = Fk(n−1)+Fk(n−k).
Note that in our notation, F (n) = F2(n).

In Section 3, we find the generating function for the number of independent sets of an
arbitrary well-based path-scheme. The known result mentioned above can be extracted from
our generating functions, since it corresponds to a well-based sequence 1, 2, . . . , k − 1.

Before going further, we need some notions and results in a certain area of combinatorics
on words which perhaps can be best described as “binary strings and substring avoidance.”
In our presentation we follow [11], although the original ideas appear in [6].

A binary string is a string that consists only of the digits 0 and 1. IfX1 = a0a1 . . . ak−1 and
X2 = b0b1 . . . b`−1 are two binary strings of length k and ` respectively, then the correlation
c12 = c0c1 . . . ck−1 is the binary string defined with respect to whether k ≤ ` or ` ≤ k as
follows:

k ≤ `: For all 0 ≤ j ≤ k − 1, cj = 1 if ai = b`−k+i+j for all i = 0, 1, . . . , k − j − 1, and cj = 0
otherwise;

k > `: For all 0 ≤ j ≤ k − `, cj = 1 if bi = ak−`+i−j for all i = 0, 1, . . . , ` − 1, and cj = 0
otherwise; for all k−`+1 ≤ j ≤ k−1, cj = 1 of ai = b`−k+i+j for all i = 0, 1, . . . , k−j−1
and cj = 0 otherwise.

For example, if X1 = 110 and X2 = 1011, then c12 = 011 and c21 = 0010, as depicted below:

1 1 0
1 0 1 1 0

1 0 1 1 1
1 0 1 1 1

1 0 1 1
1 1 0 0

1 1 0 0
1 1 0 1

1 1 0 0

So, in general cij 6= cji (they can even be of different lengths). The autocorrelation of a
word X1 is just c11, the correlation of X1 with itself. For instance, if X1 = 1011 then
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c11 = 1001. This is convenient to interpret a correlation cij = c0c1 . . . ck−1 as a polynomial
cij(x) = c0 + c1x+ · · ·+ ck−1x

k−1.
The following theorem is the main tool in our considerations.

Theorem 1. ([11, Th. 24]) The generating function for the number of binary strings that
avoid the substrings b1, b2, . . . , bn, of length `1, `2, . . . , `n respectively, none included in any
other, is given by the formula

S(x) =

−c11(x) · · · −c1n(x)
...

. . .
...

−cn1(x) · · · −cnn(x)

(1− 2x) 1 · · · 1
x`1 −c11(x) · · · −c1n(x)
...

...
. . .

...
x`n −cn1(x) · · · −cnn(x)

. (2)

3 Main Result

Our main result in this paper is the following theorem.

Theorem 2. Let M = {a1, a2, . . . , ak} be a subset of V = {1, 2, . . . , n} such that the sequence
a1, a2, . . . , ak is well-based (in particular, a1 = 1). Let c(x) = 1 +

∑k

i=1
xai. Then the

generating function for the number of independent sets on the well-based path-scheme P =
P (n,M) (with vertex set V ) is given by

G(x) =
c(x)

(1− x)c(x)− x
.

Proof. If x is a vertex in P , we denote by N(x) the set of its neighbors in P . We identify
independent sets with the corresponding (0,1)-incidence vectors, indexed by V . These vectors
are called stable vectors in some literature. Let S(P ) denote the set of all stable vectors of
P . Then

Sn(P ) = {T ∈ {0, 1}n | ∀x ∈ V T (x) = 1⇒ T (y) = 0 ∀y ∈ N(x)}.

Thus, our goal is equivalent to finding the generating function for |Sn(P )|.
Let A be the adjacency matrix of P with rows and columns ordered naturally. One can

see that the first row of A has 0’s everywhere except for the entries A(1, ai + 1), where
i = 1, 2, . . . , k. Indeed, if A(1, x+ 1) = 1, and x 6= ai for some i, then we must have x ∈M ,
contradiction.

Recall that the upper triangular part of A is constructed by shifting the first row to the
right, which gives that a vector T belongs to Sn(P ) if and only if T avoids each substring
bi = 10 . . . 0

︸ ︷︷ ︸

ai−1

1 for i = 1, 2, . . . , k. Let us prove the last statement.
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We first prove necessity. Assume that for a vector T ∈ Sn(P ), T (j) = T (j + ai) = 1 and
T (t) = 0 for j < t < j+ai and 1 ≤ j ≤ n−ai. From the way we construct A, (j+ai) ∈ N(j).
We get a contradiction with the definition of Sn(P ).

Let us now prove sufficiency. We need to show that if a vector T does not belong to
Sn(P ) then it must contain bs for some s, 1 ≤ s ≤ k. A vector T does not belong to Sn(P )
if there exist two adjacent nodes, say j and h, j < h, such that T (j) = T (h) = 1. From the
construction of A, we must have h = j + ai for some i, 1 ≤ i ≤ k. If T (t) = 0 for all t such
that j < t < h = j + ai then we are done. If some of T (t), for j < t < h, are not 0’s, T must
contain bs for some s, 1 ≤ s < i due to the fact, that the sequence of ais is well-based, and
therefore the set {b1, b2, . . . , bk} is well-based (this set is associated with the sequence)1.

So, |Sn(P )| is given by the number of different binary strings avoiding the substrings b1,
b2, . . . , bk, and we may use Theorem 1 since none of bis is included in any other.

One can easily check that the autocorrelation cii(x) = 1+ xai , and for i < j, the correla-
tions cij(x) = xai and cji(x) = xaj . The corresponding lengths are `i = ai +1, for 1 ≤ i ≤ k.
Thus (2) in our case is

G(x) =

−(1 + xa1) −xa1 · · · −xa1

−xa2 −(1 + xa2) · · · −xa2

...
...

. . .
...

−xak −xak · · · −(1 + xak)

(1− 2x) 1 1 · · · 1
xa1+1 −(1 + xa1) −xa1 · · · −xa1

xa2+1 −xa2 −(1 + xa2) · · · −xa2

...
...

...
. . .

...
xak+1 −xak −xak · · · −(1 + xak)

.

To take the determinant in the numerator, we replace the first row by the sum of all the
rows, then factor out some terms from the determinant, and then add to each column the
first one multiplied by (-1) to get

(−1)k · (1 +
k∑

i=1

xai) ·

1 0 0 · · · 0
xa2 1 0 · · · 0
xa3 0 1 · · · 0
...

...
...

. . .
...

xak 0 0 · · · 1

= (−1)k · c(x).

To take the determinant in the denominator, we may replace the first column by the sum
of the first column and the last column times x; we replace any column i, 1 < i < k + 1 by
the sum of column i and the last column times (-1). Finally, we replace the last row by the
sum:

x

1− x
· (row 1) + (row 2) + · · · + (row (k+1)),

1Note that this is the only place we use the fact that the sequence a1, a2, . . . , ak is well-based.
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to get an upper triangular matrix having the determinant

(−1)k · (1− x)

(

1−
x

1− x
+

k∑

i=1

xai

)

= (−1)k · ((1− x)c(x)− x).

Thus the statement is proved.

Let us discuss some corollaries to Theorem 2.
If M = {1, 2, . . . , k−1} then we can apply our theorem, since the sequence 1, 2, . . . , k−1

is well-based. In this case, we get

G(x) =
∑

n≥0

gnx
n =

1 + x+ · · ·+ xk−1

1− x− xk
,

and thus, using the form of the generating function, the sequence gn = |I(P (n,M))| satisfies
the recurrence gn = gn−1 + gn−k with g1−k = g2−k = · · · = g0 = 1, which agrees with (1).

If M = {1, 3, 5} then M is well-based. Theorem 2 gives us that

G(x) =
∑

n≥0

wnx
n =

1 + x+ x3 + x5

1− x− x2 + x3 − x4 + x5 − x6
.

Thus, in this case the sequence wn satisfies the recurrence formula

wn = wn−1 + wn−2 − wn−3 + wn−4 − wn−5 + wn−6,

with the initial conditions: w−5 = w−4 = w−3 = w−2 = w−1 = w0 = 1. The initial values for
wn = |I(P (n,M))| and n ≥ 1 are

2, 3, 5, 7, 11, 15, 23, 32, 49, 69, 105, 149, . . . .

Finally, we state the following corollary to Theorem 2 that can be proved in a standard
way by the partial fraction expansion of the generating function G(x) from Theorem 2.

Corollary 3. Let M , V , c(x), and P (n,M) satisfy the conditions of Theorem 2. Also, ρ is
the largest zero (|ρ| is maximal among all the zeros) of the function

Q(x) = (1− x)c(x)− x = 1− x− x2 + (1− x)
k∑

i=2

xai .

Then asymptotically, the growth rate of |I(P (n,M))| is

|I(P (n,M))| . c|ρ|n

for some constant c.

If k = 1 in Corollary 3 then ρ = 1+
√

5

2
, and if k = 2 there then it can be shown2 that

0.6 ≤ ρ ≤ 1+
√

5

2
.

2This observation was made by the referee.
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4 Problems on the Well-Based Sets

Although the paper is devoted to counting independent sets, it is interesting to consider what
can be said on the number of well-based sets. Can we provide a formula and/or asymptotic
for it to specify the portion of the well-based path-schemes among all path-schemes?

The initial values of the sequence corresponding to the number of well-based sets was
kindly provided to the author by Michael Slone:

1, 2, 4, 6, 11, 15, 26, 36, 57, 79, 130, 170, 276, 379, 579, 784, 1249, 1654, 2615, 3515.

This sequence appears as A103580 in [10] and has the following interpretation: it is the
number of non-empty subsets S of 1, 2, . . . , n that have the property that no element x of S
is a nonnegative integer linear combination of elements of S − x.
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