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Abstract

Let X be a finite set having n elements. How many different labeled topologies
one can define on X? Let T (n, k) be the number of topologies having k open sets. We
compute T (n, k) for 2 ≤ k ≤ 12, as well as other results concerning T0 topologies on
X having n+ 4 ≤ k ≤ n+ 6 open sets.

1 Introduction

Recall that a topology τ on the set X 6= φ is a subset of P (X) that contains φ and X, and is
closed under union and finite intersection. A topology on X is a sublattice of (P (X),⊆) with
the maximum element X, denoted by 1, and the minimum element, which is φ, denoted by
0. Let X be an n−element set. The number T (n) of topologies on X is exactly the number
of sublattices of P (X), with 0 and 1.
There is another connection between the number of topologies on X, and the number of

some kind of binary relations on it. A relation on X is called a preorder if it is reflexive and
transitive. Let Qn denotes the number of such relations. It is known that T (n) = Qn. A
preorder on X which is transitive is a partial order. The subset A ⊂ X of the preordered set
X is called an ideal if x ∈ A and y ≤ x implies y ∈ A. Let Pn denotes the total number of
partial orders on X. Then Pn is also the number of T0 topologies one can define on X. Note
that the open sets in the topology correspond to the ideals in the preorder: a topology on
X having k open sets, corresponds to a preorder with k ideals and vice versa.
Efficient computation of the total number of labeled topologies T (n) one can define on

X is still an open question. There is no known simple formula giving T (n). For small values
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of n, this may be done by hand; for example, T (1) = 1, T (2) = 4, and T (3) = 29. For n ≥ 4,
the calculations are complicated. The online encyclopedia of N. J. A. Sloane [2] gives the
value of T (n) for 1 ≤ n ≤ 14.
An approach towards the determination of T (n) is as follows. Let t(n, k) be the set of

all labeled topologies on X and having k open sets (or, which is the same, the number of
preorders on X having k ideals), 2 ≤ k ≤ 2n, and T (n, k) = |t(n, k)|. So, T (n) =

∑

k≥2

T (n, k).

Obviously, we have

T (n, 2) = T (n, 2n) = 1

T (n, 3) = 2n − 2

For k ≥ 4, the determination of T (n, k) is not as straightforward as for T (n, 2) and T (n, 3).
The numbers T (n, k) have been determined for some values of k. For instance, R. Stanley [3]
computed T (n, k) for large values of k, viz.; 3 · 2n−3 < k < 2n. Also, he determined labeled
T0 topologies on X having either n+ 1, n+ 2, or n+ 3 open sets.
In this paper, we compute T (n, k) for 2 ≤ k ≤ 12, as well as the total number of labeled

T0 topologies on X having n+4, n+5, n+6 open sets. We also give different proofs (shorter
or simpler) of some known results in [1, 3, 2].
We need some preliminary definitions and results. Let us recall the definition of Stirling

numbers of the second kind:

Definition 1.1. The number of partitions of a finite set with n elements into k blocks, is
the Stirling number of the second kind. It is denoted S(n, k).

The explicit, and somewhat complicated formula for Stirling numbers of the second kind
is

S(n, k) = Sn, k =
1

k!

k
∑

j=0

(−1)j
(

k
j

)

(k − j)n. (1)

Lemma 1.2. Let τ be a topology on a finite set X. Then τ c = {Ac, A ∈ τ} is also a topology
on X.

Remark 1.3. The previous lemma is not necessarily true if X is infinite. Note, also, if τ is
a topology, it may happen that τ = τ c. Take X = {a, b, c}, and τ = {φ, X, {a}, {b, c}}.

Definition 1.4. A chain topology on X, is a topology whose open sets are totally ordered by
inclusion.

2 Topologies with small number of open sets

In this section we compute T (n, k) for 2 ≤ k ≤ 12. We need the following lemma

Lemma 2.1. (D. Stephen) Let C(n, k) be the number of chain topologies on X having k
open sets. Then

C(n, k) =
n−1
∑

l=1

(n

l

)

C(l, k − 1) = (k − 1)!S(n, k − 1) (2)
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Proof. This proof is shorter than that in Stephen [4]. First, there is a bijective corre-
spondence between the k−ordered partitions (partitions having k blocks) of the set X and
the chains of subsets of X having k (non empty and different from X) members: the chain
φ 6= A1 $ A2 $ A3 . . . $ Ak $ X, is associated with the partition (B1, B2,B3, . . . Bk), where
B1 = A1, Bi = Ai − Ai−1, Ak+1 = X − Ak. In the other hand, if (B1, B2,B3, . . . Bk) is an
ordered partition, the chain φ 6= A1 $ A2 $ A3 . . . $ Ak− $ X, where A1 = B1, Ai =
Ai−1 ∪ Bi, 2 ≤ i ≤ k − 1, is associated with the partition (B1, B2,B3, . . . Bk). Now the
cardinal of the ordered k-partitions is k!S(n, k), which is the desired result.
For the recursion, note that a chain topology on a subset A ⊆ X, 1 ≤ |A| = l ≤ n − 1,

having k−1 open sets, is a chain topology on X with k open sets. The total number of such

topologies on A is
(

n

l

)

C(l, k − 1). So, C(n, k =
n−l
∑

l=1

(

n

l

)

C(l, k − 1). ¥

Now we are ready to prove our main result.

Theorem 2.2. For every n ≥ 1, we have

T (n, 4) = Sn, 2 + 3!Sn, 3 = 3
n − 5 · 2n−1 + 2

T (n, 5) = 3!Sn, 3 + 4!Sn, 4 = 4
n − 3n+1 + 3 · 2n − 1

T (n, 6) = 3!Sn, 3 +
3

2
4!Sn, 4 + 5!Sn, 5

T (n, 7) =
9

4
.4!Sn, 4 + 2.5!Sn, 5 + 6!Sn, 6

T (n, 8) = Sn, 3 + 2.4!Sn, 4 +
15

4
.5!Sn, 5 +

5

2
.6!Sn, 6 + 7!Sn, 7

T (n, 9) =
5

6
4!Sn, 4 + 5.5!Sn, 5 +

11

2
6!Sn, 6 + 3.7!Sn, 7 + 8!Sn, 8

T (n, 10) = 4!Sn, 4 +
11

2
5!Sn, 5 +

73

8
6!Sn, 6 +

15

2
7!Sn, 7 +

7

2
8!Sn, 8 + 9!Sn, 9

T (n, 11) =
25

6
5!Sn, 5 +

79

6
6!Sn, 6 +

29

2
7!Sn, 7 +

39

4
8!Sn, 8 + 4.9!Sn, 9 + 10!Sn, 10.

T (n, 12) =
1

2
4!Sn, 4 +

9

2
5!Sn, 5 + 16.6!Sn, 6 +

295

12
7!Sn, 7 +

85

4
8!Sn, 8 +

49

4
.9!Sn, 9

+
9

2
.10!Sn, 10 + 11!Sn, 11.

Proof. For every T (n, k), we list all the forms of the topologies in t(n, k), and then compute
the topologies of each form. Let τ = {φ, X,A,B} ∈ t(n, 4), then either τ is a chain or has
the form (A ∩B = φ and A ∪B = X).

• ∅

•A

•B

•X

•
∅
@

@
@
•A¡
¡
¡
•
X

@
@
@•B

¡
¡
¡

3



The two cases are disjoint.
Case (1): this is the number of chain topologies having 4 open sets; so the number is

3!S(n, 3).
Case (2): This is the total number of partitions of X into two blocks, and is done in

S(n, 2) = 2n−1 − 1 different ways. Finally, the desired number is

T (n, 4) = 3!S(n, 3) + S(n, 2).

For T (n, 5), there are 3 forms:

•

•

∅

•B

A

•C

•X

•@
@
@
•A¡
¡
¡
•
X

@
@
@•B

¡
¡
¡

C

∅
• •@

@
@
•A¡
¡
¡
•C
@
@
@•B

¡
¡
¡

∅

X
•

1) Chain topologies with 5 open sets.
2)(φ ⊂ C ⊂ B, φ ⊂ C ⊂ A, A ∪B = X) or
3)(φ ⊂ A ⊂ C, φ ⊂ B ⊂ C, A ∪B = C ( X) .
The number of topologies in the first case is 4!S(n, 4). Cases (2) and (3) are symmetric

(and different, i.e., these cases correspond to t and tc). So, we compute only one, case (3).
Let C ( X be such that |C| = k, 2 ≤ k ≤ n − 1. This is chosen in

(

n

k

)

different ways, and
then it is partitioned into two disjoint blocks: this is done in S(k, 2) = 2k−1 − 1 different
ways. Furthermore, the number in case (3) is :

n−1
∑

k=2

(n

k

)

(

2k−1 − 1
)

=
3n − 3 · 2n + 3

2
=
3!S(n, 3)

2
·

So, the total number for (2) and (3) is 3!S(n, 3). Consequently, we get

T (n, 5) = 3!S(n, 3) + 4!S(n, 4) = 4n − 3n+1 + 3 · 2n − 1.

For T (n, 6), we have 5 forms, as indicated in the figure below:

•
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1) Chain topologies with 6 open sets.
2)(A ∩B = φ, A ∪B = C, A ⊂ C, C ∩D = B, C ∪D = X)
3)(φ ( A1 ( A3 ( A4 ( X, and φ ( A2 ( A3 ( A4 ( X,A1 ∩ A2 = φ ) , and its symmet-

ric case.
4)φ ( A1 ( A2 ( A4 ( X,and φ ( A1 ( A3 ( A4 ( X, A2 ∪ A3 = A4.
The number of topologies in the first case is 5!S(n, 5). The number in the second case is

computed as follows: let C ( X, such that 2 ≤ |C| = k ≤ n− 1. We then partition C in to
two blocks A,B. To each partition (A,B) corresponds two topologies:

(φ, A, B, A ∪B = C, A ∪ (X −B), X)

and
(φ, A, B, A ∪B = C, B ∪ (X − A), X) .

So, the total number of topologies in this case is

2
n−1
∑

k=2

(n

k

)

(

2k−1 − 1
)

= 3n − 3.2n + 3 = 3!S(n, 3).

For the third case, we choose A3, 2 ≤ |A3| = k ≤ n − 2, in
(

n

k

)

different ways and then
partition it into 2 blocks, (A1, A2) with S(k, 2) = 2k−1 − 1 different ways. There remain
(n− k) elements, from which we choose the elements of A4: note that |A4| = k + i ≤ n− 1.
The number of these choices is

(

n

k

) (

n−k

i

)

S(k, 2). Finally the total number for the third case
and its reciprocal is

2
n−2
∑

k=2

n−k−1
∑

i=1

(n

k

)

(

n− k

i

)

(

2k−1 − 1
)

= 4n − 4 · 3n + 3 · 2n+1 − 4 = 4!S(n, 4).

The last case is computed similarly and is equal to

4!S(n, 4)

2
.

So, we obtain

T (n, 6) = 3!S(n, 3) +
3

2
4!S(n, 4) + 5!S(n, 5).

The computation of the remaining cases is similar to T (n, 5) and T (n, 6), but much
longer. We note that for T (n, 7), we have 8 forms, for T (n, 8), there are 15 forms, for T (n, 9)
there are 26 cases, and so on. ¥
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3 Topologies with large number of open sets

The following result is due to H. Sharp [1] and D. Stephen [4].

Theorem 3.1. For n ≥ 3, T (n, k) = 0 for 3 · 2n−2 < k < 2n.

Sharp [1] proved this result using graph theory. Stephen’s proof [4]used topological facts.
Here is another one, which is direct and allows us to compute T (n, 3 · 2n−2).

Proof. Since we are looking for a non-discrete topology τ having the maximum of open
sets, it must not contain all the singletons, so, there is an a ∈ X, such that {a} /∈ τ .We
have to remove all subsets from P (X) such that their intersections give {a}, those are all
{a, x}, except one, say, {a, y}. The number of these removed sets is

(

n

k

)

. Sets of the form

{a, x1, x2} are also removed. Their number is
(

n−2

2

)

. In general all subsets of the form

{a, x1, x2, . . . , xk}, 3 ≤ k ≤ n − 2 must be removed. Their number is
(

n−2

k

)

. Finally, the
total number of the removed sets is

n−2
∑

k=0

(

n− 2

k

)

= 2n−2.

The remaining elements form a topology having 2n − 2n−2 = 3 · 2n−2 open sets. ¥

The following theorem gives the number of topologies for large k. The notation (n)k =
n(n− 1) · · · (n− k + 1) is used.

Theorem 3.2. (R. Stanley) For n ≥ 5, we have the following values

T (n, 3 · 2n−2) = (n)2

T (n, 5 · 2n−3) = (n)3

T (n, 9 · 2n−4) =
5(n)5
6

T (n, 17 · 2n−5) =
(n)5
12

T (n, 15 · 2n−5) = (n)5

T (n, 7 · 2n−4) =
9

4
(n)5 + (n)5

T (n, 2n−1) = (n)4 + (n)3 +
(n)2
2

.

Proof. We give only the proof of the first assertion, which is related to the previous
Theorem. The element a is chosen in

(

n

1

)

= n ways. The other one , i.e; {a, y}, in
(

n−1

1

)

=
(n− 1) ways. So the total number is n(n− 1). ¥

Now let T0(n, k) be the number of labeled T0 topologies on X having k open sets.
This is also the number of labeled posets on X having k ideals. Since a topology is
T0 if and only if it has a minimal base of n + 1, it follows then that T0(n, k) = 0 for
2 ≤ k ≤ n. R. Stanley [3] determined T0(n, k) for n + 1 ≤ k ≤ n + 3. We now determine
T0(n, n+ 4), T0(n, n+ 5), T0(n, n+ 6):
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Theorem 3.3. We have

T0(n, n+ 4) =
(n− 3)(n2 + 15n+ 20)

48
n!, n ≥ 3.

T0(n, n+ 5) =
n4 + 26n3 + 35n2 − 478n− 248

384
n!, n ≥ 4, T0(3, 8) = 1.

T0(n, n+ 6) =
n5 − 15n4 + 1885n3 − 15265n2 + 53954n− 97680

3840
n!, n ≥ 5

Proof. A topology with n + 4
open sets, on a set of n-element,
is T0 if and only if it contains 3
copies of the graph in the Figure
on the right.

•@
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¡¡

Figure 1

Those are 8 elements, inserted in any place in the chain formed by the remaining elements,
as indicated in the following figure:
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The total number in the first case is 2(n− 3)n!, in the second case is (n− 3)(n− 4)n!/2,
and the total number in the last case is (n − 3)(n − 4)(n − 5)n!/48. Summing, we obtain
the desired result. Also, for T0(n, n+ 5), these topologies are constituted by 4 copies of the
graph in Figure 1, or a copy of a boolean algebra having 8 elements as indicated in Figure
2 (note that T0(3, 8) = 1).
According to the disposition of these copies we have 5 cases: in the first, the number is

(n+ 3)(n− 4)

2
n!, in the second we have

(2n− 9)(n− 4) + 1

2
n! in the third case the num-

ber is
(n− 4)(n− 5)(n− 6)

8
n!. In the fourth case,

(n− 4)(n− 5)(n− 6)(n− 7)

384
n!. In the

last one, for the topologies having a copy of a boolean algebra of 8 elements, the number

is
(n− 2)

6
n!. The total number is obtained by summing these numbers in all the previ-

ous cases. For T0(n, n + 6), we proceed in the same manner: A topology with (n + 6)
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open sets on an n-element set is T0 if and only if it contains 5 copies of the graph in Fig-
ure 1, or a copy of a boolean algebra with 8 elements and a copy of Figure 2. Note that
T0(4, 10) = 48. Let n > 4. Here too, according to the disposition of the graph in the

chain, we have 6 cases: 2(n2 − 6n + 6)n! in the first case .
(n− 5)(n− 6)(n+ 1)

4
n! in

the second case. The number in the third case is
(n− 5)(n2 − 12n+ 38)

4
n!. The num-

ber in the fourth case is
(n− 5)(n− 6)(n− 7)(n− 8)

192
n!.The number in the fifth case is

(n− 5)(n− 6)(n− 7)(n− 8)(n− 9)

3840
n!. In the last case , we have a copy of a boolean alge-

bra and a copy of the graph in Figure 1. The total number in this case is
(n2 + 5n− 12)

12
n!.

The total number is obtained by computing all topologies in all cases. ¥
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Figure 2

Let T h
0 (n, k) be the number of homeomorphic T0 topologies with k open sets. From the

last theorem, we easily deduce

Theorem 3.4. We have

T h
0 (n, n+ 4) =

(n− 3)(n2 − 3n+ 8)

6
, n ≥ 3.

T h
0 (n, n+ 5) =

(n− 1)(n− 3)(n2 − 6n+ 32)

24
, n ≥ 4, T h

0 (3, 8) = 1.

T h
0 (n, n+ 6) =

n5 − 25n4 + 345n3 − 2015n2 + 5054n− 4320

120
, n ≥ 5, T h

0 (4, 10) = 2.

For small n, we can use the previous results to compute T (n).

T (3, 2) = 1, T (3, 3) = 6, T (3, 4) = 9, T (3, 5) = 6, T (3, 6) = 6, T (3, 7) = 0, T (3, 8) = 1 .

For n = 4, we have

T (4, 2) = 1, T (4, 3) = 14, T (4, 4) = 43, T (4, 5) = 60, T (4, 6) = 72, T (4, 7) = 54

T (4, 8) = 54 , T (4, 9) = 20, T (4, 10) = 24, T (4, 11) = 0, T (4, 12) = 12, T (4, 16) = 1

T (4, k) = 0 for 12 < k < 16.

So, T (4) = 355.
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4 Remarks and questions

There are some interesting questions related to the sequence T (n, k): where its maximum
is reached? Perhaps it is near n + k0, where k0 is the integer which maximizes the Stirling
numbers of the second kind. Is it true that T (n, k) 6= 0, for 2 ≤ k ≤ 2n−2. It is easy to prove
that T (n, k) 6= 0, for 2 ≤ k ≤ 2n.
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