The Number of Topologies on a Finite Set

Moussa Benoumhani
Faculty of Science
Department of Mathematics
Sana'a University
P.O. Box 14026
Sana'a
Yemen
benoumhanidyahoo.com

Abstract

Let X be a finite set having n elements. How many different labeled topologies one can define on X ? Let $T(n, k)$ be the number of topologies having k open sets. We compute $T(n, k)$ for $2 \leq k \leq 12$, as well as other results concerning T_{0} topologies on X having $n+4 \leq k \leq n+6$ open sets.

1 Introduction

Recall that a topology τ on the set $X \neq \phi$ is a subset of $P(X)$ that contains ϕ and X, and is closed under union and finite intersection. A topology on X is a sublattice of $(P(X), \subseteq)$ with the maximum element X, denoted by 1 , and the minimum element, which is ϕ, denoted by 0 . Let X be an n-element set. The number $T(n)$ of topologies on X is exactly the number of sublattices of $P(X)$, with 0 and 1 .

There is another connection between the number of topologies on X, and the number of some kind of binary relations on it. A relation on X is called a preorder if it is reflexive and transitive. Let Q_{n} denotes the number of such relations. It is known that $T(n)=Q_{n}$. A preorder on X which is transitive is a partial order. The subset $A \subset X$ of the preordered set X is called an ideal if $x \in A$ and $y \leq x$ implies $y \in A$. Let P_{n} denotes the total number of partial orders on X. Then P_{n} is also the number of T_{0} topologies one can define on X. Note that the open sets in the topology correspond to the ideals in the preorder: a topology on X having k open sets, corresponds to a preorder with k ideals and vice versa.

Efficient computation of the total number of labeled topologies $T(n)$ one can define on X is still an open question. There is no known simple formula giving $T(n)$. For small values
of n, this may be done by hand; for example, $T(1)=1, T(2)=4$, and $T(3)=29$. For $n \geq 4$, the calculations are complicated. The online encyclopedia of N. J. A. Sloane [2] gives the value of $T(n)$ for $1 \leq n \leq 14$.

An approach towards the determination of $T(n)$ is as follows. Let $t(n, k)$ be the set of all labeled topologies on X and having k open sets (or, which is the same, the number of preorders on X having k ideals), $2 \leq k \leq 2^{n}$, and $T(n, k)=|t(n, k)|$. So, $T(n)=\sum_{k \geq 2} T(n, k)$. Obviously, we have

$$
\begin{aligned}
& T(n, 2)=T\left(n, 2^{n}\right)=1 \\
& T(n, 3)=2^{n}-2
\end{aligned}
$$

For $k \geq 4$, the determination of $T(n, k)$ is not as straightforward as for $T(n, 2)$ and $T(n, 3)$. The numbers $T(n, k)$ have been determined for some values of k. For instance, R. Stanley [3] computed $T(n, k)$ for large values of k, viz.; $3 \cdot 2^{n-3}<k<2^{n}$. Also, he determined labeled T_{0} topologies on X having either $n+1, n+2$, or $n+3$ open sets.

In this paper, we compute $T(n, k)$ for $2 \leq k \leq 12$, as well as the total number of labeled T_{0} topologies on X having $n+4, n+5, n+6$ open sets. We also give different proofs (shorter or simpler) of some known results in [1. , 2, 2.

We need some preliminary definitions and results. Let us recall the definition of Stirling numbers of the second kind:

Definition 1.1. The number of partitions of a finite set with n elements into k blocks, is the Stirling number of the second kind. It is denoted $S(n, k)$.

The explicit, and somewhat complicated formula for Stirling numbers of the second kind is

$$
\begin{equation*}
S(n, k)=S_{n, k}=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j}(k-j)^{n} . \tag{1}
\end{equation*}
$$

Lemma 1.2. Let τ be a topology on a finite set X. Then $\tau^{c}=\left\{A^{c}, A \in \tau\right\}$ is also a topology on X.

Remark 1.3. The previous lemma is not necessarily true if X is infinite. Note, also, if τ is a topology, it may happen that $\tau=\tau^{c}$. Take $X=\{a, b, c\}$, and $\tau=\{\phi, X,\{a\},\{b, c\}\}$.
Definition 1.4. A chain topology on X, is a topology whose open sets are totally ordered by inclusion.

2 Topologies with small number of open sets

In this section we compute $T(n, k)$ for $2 \leq k \leq 12$. We need the following lemma
Lemma 2.1. (D. Stephen) Let $C(n, k)$ be the number of chain topologies on X having k open sets. Then

$$
\begin{equation*}
C(n, k)=\sum_{l=1}^{n-1}\binom{n}{l} C(l, k-1)=(k-1)!S(n, k-1) \tag{2}
\end{equation*}
$$

Proof. This proof is shorter than that in Stephen 囷. First, there is a bijective correspondence between the k-ordered partitions (partitions having k blocks) of the set X and the chains of subsets of X having k (non empty and different from X) members: the chain $\phi \neq A_{1} \varsubsetneqq A_{2} \varsubsetneqq A_{3} \ldots \varsubsetneqq A_{k} \varsubsetneqq X$, is associated with the partition $\left(B_{1}, B_{2,} B_{3}, \ldots B_{k}\right)$, where $B_{1}=A_{1}, B_{i}=A_{i}-A_{i-1}, A_{k+1}=X-A_{k}$. In the other hand, if $\left(B_{1}, B_{2,}, B_{3}, \ldots B_{k}\right)$ is an ordered partition, the chain $\phi \neq A_{1} \varsubsetneqq A_{2} \varsubsetneqq A_{3} \ldots \varsubsetneqq A_{k-} \varsubsetneqq X$, where $A_{1}=B_{1}, A_{i}=$ $A_{i-1} \cup B_{i}, 2 \leq i \leq k-1$, is associated with the partition $\left(B_{1}, B_{2}, B_{3}, \ldots B_{k}\right)$. Now the cardinal of the ordered k-partitions is $k!S(n, k)$, which is the desired result.

For the recursion, note that a chain topology on a subset $A \subseteq X, 1 \leq|A|=l \leq n-1$, having $k-1$ open sets, is a chain topology on X with k open sets. The total number of such topologies on A is $\binom{n}{l} C(l, k-1)$. So, $C\left(n, k=\sum_{l=1}^{n-l}\binom{n}{l} C(l, k-1)\right.$.

Now we are ready to prove our main result.
Theorem 2.2. For every $n \geq 1$, we have

$$
\begin{aligned}
& T(n, 4)=S_{n, 2}+3!S_{n, 3}=3^{n}-5 \cdot 2^{n-1}+2 \\
& T(n, 5)=3!S_{n, 3}+4!S_{n, 4}=4^{n}-3^{n+1}+3 \cdot 2^{n}-1 \\
& T(n, 6)=3!S_{n, 3}+\frac{3}{2} 4!S_{n, 4}+5!S_{n, 5} \\
& T(n, 7)=\frac{9}{4} \cdot 4!S_{n, 4}+2 \cdot 5!S_{n, 5}+6!S_{n, 6} \\
& T(n, 8)=S_{n, 3}+2 \cdot 4!S_{n, 4}+\frac{15}{4} \cdot 5!S_{n, 5}+\frac{5}{2} \cdot 6!S_{n, 6}+7!S_{n, 7} \\
& T(n, 9)=\frac{5}{6} 4!S_{n, 4}+5 \cdot 5!S_{n, 5}+\frac{11}{2} 6!S_{n, 6}+3.7!S_{n, 7}+8!S_{n, 8} \\
& T(n, 10)=4!S_{n, 4}+\frac{11}{2} 5!S_{n, 5}+\frac{73}{8} 6!S_{n, 6}+\frac{15}{2} 7!S_{n, 7}+\frac{7}{2} 8!S_{n, 8}+9!S_{n, 9} \\
& T(n, 11)=\frac{25}{6} 5!S_{n, 5}+\frac{79}{6} 6!S_{n, 6}+\frac{29}{2} 7!S_{n, 7}+\frac{39}{4} 8!S_{n, 8}+4.9!S_{n, 9}+10!S_{n, 10} . \\
& T(n, 12)=\frac{1}{2} 4!S_{n, 4}+\frac{9}{2} 5!S_{n, 5}+16 \cdot 6!S_{n, 6}+\frac{295}{12} 7!S_{n, 7}+\frac{85}{4} 8!S_{n, 8}+\frac{49}{4} \cdot 9!S_{n, 9} \\
& \quad+\frac{9}{2} \cdot 10!S_{n, 10}+11!S_{n, 11} .
\end{aligned}
$$

Proof. For every $T(n, k)$, we list all the forms of the topologies in $t(n, k)$, and then compute the topologies of each form. Let $\tau=\{\phi, X, A, B\} \in t(n, 4)$, then either τ is a chain or has the form $(A \cap B=\phi$ and $A \cup B=X)$.

The two cases are disjoint.
Case (1): this is the number of chain topologies having 4 open sets; so the number is $3!S(n, 3)$.

Case (2): This is the total number of partitions of X into two blocks, and is done in $S(n, 2)=2^{n-1}-1$ different ways. Finally, the desired number is

$$
T(n, 4)=3!S(n, 3)+S(n, 2)
$$

For $T(n, 5)$, there are 3 forms:

1) Chain topologies with 5 open sets.
2) $(\phi \subset C \subset B, \phi \subset C \subset A, A \cup B=X)$ or
3) $(\phi \subset A \subset C, \phi \subset B \subset C, A \cup B=C \subsetneq X)$.

The number of topologies in the first case is $4!S(n, 4)$. Cases (2) and (3) are symmetric (and different, i.e., these cases correspond to t and t^{c}). So, we compute only one, case (3). Let $C \subsetneq X$ be such that $|C|=k, 2 \leq k \leq n-1$. This is chosen in $\binom{n}{k}$ different ways, and then it is partitioned into two disjoint blocks: this is done in $S(k, 2)=2^{k-1}-1$ different ways. Furthermore, the number in case (3) is :

$$
\sum_{k=2}^{n-1}\binom{n}{k}\left(2^{k-1}-1\right)=\frac{3^{n}-3 \cdot 2^{n}+3}{2}=\frac{3!S(n, 3)}{2}
$$

So, the total number for (2) and (3) is $3!S(n, 3)$. Consequently, we get

$$
T(n, 5)=3!S(n, 3)+4!S(n, 4)=4^{n}-3^{n+1}+3 \cdot 2^{n}-1
$$

For $T(n, 6)$, we have 5 forms, as indicated in the figure below:

4

1) Chain topologies with 6 open sets.
2) $(A \cap B=\phi, A \cup B=C, A \subset C, C \cap D=B, C \cup D=X)$
3) $\left(\phi \subsetneq A_{1} \subsetneq A_{3} \subsetneq A_{4} \subsetneq X\right.$, and $\left.\phi \subsetneq A_{2} \subsetneq A_{3} \subsetneq A_{4} \subsetneq X, A_{1} \cap A_{2}=\phi\right)$, and its symmetric case.
4) $\phi \subsetneq A_{1} \subsetneq A_{2} \subsetneq A_{4} \subsetneq X$, and $\phi \subsetneq A_{1} \subsetneq A_{3} \subsetneq A_{4} \subsetneq X, A_{2} \cup A_{3}=A_{4}$.

The number of topologies in the first case is $5!S(n, 5)$. The number in the second case is computed as follows: let $C \subsetneq X$, such that $2 \leq|C|=k \leq n-1$. We then partition C in to two blocks A, B. To each partition (A, B) corresponds two topologies:

$$
(\phi, A, B, A \cup B=C, A \cup(X-B), X)
$$

and

$$
(\phi, A, B, A \cup B=C, B \cup(X-A), X) .
$$

So, the total number of topologies in this case is

$$
2 \sum_{k=2}^{n-1}\binom{n}{k}\left(2^{k-1}-1\right)=3^{n}-3.2^{n}+3=3!S(n, 3)
$$

For the third case, we choose $A_{3}, 2 \leq\left|A_{3}\right|=k \leq n-2$, in $\binom{n}{k}$ different ways and then partition it into 2 blocks, $\left(A_{1}, A_{2}\right)$ with $S(k, 2)=2^{k-1}-1$ different ways. There remain $(n-k)$ elements, from which we choose the elements of A_{4} : note that $\left|A_{4}\right|=k+i \leq n-1$. The number of these choices is $\binom{n}{k}\binom{n-k}{i} S(k, 2)$. Finally the total number for the third case and its reciprocal is

$$
2 \sum_{k=2}^{n-2} \sum_{i=1}^{n-k-1}\binom{n}{k}\binom{n-k}{i}\left(2^{k-1}-1\right)=4^{n}-4 \cdot 3^{n}+3 \cdot 2^{n+1}-4=4!S(n, 4)
$$

The last case is computed similarly and is equal to

$$
\frac{4!S(n, 4)}{2}
$$

So, we obtain

$$
T(n, 6)=3!S(n, 3)+\frac{3}{2} 4!S(n, 4)+5!S(n, 5) .
$$

The computation of the remaining cases is similar to $T(n, 5)$ and $T(n, 6)$, but much longer. We note that for $T(n, 7)$, we have 8 forms, for $T(n, 8)$, there are 15 forms, for $T(n, 9)$ there are 26 cases, and so on.

3 Topologies with large number of open sets

The following result is due to H. Sharp [1] and D. Stephen [4].
Theorem 3.1. For $n \geq 3, T(n, k)=0$ for $3 \cdot 2^{n-2}<k<2^{n}$.
Sharp [1] proved this result using graph theory. Stephen's proof [4]used topological facts. Here is another one, which is direct and allows us to compute $T\left(n, 3 \cdot 2^{n-2}\right)$.
Proof. Since we are looking for a non-discrete topology τ having the maximum of open sets, it must not contain all the singletons, so, there is an $a \in X$, such that $\{a\} \notin \tau$.We have to remove all subsets from $P(X)$ such that their intersections give $\{a\}$, those are all $\{a, x\}$, except one, say, $\{a, y\}$. The number of these removed sets is $\binom{n}{k}$. Sets of the form $\left\{a, x_{1}, x_{2}\right\}$ are also removed. Their number is $\binom{n-2}{2}$. In general all subsets of the form $\left\{a, x_{1}, x_{2}, \ldots, x_{k}\right\}, 3 \leq k \leq n-2$ must be removed. Their number is $\binom{n-2}{k}$. Finally, the total number of the removed sets is

$$
\sum_{k=0}^{n-2}\binom{n-2}{k}=2^{n-2}
$$

The remaining elements form a topology having $2^{n}-2^{n-2}=3 \cdot 2^{n-2}$ open sets.
The following theorem gives the number of topologies for large k. The notation $(n)_{k}=$ $n(n-1) \cdots(n-k+1)$ is used.
Theorem 3.2. (R. Stanley) For $n \geq 5$, we have the following values

$$
\begin{aligned}
T\left(n, 3 \cdot 2^{n-2}\right) & =(n)_{2} \\
T\left(n, 5 \cdot 2^{n-3}\right) & =(n)_{3} \\
T\left(n, 9 \cdot 2^{n-4}\right) & =\frac{5(n)_{5}}{6} \\
T\left(n, 17 \cdot 2^{n-5}\right) & =\frac{(n)_{5}}{12} \\
T\left(n, 15 \cdot 2^{n-5}\right) & =(n)_{5} \\
T\left(n, 7 \cdot 2^{n-4}\right) & =\frac{9}{4}(n)_{5}+(n)_{5} \\
T\left(n, 2^{n-1}\right) & =(n)_{4}+(n)_{3}+\frac{(n)_{2}}{2} .
\end{aligned}
$$

Proof. We give only the proof of the first assertion, which is related to the previous Theorem. The element a is chosen in $\binom{n}{1}=n$ ways. The other one, i.e; $\{a, y\}$, in $\binom{n-1}{1}=$ ($n-1$) ways. So the total number is $n(n-1)$.

Now let $T_{0}(n, k)$ be the number of labeled T_{0} topologies on X having k open sets. This is also the number of labeled posets on X having k ideals. Since a topology is T_{0} if and only if it has a minimal base of $n+1$, it follows then that $T_{0}(n, k)=0$ for $2 \leq k \leq n$. R. Stanley [3] determined $T_{0}(n, k)$ for $n+1 \leq k \leq n+3$. We now determine $T_{0}(n, n+4), T_{0}(n, n+5), T_{0}(n, n+6):$

Theorem 3.3. We have

$$
\begin{aligned}
& T_{0}(n, n+4)=\frac{(n-3)\left(n^{2}+15 n+20\right)}{48} n!, n \geq 3 . \\
& T_{0}(n, n+5)=\frac{n^{4}+26 n^{3}+35 n^{2}-478 n-248}{384} n!, n \geq 4, T_{0}(3,8)=1 \\
& T_{0}(n, n+6)=\frac{n^{5}-15 n^{4}+1885 n^{3}-15265 n^{2}+53954 n-97680}{3840} n!, n \geq 5
\end{aligned}
$$

Proof. A topology with $n+4$ open sets, on a set of n-element, is T_{0} if and only if it contains 3 copies of the graph in the Figure on the right.

Figure 1

Those are 8 elements, inserted in any place in the chain formed by the remaining elements, as indicated in the following figure:

The total number in the first case is $2(n-3) n$!, in the second case is $(n-3)(n-4) n!/ 2$, and the total number in the last case is $(n-3)(n-4)(n-5) n!/ 48$. Summing, we obtain the desired result. Also, for $T_{0}(n, n+5)$, these topologies are constituted by 4 copies of the graph in Figure 1, or a copy of a boolean algebra having 8 elements as indicated in Figure 2 (note that $T_{0}(3,8)=1$).

According to the disposition of these copies we have 5 cases: in the first, the number is $\frac{(n+3)(n-4)}{2} n!$, in the second we have $\frac{(2 n-9)(n-4)+1}{2} n$! in the third case the number is $\frac{(n-4)(n-5)(n-6)}{8} n!$. In the fourth case, $\frac{(n-4)(n-5)(n-6)(n-7)}{384} n!$. In the last one, for the topologies having a copy of a boolean algebra of 8 elements, the number is $\frac{(n-2)}{6} n!$. The total number is obtained by summing these numbers in all the previous cases. For $T_{0}(n, n+6)$, we proceed in the same manner: A topology with $(n+6)$
open sets on an n-element set is T_{0} if and only if it contains 5 copies of the graph in Figure 1, or a copy of a boolean algebra with 8 elements and a copy of Figure 2. Note that $T_{0}(4,10)=48$. Let $n>4$. Here too, according to the disposition of the graph in the chain, we have 6 cases: $2\left(n^{2}-6 n+6\right) n$! in the first case . $\frac{(n-5)(n-6)(n+1)}{4} n$! in the second case. The number in the third case is $\frac{(n-5)\left(n^{2}-12 n+38\right)}{4} n$!. The number in the fourth case is $\frac{(n-5)(n-6)(n-7)(n-8)}{192} n!$. The number in the fifth case is $\frac{(n-5)(n-6)(n-7)(n-8)(n-9)}{3840} n!$. In the last case, we have a copy of a boolean algebra and a copy of the graph in Figure 1. The total number in this case is $\frac{\left(n^{2}+5 n-12\right)}{12} n$!. The total number is obtained by computing all topologies in all cases.

Figure 2
Let $T_{0}^{h}(n, k)$ be the number of homeomorphic T_{0} topologies with k open sets. From the last theorem, we easily deduce
Theorem 3.4. We have

$$
\begin{aligned}
& T_{0}^{h}(n, n+4)=\frac{(n-3)\left(n^{2}-3 n+8\right)}{6}, n \geq 3 \\
& T_{0}^{h}(n, n+5)=\frac{(n-1)(n-3)\left(n^{2}-6 n+32\right)}{24}, n \geq 4, T_{0}^{h}(3,8)=1 \\
& T_{0}^{h}(n, n+6)=\frac{n^{5}-25 n^{4}+345 n^{3}-2015 n^{2}+5054 n-4320}{120}, n \geq 5, T_{0}^{h}(4,10)=2
\end{aligned}
$$

For small n, we can use the previous results to compute $T(n)$.

$$
T(3,2)=1, T(3,3)=6, T(3,4)=9, T(3,5)=6, T(3,6)=6, T(3,7)=0, T(3,8)=1
$$

For $n=4$, we have

$$
\begin{aligned}
T(4,2) & =1, T(4,3)=14, T(4,4)=43, T(4,5)=60, T(4,6)=72, T(4,7)=54 \\
T(4,8) & =54, T(4,9)=20, T(4,10)=24, T(4,11)=0, T(4,12)=12, T(4,16)=1 \\
T(4, k) & =0 \text { for } 12<k<16
\end{aligned}
$$

So, $T(4)=355$.

4 Remarks and questions

There are some interesting questions related to the sequence $T(n, k)$: where its maximum is reached? Perhaps it is near $n+k_{0}$, where k_{0} is the integer which maximizes the Stirling numbers of the second kind. Is it true that $T(n, k) \neq 0$, for $2 \leq k \leq 2^{n-2}$. It is easy to prove that $T(n, k) \neq 0$, for $2 \leq k \leq 2 n$.

5 Acknowledgments

My sincere thanks to Prof. Y. Attic, for his kind help in drawing the graphs in this paper. I also thank the anonymous referee for his/her helpful comments.

References

[1] H. Sharp, Jr., Cardinality of finite topologies, J. Combinatorial Theory 5 (1968), 82-86.
[2] N. J. A. Sloane, Online Encyclopedia of Integer Sequences, http://www.research.att.com/ ${ }^{\sim}$ njas/sequences/index.html.
[3] R. Stanley, On the number of open sets of finite topologies, J. Combinatorial Theory 10 (1971) 75-79.
[4] D. Stephen, Topology on finite sets, Amer. Math. Monthly 75 (1968) 739-741.

2000 Mathematics Subject Classification: Primary 11B73; Secondary 11B65.
Keywords: Labeled topology, Stirling number .
(Concerned with sequences A000798, A001930, and A008277.)

Received August 29 2005; revised version received May 20 2006. Published in Journal of Integer Sequences, May 242006.

Return to Journal of Integer Sequences home page.

