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Abstract

We consider those lattice paths that use the steps Up, Level , and Down with

assigned weights w, u, and v. In probability theory, the total weight is 1. In combi-

natorics, we regard weight as the number of colors and normalize by setting w = 1.

The lattice paths generate Motzkin sequences. Here we give a combinatorial proof

of a three-term recursion for a weighted Motzkin sequence and we find the radius of

convergence.

1 Introduction

We consider those lattice paths in the Cartesian plane starting from (0, 0) that use the steps
U , L, and D, where U = (1, 1), an up-step; L = (1, 0), a level-step; and D = (1,−1), a
down-step. Let c and d be positive integers, and color the L steps with d colors and the D
steps with c colors. Let A(n, k) be the set of all colored paths ending at the point (n, k),
and let M(n, k) be the set of lattice paths in A(n, k) that never go below the x-axis. Let
an,k = |A(n, k)|, mn,k = |M(n, k)|, and mn = |M(n, 0)|. The number mn is called the (1, d, c)-
Motzkin number. Let B(n, k) denote the set of lattice paths in A(n, k) that never return to
the x-axis and let bn,k = |B(n, k)|. Note that an,k = an−1,k−1 + dan−1,k + can−1,k+1. Here
we give a combinatorial proof of the following three-term recursion for the (1, d, c)-Motzkin
sequence:

(n + 2)mn = d(2n + 1)mn−1 + (4c− d2)(n− 1)mn−2.

If
√

c

2
≤ d, then lim

n→∞

mn

mn−1

= k = d + 2
√

c.
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Example 1. The first few terms of the (1, 3, 2)-Motzkin numbers arem0 = 1, 3, 11, 45, 197, 903, . . .,
k = 3+2

√
2. This sequence is the little Schroeder number sequence and is Sloane’s sequence

A001003. Some entries of the matrices (an,k), (mn,k) and (bn,k) are as follows;

(an,k) =

















n/k −4 −3 −2 −1 0 1 2 3 4
0 0 0 0 0 1 0 0 0 0
1 0 0 0 2 3 1 0 0 0
2 0 0 4 12 13 6 1 0 0
3 0 8 36 66 63 33 9 1 0
4 16 96 248 360 321 180 62 12 1

















,

(mn,k) =

















n/k 0 1 2 3 4
0 1 0 0 0 0
1 3 1 0 0 0
2 11 6 1 0 0
3 45 31 9 1 0
4 197 156 60 12 1

















,

(bn,k) =





















n/k 0 1 2 3 4 5
0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 3 1 0 0 0
3 0 11 6 1 0 0
4 0 45 31 9 1 0
5 0 197 156 60 12 1





















.

Example 2. The first few terms of the (1, 2, 1)-Motzkin numbers arem0 = 1, 2, 5, 14, 42, . . . , k =
2 + 2

√
1 = 4. This sequence is the Catalan sequence, Sloane’s sequence A000108.

Example 3. The first few terms of the (1, 1, 1)-Motzkin numbers arem0 = 1, 1, 2, 4, 9, 21, . . . , k =
1+ 2

√
1 = 3. The sequence is the Motzkin sequence, discussed by Woan [5], and is Sloane’s

sequence A001006.

2 Main Results

We apply the cut and paste technique to prove the following lemma. Please refer to Der-
showitz and Zaks [1] and Pergola and Pinzani [2] for information about the technique.

Lemma 4. There is a combinatorial proof for the equation mn = bn+1,1 = dbn,1 + cbn,2 =
dmn−1 + cbn,2.

Proof. Let P ∈ B(n + 1, 1). Remove the first step (U) and note that the remaining is in
M(n, 0).

For example, the path P = UULDLUUUDDLD ∈ B(12, 1) becomesQ = ULDLUUUDDLD ∈
M(11) where × marks the origin.
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P =

◦
◦ ◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

×

,

Q =

◦
◦ ◦

◦ ◦ ◦ ◦ ◦
× ◦ ◦ ◦

.

Theorem 5. There is a combinatorial proof for the equation (n + 1)bn+1,1 = an+1,1.

Proof. Wendel [4] proved a similar result. Let

S(n + 1) = {P ∗ : P ∈ B(n + 1, 1)

where P ∗ is P with one vertex marked}. Then |S(n + 1)| = (n+1)bn+1,1. Let P ∗ ∈ S(n+1).
The marked vertex partitions the path into P = FB, where F is the front section and B
is the back section. Then Q = BF ∈ A(n + 1, 1). Note that, graphically, the point of
attachment is the rightmost lowest point of Q.

Conversely, starting with any path we may find the rightmost lowest point of Q and
reverse the procedure to create a marked path P ∗ in B(n + 1, 1).

For example,

P ∗ =

◦
◦ ◦

◦ • ◦ ◦ ◦
◦ ◦ ◦ ◦

×

∈ S(12),

→ Q =
◦

◦ ◦ ◦ ◦
× ◦ ◦ ◦ ◦

◦ ◦ •

∈ A(12, 1).

Proposition 6. The total number of L steps in M(n) is the same as that in B(n+1, 1) and
is dan,1.

Proof. From the proof of Lemma 4, there is a bijection between M(n) and B(n+ 1, 1). Let
P = FLB ∈ B(n+1, 1) with an L step. Then Q = BF ∈ A(n, 1). Note that the attachment
point is the rightmost lowest point in Q since P ∈ B(n + 1, 1). This identification suggests
the inverse mapping. Note that there are d colors for an L step.
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For example,

P =

◦
◦ ◦

• • ◦ ◦ ◦
◦ ◦ ◦ ◦

×

∈ B(12, 1),

→ Q =
◦

◦ ◦ ◦
× ◦ ◦ ◦ ◦

◦ ◦ •

∈ A(11, 1).

Proposition 7. There is a combinatorial proof for the equation

an,0 = mn +
1

2
(nmn − dan,1) = bn+1,1 +

1

2
(nbn+1,1 − dnbn,1).

Proof. Let T (n) = {P e : P ∈ M(n) where P e is P with a U step marked}. By Theorem 5
and Proposition 6 the number of L steps among all paths in M(n) is dan,1 = dnbn,1. The
total number of steps among all paths in M(n) is nmn = nbn+1,1, hence the total number of
U steps among all paths in M(n) is 1

2
(nbn+1,1 − dnbn,1) = |T (n)|. Let P e = FUB ∈ T (n)

with a U step marked. Then Q = BUF ∈ A(n, 0) −M(n, 0) and the initial point of U in
Q is the rightmost lowest point in Q. The inverse mapping starts with the rightmost lowest
point. Note that |M(n, 0)| = mn = bn+1,1

For example,

P e =

◦ ◦ ◦
• ◦ ◦

◦ • ◦ ◦
× ◦

∈ T (11),

Q =

◦ ◦ ◦
× ◦ ◦ ◦ ◦

◦ ◦ •
•

∈ A(11, 0).

Proposition 8. There is a combinatorial proof for the equation

an,0 = an−1,−1 + dan−1,0 + can−1,1 = 2can−1,1 + dan−1,0

= 2c(n− 1)bn−1,1 + d(bn,1 +
1

2
((n− 1)bn,1 − d(n− 1)bn−1,1)) .

Proof. The first equality represents the partition of A(n, 0) by the last step (U , L or D).
The second equality represents the fact that an−1,−1 = can−1,1, since elements in A(n−1,−1)
have one more D step than those in A(n− 1, 1). And the last equality holds by Theorem 5
and Proposition 7.
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Sulanke [3] proved the following result for the Motzkin sequence.

Theorem 9. (n + 2)mn = (2dn + d)mn−1 + (4c− d2)(n− 1)mn−2.

Proof. By Propositions 7 and 8

bn+1,1 +
1

2
(nbn+1,1 − dnbn,1) = 2c(n− 1)bn−1,1 + dbn,1 + (

1

2
((n− 1)bn,1 − d(n− 1)bn−1,1)) .

By Lemma 4

mn +
1

2
(nmn − dnmn−1). = 2c(n− 1)mn−2 + dmn−1 + d(

1

2
((n− 1)mn−1 − d(n− 1)mn−2)) .

Equivalently
(n + 2)mn = (2dn + d)mn−1 + (4c− d2)(n− 1)mn−2 .

Theorem 10. lim
n→∞

mn

mn−1

= k = d + 2
√

c.

Proof. By Theorem 9, let

sn :=
mn

mn−1

=
d(2n + 1)

n + 2
+ (

(4c− d2)(n− 1)

n + 2
)
mn−2

mn−1

,

and let

an :=
d(2n + 1)

n + 2
= 2d− 3d

n + 2

bn :=
(4c− d2)(n− 1)

n + 2
= (4c− d2)(1− 3

n + 2
).

Then sn = an+
bn

sn−1

.

If the sequence sn = an+
bn

sn−1

has limit k, then k2 = 2dk+(4c−d2) and k =
2d+
√

4d2+4(4c−d2)

2
=

d + 2
√

c.

Case 1. 4c− d2 ≥ 0.
If sn−1 ≤ k, then

sn = an+
bn

sn−1

≥ 2d− 3d

n + 2
+
(4c− d2)n−1

n+2

k
= k − 3dk + 3(4c− d2)

k(n + 2)

= k − 3k2 − 3dk

k(n + 2)
= k − 3(k − d)

n + 2
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and

sn+1 = an+1 +
bn+1

sn

≤ 2d− 3d

n + 3
+
(4c− d2)( n

n+3
)

k − 3(k−d)
n+2

= 2d− 3d

n + 3
+
(4c− d2)

k
(1− 3 dn + 9d− 3k

(n + 3)(kn− k + 3d)
)

= 2d +
(4c− d2)

k
− 3d

n + 3
− (4c− d2)

k

3 dn + 9d− 3k

(n + 3)(kn− k + 3d)

= k − 3(2dn(k − d)− (k − d)(k − 3d))

(n + 3)(kn− k + 3d)

= k − 6(k − d)(d(n + 1)−√c)

(n + 3)(kn− k + 3d)
.

Note that s1 = d
1
and s2 = d2+c

d
= d + c

d
. If

√
c

2
≤ d, then s1, s2 ≤ k. By induction on

both odd and even n we have

k − 3(k − d)

n + 3
≤ sn+1 ≤ k − 6(k − d)(d(n + 1)−√c)

(n + 3)(kn− k + 3d)
≤ k .

and lim
n→∞

mn

mn−1

= k.

Case 2. 4c− d2 < 0.
Inductively, assuming that sn−1 ≤ k and {si} is nondecreasing up to n− 1. Then

sn = an+
bn

sn−1

≤ 2d− 3d

n + 2
+
(4c− d2)n−1

n+2

k
= k − 3dk + 3(4c− d2)

k(n + 2)

= k − 3k2 − 3dk

k(n + 2)
= k − 3(k − d)

n + 2
< k

and
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sn − sn−1 = (
d(2n + 1)

n + 2
+
(4c− d2)(n− 1)

sn−1(n + 2)
)−

(
d(2n− 1)

n + 1
+
(4c− d2)(n− 2)

sn−2(n + 1)
)

= d(2− 3

n + 2
) +

(4c− d2)

sn−1

(1− 3

n + 2
)−

(d(2− 3

n + 1
) +

(4c− d2)

sn−2

(1− 3

n + 1
))

≥ − 3d

n + 2
+

3d

n + 1
+
(4c− d2)

sn−1

(− 3

n + 2
+

3

n + 1
)

=
3d

(n + 2)(n + 1)
+

3(4c− d2)

sn−1(n + 2)(n + 1)

=
3dsn−1 + 3(4c− d2)

sn−1(n + 2)(n + 1)
≥ 12c

sn−1(n + 2)(n + 1)
> 0 .

By induction {si} is a bounded nondecreasing sequence and

lim
n→∞

mn

mn−1

= k .
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