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Abstract

We give a new and completely elementary proof of the fact that the rational ap-

proximations to π2 obtained by Apéry in his famous proof of the irrationality of certain

values of the Riemann zeta function are identical to those obtained by Beukers in one

of his alternative proofs of Apéry’s result.

1 Introduction

Apéry’s famous proof ([3], [10]) of the irrationality of ζ(3) makes ingenious use of certain
identities and specific recurrences. The proof gives explicit rational approximations to ζ(3)
which converge fast enough to prove its irrationality. Apéry’s proof also produces analogous
rational approximations to ζ(2) = π2/6, whose irrationality (in fact, transcendence) is well-
known. Specifically, in the case of ζ(2), Apéry considers the recurrence relation

(n+ 1)2un+1 − (11n2 + 11n+ 3)un − n2un−1 = 0.
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Let {an} be the sequence solving the above recurrence with initial values a0 = 0 and a1 = 5.
Also let {bn} be the sequence solving the recurrence with initial values b0 = 1 and b1 = 3.
Then the sequence {an/bn} converges to ζ(2). Explicit formulas for an and bn are given in
[3] and [10]. We also note that {bn} is the sequence A005258 in the On-Line Encyclopedia
of Integer Sequences. Apéry also gives analogous arguments for ζ(3).

Shortly after Apéry announced his proof, Beukers ([6]) produced an elegant and entirely
different proof of the irrationality of ζ(2) and ζ(3). In the case of ζ(2), Beukers considers
the double integrals In defined by

In =

∫ 1

0

∫ 1

0

(1− y)nPn(x)

1− xy
dxdy,

where n ∈ N and Pn(x) is the Legendre-type polynomial given by

Pn(x) =
1

n!

dn

dxn
(xn(1− x)n).

He then shows that
In = βnζ(2)− αn,

where αn, βn ∈ Q, for all n. An estimation of the latter linear form shows that it tends to
0 (as n approaches infinity) fast enough to yield the irrationality of ζ(2). Beukers also gives
an analogous argument for the case of ζ(3) by using a triple integral instead. It is worth
noting that an even more striking proof of Apéry’s result was given by Beukers in [4] using
modular forms.

It is rather remarkable (and apparently known, as explained below) that the rational
approximations to ζ(2) and ζ(3) obtained by Beukers are identical to those obtained by
Apéry. We list below some places we were able to find in the literature where proofs of this
fact (or of related facts) are given:
For the 1-dimensional analogue of Beukers’ method (i.e., appropriate single-variable inte-
grals), a related fact was established by Alladi and Robinson in [1], using properties of
values of Legendre polynomials. The method is also discussed independently by Beukers in
[5]. For the 2-dimensional and 3-dimensional analogues of Beukers’ method (i.e., Beukers’
double and triple integrals), the fact is verified by Nesterenko in [9], by using rather advanced
arguments involving, among other things, contour integrals of Barnes type and transforma-
tion properties of hypergeometric series (see also the recent preprint by Zudilin ([12]). The
reader may also consult the article by Fischler ([7]) for a complete survey of the subject.

The purpose of this paper is to give a new, short and completely elementary proof of the
fact mentioned above for ζ(2).

Theorem 1.1 With notation as above, we have

an = αn, bn = βn,

for all n ∈ N.
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As the referee of an earlier version of this paper pointed out, another elementary proof
of the same fact can be given by combining clever manipulations with Zeilberger’s powerful
program Ekhad. Our proof is along different lines.

Our attempts to apply similar elementary arguments to the case of ζ(3) have invariably
(and not surprisingly) led us to certain expressions involving special values of generalized
hypergeometric series, which are notoriously difficult to compute. We do not address the
case of ζ(3) any further in this paper.

The above theorem easily implies a recurrence relation between special values of certain
generalized hypergeometric series (see the corollary below). It is not unlikely that this may
also follow from the contiguous relations of Kummer (which were generalized by Wilson
in [11]); we have not attempted to verify this. The reader may also consult the books by
Andrews, Askey and Roy ([2]) or by Magnus, Oberhettinger and Soni ([8]) for a wealth of
information regarding special functions of hypergeometric type.

If a is a positive integer, let 3F2(a, a, a; 2a, 2a; 1) denote the value of the generalized
hypergeometric series

3F2(a, a, a; 2a, 2a;x) = 1 +
∞

∑

k=1

(a . . . (a+ k − 1))3

((2a) . . . (2a+ k − 1))2
xk

k!

at x = 1. Then

Corollary 1.1 For every integer a such that a ≥ 2, we have

3F2(a+ 1, a+ 1, a+ 1; 2a+ 2, 2a+ 2; 1)

= −176a4 − 84a2 + 4a+ 12

a4 3F2(a, a, a; 2a, 2a; 1)+

+
256a4 − 128a2 + 16

a4 3F2(a− 1, a− 1, a− 1; 2a− 2, 2a− 2; 1).

2 The Proof

We first point out that some of the integrals below are improper; their use can be justified
by replacing

∫ 1

0
by

∫ 1−ε

ε
and letting ε tend to 0. Also, in what follows, our manipulations of

the series involved are valid because of their absolute and/or uniform convergence.
First note that

I0 =

∫ 1

0

∫ 1

0

1

1− xy
dxdy =

∞
∑

k=0

∫ 1

0

∫ 1

0

xkykdxdy = ζ(2),

I1 =

∫ 1

0

∫ 1

0

(1− y)(1− 2x)

1− xy
dxdy
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=
∞

∑

k=0

∫ 1

0

∫ 1

0

(xkyk − xkyk+1 − 2xk+1yk + 2xk+1yk+1)dxdy = −5 + 3ζ(2),

so the theorem is true for n = 0 and n = 1. As Beukers shows in [6], we have

In = (−1)n
∫ 1

0

∫ 1

0

xnyn(1− x)n(1− y)n

(1− xy)n+1
dxdy,

for all n. Now, n-fold differentiation of the geometric series identity

1

1− u
=

∞
∑

k=0

uk

gives the following formal identity for n ∈ N and an indeterminate u:

1

(1− u)n+1
=

∞
∑

k=0

(n+ k)!

k! n!
uk.

Therefore,

In = (−1)n
∞

∑

k=0

(n+ k)!

k! n!

∫ 1

0

∫ 1

0

xn+kyn+k(1− x)n(1− y)ndxdy =

(−1)n
∞

∑

k=0

(n+ k)!

k! n!
(B(n+ k + 1, n+ 1))2,

where B(·, ·) denotes Euler’s beta function. Therefore,

In = (−1)n
∞

∑

k=0

(n+ k)!3 n!

(2n+ k + 1)!2 k!
.

Since ζ(2) is irrational and {an}, {bn} satisfy the same recurrence relation (with different
initial conditions), it follows that, in order to prove the theorem, it suffices to show that the
sequence {In} satisfies Apéry’s recurrence relation, i.e., we need to show that

(n+ 1)2In+1 − (11n2 + 11n+ 3)In − n2In−1 = 0,

for all n ≥ 1. Fix such an n. It suffices to show that

∞
∑

k=0

((n+ 1)2
(n+ k + 1)!3 (n+ 1)!

(2n+ k + 3)!2 k!
+ (11n2 + 11n+ 3)

(n+ k)!3 n!

(2n+ k + 1)!2 k!

−n (n+ k − 1)!3 n!

(2n+ k − 1)!2 k!
) = 0.

Let Sk,n denote the expression inside the infinite sum on the left-hand side of the above
equality. A tedious calculation shows that

Sk,n =
(n+ k − 1)!3 n!

(2n+ k + 3)!2 k!
(−nk8 + (3− n− 5n2)k7 + (10n3 + 66n2 + 88n+ 31)k6+
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+(119n4 + 563n3 + 881n2 + 548n+ 114)k5+

+(314n5 + 1749n4 + 3479n3 + 3128n2 + 1268n+ 183)k4+

+(340n6 + 2412n5 + 6121n4 + 7310n3 + 4330n2 + 1179n+ 109)k3+

+(71n7 + 1119n6 + 4172n5 + 6737n4 + 5364n3 + 2043n2 + 291n)k2+

+(−138n8 − 503n7 − 349n6 + 782n5 + 1468n4 + 885n3 + 183n2)k

−(79n9 + 474n8 + 1141n7 + 1400n6 + 913n5 + 294n4 + 35n3)).

Let Tm,n denote the m-th partial sum of the latter infinite series, i.e.,

Tm,n =
m

∑

k=0

Sk,n.

We claim that Tm,n is given by the following closed formula:

Tm,n =
(n+m)!3 n!

(2n+m+ 3)!2 m!
(m6 + (4n+ 9)m5 − (13n2 − 7n− 26)m4

−(102n3 + 228n2 + 112n− 15)m3 − (225n4 + 822n3 + 1025n2 + 479n+ 52)m2

−(217n5 + 1057n4 + 1957n3 + 1691n2 + 658n+ 84)m

−(79n6 + 474n5 + 1141n4 + 1400n3 + 913n2 + 294n+ 35)).

Although this formula is difficult to guess, its proof is a tedious but straightforward induction
argument (on m), using the explicit formula for Sk,n given above. The authors suspected
the existence of such a closed formula for Tm,n after explicitly computing it for the first few
values of m. It should be pointed out that there is an algorithm (due to Gosper, and lying
at the heart of the Ekhad program) that, given a hypergeometric summand Sk, determines
whether or not

∑m

k=0
Sk has a hypergeometric closed form. Also, one may try to use the

Wilf-Zeilberger algorithm of creative telescoping to compute Tm,n; we have not attempted
to use any of these algorithms.

It now remains to show that Tm,n tends to 0 as m approaches infinity. By Stirling’s
formula, we see that

lim
m→∞

Tm,n = lim
m→∞

(n+m
e

)3n+3m

(m
e
)m(2n+m+3

e
)4n+2m+6

√

8π3(n+m)3

2π(2n+m+ 3)
√
2πm

m6

= lim
m→∞

m−nen+6 = 0,

and this completes the proof of the theorem.

Now note that the formula for In given in our proof of the theorem may be restated as
follows:

In = (−1)n n!4

(2n+ 1)!2
3F2(n+ 1, n+ 1, n+ 1; 2n+ 2, 2n+ 2; 1).

Since In satisfies Apéry’s recurrence, the corollary follows from an easy calculation.
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J. Théor. Nombres Bordeaux, 15 (2003), 535-550.

[10] A. van der Poorten, A proof that Euler missed... Apéry’s proof of the irrationality of
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