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Abstract

Consider the sequence of positive integers (un)n≥1 defined by u1 = 1 and un+1 =
b
√
2
(

un +
1
2

)

c. Graham and Pollak discovered the unexpected fact that u2n+1−2u2n−1

is just the n-th digit in the binary expansion of
√
2. Fix w ∈ R>0. In this note, we

first give two infinite families of similar nonlinear recurrences such that u2n+1−2u2n−1

indicates the n-th binary digit of w. Moreover, for all integral g ≥ 2, we establish a
recurrence such that u2n+1 − gu2n−1 denotes the n-th digit of w in the g-ary digital
expansion.

1 Introduction

In 1969, Hwang and Lin [6] studied Ford and Johnson’s algorithm for sorting partially-sorted
sets (see also [7]). In doing so, they came across the sequence of integers

1, 2, 3, 4, 6, 9, 13, 19, 27, 38, 54, 77, 109 . . .
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defined by the nonlinear recurrence

u1 = 1, un+1 =
⌊

√

2un(un + 1)
⌋

, n ≥ 1. (1)

Since there is no integral square between 2u2
n + 2un and 2u2

n + 2un + 1
2
= 2(un + 1

2
)2 we can

rewrite the recurrence in a more striking form, i.e.,

u1 = 1, un+1 =
⌊√

2(un + 1/2)
⌋

, n ≥ 1. (2)

While investigating closed-form expressions for un in (2), Graham and Pollak [4] discovered
the following amazing fact:

Fact 1 (Graham/Pollak). We have that

dn = u2n+1 − 2u2n−1

is the n-th digit in the binary expansion of
√
2 = (1.011010100 . . .)2.

Since then, sequences arising from the recurrence relation given in (2) are referred to as
Graham-Pollak sequences [9, 10]. Sloane [9] gives three special sequences depending on the
initial term u1, i.e., sequence A001521 for u1 = 1, A091522 for u1 = 5 and sequence A091523
for u1 = 8.

The curiosity of Fact 1 has drawn the attention of several mathematicians and has been
cited a few times, see Ex. 30 in Guy [5], Ex. 3.46 in Graham/Knuth/Patashnik [3] and in
Borwein/Bailey [1, pp. 62–63]. A generalization to numbers other than

√
2 is, however, not

straightforward from Graham and Pollak’s proof. Nevertheless, Erdős and Graham [2, p. 96]
suspected that similar results would also hold “for

√
m and other algebraic numbers”, but

they concluded that “we have no idea what they are.”
By applying a computational guessing approach, Rabinowitz and Gilbert [8] could give

an answer in the binary case:

Theorem 1.1 (Rabinowitz/Gilbert). Let w ∈ R>0 and t = w/2m, where m = blog2 wc.
Furthermore, set

a = 2

(

1− 1

t + 2

)

, b =
2

a
.

Define a sequence (un)n≥1 by the recurrence

u1 = 1

un+1 =

{

ba(un + 1/2)c, if n is odd;

bb(un + 1/2)c, if n is even.

Then u2n+1 − 2u2n−1 is the n-th digit in the binary expansion of w.

Note that for w =
√
2 we get a = b =

√
2 and the statement of Fact 1 is obtained.

However, the values of a and b in Theorem 1.1 are somehow wrapped in mystery. Rabinowitz
and Gilbert first varied a and b in order that u2n+1 − 2u2n−1 ∈ {0, 1}. They found that
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ab = 2 and discovered that the represented w indeed equals 2(a− 1)/(2− a) provided that
1 < a < 3/2.

It is a natural question to ask, whether there exist other values of a and b such that the
binary expansion of w is obtained. Here we prove

Theorem 1.2. Let w ∈ R>0 and t = w/2m, where m = blog2 wc. Furthermore, let j ∈ Z>0

and set the values of a and b according to one of the following cases:

Case I:

a = 2

(

j − 1

t + 2

)

, b =
2

a
.

Case II:

a = 2j − t

t + 2
, b =

2

a
.

Define a sequence (un)n≥1 by the recurrence

u1 = 1

un+1 =

{

ba(un + 1/2)c, if n is odd;

bb(un + ε)c, if n is even,

where 1/3 ≤ ε < 2/3 in Case I and ε = 1/2 in Case II, respectively. Then u2n+1 − 2u2n−1

is the n-th digit in the binary expansion of w.

In the closing paragraph of [8], the authors finally posed the question, whether there
exists an analogous statement for ternary digits. Here we prove

Theorem 1.3. Let w ∈ R>0 and g ≥ 2 be an integer. Furthermore, set t = w/gm, where

m = blogg wc and
a =

g

(g − 1)(t + g)
, b =

g

a
.

Define a sequence (un)n≥1 by the recurrence

u1 = 1

un+1 =

{

ba(un + ε)c, if n is odd;

bb(un + 1/(g − 1))c, if n is even,

where −1/g ≤ ε < (g+1)(g−2)/g. Then u2n+1−gu2n−1 is the n-th digit in the g-ary digital
expansion of w.

In view of Fact 1, we note two immediate consequences of Theorem 1.2 and Theorem 1.3.
To begin with, we substitute w = t =

√
2 in Case I and Case II of Theorem 1.2. This

implies a = 2j − 2 +
√
2 (Case I) and a = 2j + 1 −

√
2 (Case II) for j ≥ 1. By ordering

all such values into a single sequence, we obtain
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Corollary 1.1. Let aj = j + (−1)j
√
2 for j = 0, 2, 3 . . . and bj = 2/aj. Define a sequence

(un)n≥1 by

u1 = 1

un+1 =

{

baj(un + 1/2)c, if n is odd;

bbj(un + 1/2)c, if n is even.

Then u2n+1 − 2u2n−1 is the n-th digit in the binary expansion of
√
2 = (1.011010100 . . .)2.

Note that for j = 1 we have a1 = 1−
√
2 < 0 and u5 − 2u3 = 7− 2 · 2 = 3, which is not

a binary digit.
On the other hand, if we take g = 3, w = t =

√
2 and ε = 1/2 in Theorem 1.3, we get

Corollary 1.2. Define a sequence (un)n≥1 by

u1 = 1

un+1 =

{

ba(un + 1/2)c, if n is odd;

bb(un + 1/2)c, if n is even,

where a = (9 − 3
√
2)/14 and b = 6 + 2

√
2. Then u2n+1 − 3u2n−1 is the n-th digit in the

ternary expansion of
√
2 = (1.102011221 . . .)3.

2 Proofs

For later reference we state an easy, but useful proposition.

Proposition 2. Let g ≥ 2 be an integer and w = (d1d2d3 . . .)g be the g-ary digital expansion
of w with d1 6= 0 and 0 ≤ dn < g for n ≥ 1. Suppose further that for n ≥ 1 not all of

dn, dn+1, . . . equal g − 1. Then

• t = (d1.d2d3 . . .)g with 1 ≤ t < g,

• dn = btgn−1c − gbtgn−2c.

Proof. Since m = blogg wc it is immediate that 1 ≤ w/gm < g. Moreover,

btgn−1c − gbtgn−2c = (d1d2 . . . dn)g − (d1d2 . . . dn−10)g = dn.

2.1 Proof of Theorem 1.2

First, we prove that in Case I there hold

u2k = 2k−1 + bt2k−1c+ (j − 1)(2k + 2bt2k−2c+ 1),

u2k+1 = 2k + bt2k−1c,
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so that Proposition 2 gives u2n+1− 2u2n−1 = dn. To begin with, we have u1 = 20 + bt/2c = 1
because of 1 ≤ t < 2. We are going to employ an induction argument. Suppose that the
result holds true for u2k−1. Then

u2k =

⌊

2

(

j − 1

t + 2

)(

2k−1 +
⌊

t2k−2
⌋

+
1

2

)⌋

= (j − 1)(2k + 2bt2k−2c+ 1) +

⌊(

1− 1

t + 2

)

(

2k + 2
⌊

t2k−2
⌋

+ 1
)

⌋

.

Thus, it suffices to show that

⌊

t + 1

t + 2
·
(

2k + 2
⌊

t2k−2
⌋

+ 1
)

⌋

= 2k−1 +
⌊

t2k−1
⌋

. (3)

Since 2
⌊

t2k−2
⌋

=
⌊

t2k−1
⌋

− dk by Proposition 2, we may rewrite (3) in the equivalent form

(t + 2)
(

2k−1 +
⌊

t2k−1
⌋)

≤ (t + 1)
(

2k +
⌊

t2k−1
⌋

− dk + 1
)

< (t + 2)
(

2k−1 +
⌊

t2k−1
⌋

+ 1
)

.

Straightforward algebraic manipulation leads to

t2k−1 +
⌊

t2k−1
⌋

≤ t2k + (1− dk)(t + 1) <
(

t2k−1 +
⌊

t2k−1
⌋

+ 1
)

+ 1 · (t + 1),

which is obviously true because of
⌊

t2k−1
⌋

≤ t2k−1 <
⌊

t2k−1
⌋

+ 1.
Now, assume that the result is true for u2k. Thus, we have to show that

u2k+1 =

⌊

t + 2

j(t + 2)− 1
(u2k + ε)

⌋

= 2k + bt2k−1c. (4)

The equality of integer floors (4) can be rewritten in terms of two inequalities, i.e.,

(j(t + 2)− 1)(2k +
⌊

t2k−1
⌋

) ≤ (t + 2)
(

2k−1 +
⌊

t2k−1
⌋

+ ε + (j − 1)(2k + 2
⌊

t2k−2
⌋

+ 1)
)

< (j(t + 2)− 1)(2k +
⌊

t2k−1
⌋

+ 1).

Again, we use Proposition 2 and proper term cancelling such that (4) translates into

0 ≤
⌊

t2k−1
⌋

− t2k−1 + (t + 2) (ε + (j − 1)(1− dk)) < j(t + 2)− 1.

Since −1 <
⌊

t2k−1
⌋

− t2k−1 ≤ 0 and ε < 2/3 we have

⌊

t2k−1
⌋

− t2k−1 + (t + 2) (ε + (j − 1)(1− dk)) < (t + 2)(2/3 + (j − 1)) ≤ j(t + 2)− 1.

On the other hand, ε ≥ 1/3 implies

⌊

t2k−1
⌋

− t2k−1 + (t + 2) (ε + (j − 1)(1− dk)) > −1 + (t + 2)ε ≥ 0.

This finishes the proof of Theorem 1.2 for Case I.
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Let now a, b and ε be according to Case II. Again, by Proposition 2 it suffices to show
that

u2k = 2k + bt2k−2c+ (j − 1)(2k + 2bt2k−2c+ 1),

u2k+1 = 2k + bt2k−1c.

As before, we have u1 = 20 + bt/2c = 1. Assume that the closed-form expression holds true
for u2k−1. Then

u2k =

⌊(

2j − t

t + 2

)(

2k−1 +
⌊

t2k−2
⌋

+
1

2

)⌋

= (j − 1)(2k + 2bt2k−2c+ 1) +

⌊(

1− t

2(t + 2)

)

(

2k + 2
⌊

t2k−2
⌋

+ 1
)

⌋

.

Hence, it is sufficient to prove that

2k + bt2k−2c ≤ t + 4

2(t + 2)
· (2k + 2bt2k−2c+ 1) < 2k + bt2k−2c+ 1. (5)

By multiplying (5) with 2(t+2) and simply canceling out all terms with bt2k−2c, (5) simplifies
to

0 ≤ 4
(

bt2k−2c − t2k−2
)

+ t + 4 < 2t + 4. (6)

Relation (6) is obviously true, since −1 < bt2k−2c − t2k−2 ≤ 0.
For the induction step from u2k to u2k+1 we have to ensure that

u2k+1 =

⌊

2(t + 2)

2j(t + 2)− t

(

u2k +
1

2

)⌋

= 2k + bt2k−1c,

or equivalently, that

2k + bt2k−1c ≤ 2(t + 2)

2j(t + 2)− t

(

2k + bt2k−2c+ 1

2
+ (j − 1)(2k + 2bt2k−2c+ 1)

)

< 2k + bt2k−1c+ 1.

We replace all bt2k−2c by
(

bt2k−1c − dk

)

/2 and after some term sorting we obtain

0 ≤ (t + 2)(2j − 1)(1− dk) + t2k − 2bt2k−1c < 2j(t + 2)− t. (7)

Since 0 ≤ t2k − 2bt2k−1c = dk+1 + t2k − bt2kc = (dk+1.dk+2dk+3 . . .)2 < 2, the inequalities
given in (7) hold true for all k ≥ 1. The proof of Theorem 1.2, Case II is done. It is not
difficult to see that ε = 1/2 cannot be replaced by any other value.

2.2 Proof of Theorem 1.3

Here we prove

u2k = (gk−1 − 1)/(g − 1),

u2k+1 = gk + btgk−1c.
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Similarly as before, the statement of Theorem 1.3 is then obtained from Proposition 2.
Again, u1 = g0 + bt/gc = 1. Suppose first, the result holds for u2k. Then

u2k+1 =

⌊

b

(

u2k +
1

g − 1

)⌋

=
⌊

(t + g)(gk−1 − 1) + (t + g)
⌋

= gk + btgk−1c.

Vice versa, assume the result holds for u2k+1. Let {x} denote the fractional part of x ∈ R>0.
Then

u2k+2 = ba(u2k+1 + ε)c = babgk−1(t + g)c+ aεc

=

⌊

a

⌊

gk

a(g − 1)

⌋

+ aε

⌋

=
gk − 1

g − 1
+

⌊

1

g − 1
− a

{

gk

a(g − 1)

}

+ aε

⌋

.

Since 0 < a ≤ g/(g2 − 1), we have 1/(g − 1)− a ≥ a/g. Thus, for ε ≥ −1/g we get

1

g − 1
− a

{

gk

a(g − 1)

}

+ aε >
1

g − 1
− a + aε ≥ a

g
− a

g
= 0.

On the other hand, if ε < (g + 1)(g − 2)/g then

1

g − 1
− a

{

gk

a(g − 1)

}

+ aε ≤ 1

g − 1
+ aε <

1

g − 1
+

g

g2 − 1
· (g + 1)(g − 2)

g
= 1.

This finishes the proof of Theorem 1.3.
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