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Abstract

Consider the sequence of positive integers (uy,)n,>1 defined by u; = 1 and up4q =
V2 (un + %)J Graham and Pollak discovered the unexpected fact that uo, 11 —2ug,—1
is just the n-th digit in the binary expansion of v/2. Fix w € Rsg. In this note, we
first give two infinite families of similar nonlinear recurrences such that woy,+1 — 2uo,—1
indicates the n-th binary digit of w. Moreover, for all integral g > 2, we establish a
recurrence such that ug,1 — guo,—1 denotes the n-th digit of w in the g-ary digital
expansion.

1 Introduction
In 1969, Hwang and Lin [6] studied Ford and Johnson’s algorithm for sorting partially-sorted
sets (see also [7]). In doing so, they came across the sequence of integers

1,2, 3,4,6,9, 13, 19, 27, 38, 54, 77, 109. ..
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defined by the nonlinear recurrence

u =1, Upp1 = L 2up, (u, + 1)J , n>1. (1)

Since there is no integral square between 2u2 + 2u,, and 2u? + 2u, + 3 = 2(u, + 3)* we can

2
rewrite the recurrence in a more striking form, i.e.,
wi=1,  Uny = Lﬂ(un n 1/2)J L on>1. (2)

While investigating closed-form expressions for u,, in (2), Graham and Pollak [4] discovered
the following amazing fact:

Fact 1 (Graham/Pollak). We have that
d, = Ugn41 — 2Up 1

is the n-th digit in the binary expansion of V2 = (1.011010100. . .),.

Since then, sequences arising from the recurrence relation given in (2) are referred to as
Graham-Pollak sequences [9, 10]. Sloane [9] gives three special sequences depending on the
initial term wuq, i.e., sequence A001521 for uy = 1, A091522 for u; = 5 and sequence A091523
for u; = 8.

The curiosity of Fact 1 has drawn the attention of several mathematicians and has been
cited a few times, see Ex. 30 in Guy [5], Ex. 3.46 in Graham/Knuth/Patashnik [3] and in
Borwein/Bailey [1, pp. 62-63]. A generalization to numbers other than v/2 is, however, not
straightforward from Graham and Pollak’s proof. Nevertheless, Erdds and Graham [2, p. 96]
suspected that similar results would also hold “for y/m and other algebraic numbers”, but
they concluded that “we have no idea what they are.”

By applying a computational guessing approach, Rabinowitz and Gilbert [8] could give
an answer in the binary case:

Theorem 1.1 (Rabinowitz/Gilbert). Let w € Roy and t = w/2™, where m = |log, w].

Furthermore, set
1 2
a=2(1-—1), b=2.
t+2 a

Define a sequence (uy)n>1 by the recurrence

U1:1

) lau, +1/2)], if n is odd;
it = |b(u, +1/2)], if n is even.

Then ugpi1 — 2U9,—1 1S the n-th digit in the binary expansion of w.

Note that for w = /2 we get a = b = V/2 and the statement of Fact 1 is obtained.
However, the values of a and b in Theorem 1.1 are somehow wrapped in mystery. Rabinowitz
and Gilbert first varied a and b in order that ug, 1 — 2us, 1 € {0,1}. They found that
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ab = 2 and discovered that the represented w indeed equals 2(a — 1)/(2 — a) provided that
l1<a<3/2

It is a natural question to ask, whether there exist other values of @ and b such that the
binary expansion of w is obtained. Here we prove

Theorem 1.2. Let w € Ry and t = w/2™, where m = |log, w|. Furthermore, let j € Z~g
and set the values of a and b according to one of the following cases:

Cask I:
) 1 2
a = j _—— y b - —.
t+2 a
CASE 1I: .
“=4 Ty +2’ a
Define a sequence (uy)n>1 by the recurrence
Uy = 1
la(u, +1/2)], if n is odd;
Upy1 = .
i |b(u, +¢)], if n is even,

where 1/3 < e <2/3 in CASE I and ¢ = 1/2 in CASE 11, respectively. Then ug, 1 — 2ug, 1
1s the n-th digit in the binary expansion of w.

In the closing paragraph of [8], the authors finally posed the question, whether there
exists an analogous statement for ternary digits. Here we prove

Theorem 1.3. Let w € Rog and g > 2 be an integer. Furthermore, set t = w/g™, where
m = [log, w| and

(9-D(t+9g) a
Define a sequence (uy)n>1 by the recurrence
Uy = 1
w— la(u, +¢€)], if n is odd;
me |b(u, +1/(g —1))|, ifn is even,

where —1/g <e < (9+1)(g—2)/g. Then ugyi1 — guon—_1 is the n-th digit in the g-ary digital
expansion of w.

In view of Fact 1, we note two immediate consequences of Theorem 1.2 and Theorem 1.3.
To begin with, we substitute w = ¢ = v/2 in CASE I and CASE II of Theorem 1.2. This
implies a = 2j — 2+ /2 (CasE I) and a = 2j + 1 — v/2 (CASE II) for j > 1. By ordering
all such values into a single sequence, we obtain



Corollary 1.1. Let a; = j + (=1)7v/2 for j = 0,2,3... and b; = 2/a;. Define a sequence
(tn)n>1 by

uy = 1
la;(u, +1/2)|, if n is odd;
Upi1 =
! 1bj(un +1/2)], if n is even.
Then sy 1 — 2usn_1 is the n-th digit in the binary expansion of \/2 = (1.011010100. . .)5.

Note that for j =1 we have a; =1 —v/2 < 0 and us — 2us = 7 — 2 - 2 = 3, which is not
a binary digit.
On the other hand, if we take g = 3, w =t = v/2 and € = 1/2 in Theorem 1.3, we get

Corollary 1.2. Define a sequence (uy,)n>1 by

U1:1

) lau, +1/2)], if n is odd;
it = |b(u, +1/2)], if n is even,

where a = (9 — 3v/2)/14 and b = 6 + 2v/2. Then ug,1 — 3usn_1 45 the n-th digit in the
ternary expansion of v/2 = (1.102011221 .. .)s.

2 Proofs

For later reference we state an easy, but useful proposition.

Proposition 2. Let g > 2 be an integer and w = (dydads . . .), be the g-ary digital expansion
of w with di # 0 and 0 < d,, < g forn > 1. Suppose further that for n > 1 not all of
dp,dpyi1, ... equal g — 1. Then

o = (dl.dgdg .. -)g with 1 <t< g,
o d,=[tg"| —gltg"*].
Proof. Since m = [log, w] it is immediate that 1 <w/g™ < g. Moreover,

[tg" ] = gltg" 2] = (dids...dn), = (drds... d10) = d

2.1 Proof of Theorem 1.2

First, we prove that in CASE I there hold

g, = 2571 4 (1287 4 (5 — 1) (28 4212572 + 1),
Ugk+1 = 2k + LtQkﬂL



so that Proposition 2 gives g, 11 — 2us,_1 = d,. To begin with, we have u; = 2°+ [t/2] =1
because of 1 <t < 2. We are going to employ an induction argument. Suppose that the
result holds true for uqg;_;. Then

et )

= —D2F + 201252 +1) + Kl — #) (28 +2 [t2"7%] + 1)J .

t+2

Thus, it suffices to show that

H_—::—; . (2’~C + 2 \_tQk—2J + 1)J — ok-1 4 \.tQk_lj . 3)

Since 2 LtQk_QJ = Lt2k_1J — dj, by Proposition 2, we may rewrite (3) in the equivalent form

t+2) (28 + [28]) < ¢+ 1) 28+ [ —d + 1)
< (t42) (25 + |2 +1).

Straightforward algebraic manipulation leads to
P 2R <P (L —d) (1) < (2 (2R 1) + 1 (24 ),

which is obviously true because of [¢2F7!| <21 < [£2571| + 1.
Now, assume that the result is true for uq,. Thus, we have to show that

t+2

m(u% + 5)J =2k ¢ [12F 1. (4)

U2k4+1 = {

The equality of integer floors (4) can be rewritten in terms of two inequalities, i.e.,

Git+2) =1+ [@2" ) < (¢ +2) @+ 2" +e+ (G- + 212" + 1))
< (Gt+2) = 12"+ [2"] +1).

Again, we use Proposition 2 and proper term cancelling such that (4) translates into
0< |2 =2 '+ (t+2) e+ (F — 1)L —dy)) < j(t+2) — 1.
Since —1 < [t2F71] — ¢2¥71 <0 and € < 2/3 we have
(2" 2P 4+ 2) e+ (- DA —di) < (E+2)(2/3+(j — 1)) <j(t+2) 1.
On the other hand, ¢ > 1/3 implies
(257 2 4+ 2) (e + (- 1)1 —di)) > =1+ (t+2)e > 0.
This finishes the proof of Theorem 1.2 for CASE 1.
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Let now a, b and € be according to CASE II. Again, by Proposition 2 it suffices to show
that

Uge = 28 + 12572 + (5 — 1)(28 + 2|12 2 + 1),
U2k+1 = 2k + Lt2k_lj .

As before, we have u; = 2° + [¢/2] = 1. Assume that the closed-form expression holds true
for wer_1. Then

el (o) )

=(j—D)(2" + 20252 +1) + Kl - 2(;2)) (28 +2 [t2F2] + 1)J .

Hence, it is sufficient to prove that

t+4
2t + 2)

ok 4 [12F72] < (24208287 1) < 28 4 [12R ) 4 1. (5)

By multiplying (5) with 2(¢+2) and simply canceling out all terms with [#2¥72], (5) simplifies
to

0<4([e2" 2] —e2" ) +t+4 <2t + 4. (6)
Relation (6) is obviously true, since —1 < [#28=2] — ¢2k=2 < 0.
For the induction step from wug; to ugxy1 we have to ensure that

or equivalently, that
2(t+ 2
ok 4 |12k 1] < L
2j(t+2) -t
< 2F 42kt 41

1

28 4 [1257%] + 5+ 1)(2% 4 2[¢2572] + 1))

We replace all [¢2¥72] by ([t2*"'] — d},) /2 and after some term sorting we obtain
0<(t+2)(2) — 1)(1 —dg) +t2F — 2|28 | < 25(t +2) —¢. (7)

Since 0 < 28 — 2|28 | = djy 1 + 128 — [12F] = (dpy1.diyodrss .. .)2 < 2, the inequalities
given in (7) hold true for all & > 1. The proof of Theorem 1.2, CASE II is done. It is not
difficult to see that € = 1/2 cannot be replaced by any other value.

2.2 Proof of Theorem 1.3

Here we prove

u = (6" = 1)/(g — 1),
U1 = g" + [tg" .



Similarly as before, the statement of Theorem 1.3 is then obtained from Proposition 2.
Again, u; = ¢° + [t/g] = 1. Suppose first, the result holds for uy,. Then

g—1

U1 = {b (u% + i)J =(t+9)(¢" " =)+ (t+g)] =g"+ [td" ]

Vice versa, assume the result holds for ugy1. Let {x} denote the fractional part of x € R.
Then

Usp o = La<u2k+l+6) ] =lalg* 1t+g>J+aeJ

el ] S el ]

Since 0 < a < g/(¢g*> — 1), we have 1/(g — 1) —a > a/g. Thus, for ¢ > —1/g we get

! { g }+ >t yae>2-2—9
—Qa —_— age — — Q ag - — — = U.
g—1 a(g—1) g—1 g g
On the other hand, if ¢ < (g + 1)(g — 2)/g then
1 g* } 1 1 g (g+1)(g—-2)
—— —ay—F——=, tac < ——HFas < + . =1.
g—1 {a(g—l) g—1 g—1 ¢*—-1 g

This finishes the proof of Theorem 1.3.

Acknowledgment

The author wishes to thank the referee for her/his detailed remarks on the original manu—
script; in particular, for pointing out several inaccuracies in the statement of the results.

References

[1] J. Borwein and D. Bailey, Mathematics by Experiment, Natick, MA, 2003.

[2] P. Erdés and R. L. Graham, Old and New Problems and Results in Combinatorial
Number Theory, L’Enseignement Mathématique, Geneve, 1980.

[3] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley,
MA, second edition, 1994.

[4] R. L. Graham and H. O. Pollak, Note on a nonlinear recurrence related to \/5, Math.
Mag., 43 (1970), 143-145.

[5] R. K. Guy, The strong law of small numbers, Amer. Math. Monthly, 95 (1988), 697-712.

[6] F. Hwang and S. Lin, An analysis of Ford and Johnson’s sorting algorithm, in: Proc.
Third Annual Princeton Conf. on Inform. Sci. and Systems, 1969, pp. 292—-296.

7



[7] D. E. Knuth, The Art of Computer Programming — Volume 3, Addison-Wesley, Mass.-
London-Don Mills, Ont., 2nd ed., 1998.

[8] S. Rabinowitz and P. Gilbert, A nonlinear recurrence yielding binary digits, Math. Mag.,
64 (1991), 168-171.

[9] N.J. A.Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically
at www.research.att.com/~njas/sequences, 1996-2005.

[10] E. W. Weisstein, Graham-Pollak Sequence (from Mathworld, a Wolfram Web Re-
source), http://mathworld.wolfram.com /Graham-PollakSequence.html, 1999-2005.

2000 Mathematics Subject Classification: Primary 11B37; Secondary 11A67.
Keywords: Graham-Pollak sequence, nonlinear recurrence, digits.

(Concerned with sequences A001521, A091522 and A091523.)

Received April 1 2005; revised version received May 12 2005. Published in Journal of Integer
Sequences, May 24 2005.

Return to Journal of Integer Sequences home page.



