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Abstract

For a fixed integer m > 2, we say that a partition n = p1 + pa + --- + pi of a
natural number n is m-non-squashing if p; > 1 and (m — 1)(p1 + -+ + pj—1) < p; for
2 < j < k. In this paper we give a new bijective proof that the number of m-non-
squashing partitions of n is equal to the number of m-ary partitions of n. Moreover,
we prove a similar result for a certain restricted m-non-squashing partition function
¢(n) which is a natural generalization of the function which enumerates non-squashing
partitions into distinct parts (originally introduced by Sloane and the second author).
Finally, we prove that for each integer r > 2,

c(m™n) —e¢(m™n) =0 (mod m"1/d"7?),

where d = ged(2, m).
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1. Introduction

We begin with the following motivation. Suppose we have a number of boxes each labeled
by a positive integer. A box labeled i weighs ¢ pounds and can support a total weight of
|i/(m — 1)| pounds where m is some fixed integer greater than 1. We wish to build single
stacks of boxes in such a way that no box will be squashed by the weight of the boxes above
it. Let b,,(n) denote the number of different ways to build such a single stack of boxes where
the total weight of all the boxes in the stack is exactly n pounds.

For the sake of precision, let us say that a partition of a natural number n,

n=pi+pzt+-+ D (1)
is m-non-squashing if
pr>1 and (m—1)(p1+p2+-+pj-1) <pj, 2<j<k (2)

If the boxes in a stack are labeled (from the top) pi, ps,. .., pk, the stack will not collapse if
and only if the corresponding partition is m-non-squashing.

Hirschhorn and Sellers [[[] discovered the following connection between m-non-squashing
partitions of n and m-ary partitions of n, that is, partitions of n into powers of m.

Theorem 1.1. The number b,,(n) of m-non-squashing partitions of n is equal to the number
of m-ary partitions of n.

An alternative proof of this result is given in [[J], and still another proof is given in Sec-
tion 2 below. (See [A000123, [A005704, [A005703, [A00570F and [AOISS8T] in Sloane’s Online
Encyclopedia of Integer Sequences [[] for sequences of values of b,,(n) for 2 < m <5.)

In this paper we shall study a restricted m-non-squashing partition function ¢,,(n), which
is the number of m-non-squashing partitions of n such that a partition ([l) satisfying (P]) also
satisfies

(m—1)py <py ifk>2. (3)

(Note that, throughout this work, we will write ¢(n) for ¢,,(n) whenever the context is un-
derstood.) In particular, co(n) = b(n), the number of non-squashing partitions into distinct
parts, recently studied by Sloane and Sellers [[] in connection with a certain box-stacking
problem, and also studied subsequently by Rgdseth, Sellers, and Courtright [[f]. (See
for the values of cy(n).)

As an example, we have ¢3(18) = 9 with the following stacks being allowed:

(18] [17] [16] [15] [14] |14 [13] [13] [12]

Corresponding to the stacks
6]

115] |12] |12]
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we have three more 3-non-squashing partitions of 18 which do not satisfy the restriction
2p1 < po. Thus 63(18) =12.
In Section 2 we give a bijective proof of the following result.

Theorem 1.2. The number c(n) of restricted m-non-squashing partitions of n is equal to
the number of partitions of n into powers of m such that either all parts are equal to 1 or,
if the largest part has size m* > 1, then there is at least one part of size m*~1 present in the
partition.

Theorem [.7 is a natural generalization of the m = 2 result which was proven by Sloane
and Sellers [[, Corollary 3]. Indeed, our motivation in this paper began with the desire
to naturally generalize the work in [[J on a certain restricted family of 2-non-squashing
partitions of n. (See for additional information on cs(n) modulo 2.)

An immediate consequence of Theorem [ is that the generating function F(q) =

Yoo gc(n)g™ is explicitly given by

[e.9]

(
F(q)=L+Z 1

=g F o0 - gm)’

cf. Section 2. It follows that F(q) satisfies the functional equation

m+1)mi~1

(4)

F(q)=—F(q") -

()

Since ¢(n) can be viewed as a restricted m-ary partition function, and since a number of
congruence properties are well-known for other restricted m-ary partition functions [f], we
decided to search for similar congruence properties satisfied by ¢(n). This proved to be a
fruitful endeavour as the following result was discovered.

Theorem 1.3. For each integer r > 2 and all n > 1,
c(m™n) —c(m™) =0 (mod m"'/d"?),
where d = ged(2,m).

Theorem [[.3is an immediate consequence of the much more precise Theorem B.1]in Section [3,
where we study arithmetic properties of ¢(n) by exploiting the functional equation ([]) and
by adapting tools developed in [}, [.

2. A bijection

Let Aj(n) denote the set of m-non-squashing partitions (p1,...,px) of n into exactly k
parts p; satisfying ([]) and (f]), and let Bi(n) denote the set of m-ary partitions (eq,...,¢ex)
of n with largest part m*—!, that is

n=em" ! femF? 4. 4g (6)
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with
e1>1 and &q,...,6; > 0. (7)

For (pi,...,pr) € Z*, let ¥ (p1,...,px) = (¢1,...,cx), where

7—1
=1

and where, as usual, an empty sum is taken as zero. We may alternatively write ([) as

4! €1
M1 | = :
Pk €k
where

1 0 0 0
1—m 1 0 0
M=]1-m 1—-m ... 0 0
l1-m 1-m ... 1—-m 1

We see that M € SLi(Z), the multiplicative group of k£ x k matrices with entries in Z and
determinant +1.

We have
k €1
Z gmF = (mFtmh2 0000

h
— (mk’—1’ mk—Q’ ’ 1)M
Pk

P

= (1,1,...,1) :

D

= p1+p2+ -+ Pk,

so that ([) is satisfied if and only if ([]) is true. By (f), we have that ([]) holds if and only
if ([]) holds. Hence (pi1,...,pr) € Ag(n) if and only if (e1,...,ex) € Bg(n). Since M is
invertible, it follows (with a slight abuse of notation) that

¢ Ap(n) — Bi(n) (9)

is invertible and, therefore, is a bijection.
In particular, we have

|Ax(n)] = [Bk(n)],

which may be stated as follows.



Theorem 2.1. The number of m-non-squashing partitions of n into exactly k parts is equal

to the number of m-ary partitions of n with largest part m*='. =

Moreover,
k

JBi(n)

=1

Y

U Ai(n)

that is, the number of m-non-squashing partitions of n in at most k parts is equal to the
number by, x(n) of m-ary partitions of n where the largest part is at most m*~1.

We also have
L Bi(n)

k>1

LJ Ax(n)

k>1

Y

which proves Theorem [[]].

Furthermore, when (py,...,px) and (g1, ...,¢x) are related by (B), then ([) is satisfied if
and only if 5 > 1, and Theorem [ follows.

Using the interpretation of ¢(n) as the number of restricted m-ary partitions of n, we
have, putting ¢(0) = 1,

F(g) =) c(n)q"

=1+ Z q + i Z gormt T reemt TR ey,

5121 k=2 €1,69>1
€3,..,6x >0
B 1 + o) mk—1 qu72 1 1
- 1 _ q ];:2: 1 o qu,1 1 o qu—Q 1 o qu—3 1 _ q’

and ([]) follows.

3. Arithmetic properties of ¢(n)

In this section we use properties of the generating function

F(q) =) c(n)g"

n=0

to study ¢(n). The closed form ([]) for F'(g) will not be of any direct use to us. Our method
is strongly dependent upon the generating function having a reasonably simple functional
equation. In the present case we have the nice functional equation ([J), which we shall
repeatedly use in the form

(10)



3.1. Statement of main result

We shall prove the following theorem from which Theorem immediately follows.

Theorem 3.1. We have

(c(mn) = e(n)) ¢" = 72 (Flg) = 1) (11)
> (etmn) —ctmm) " = 70 (Flg) ~ 1)+ (=, (12)
5 (etmn) — ctnn)) ¢ = (2 I Y by

and more generally for r > 3,

o0

22 Z (c(m™'n) — c(m'n)) ¢ (14)
n=1
_ zr: Horiq (F(q) — 1)+ XT: Ariq
p (1 — q)i—l-l p (1 — q)i+1 ’
where (i, ; and \.; are integers satisfying
tri =N =0 (mod m D2, (15)

In Section B.9 we state the necessary auxiliaries for the proof of Theorem B.1I], but postpone
the technical details. In Section B-J we prove Theorem P-I In Section B4 we demonstrate
the technical details necessary to prove the auxiliary results in Section [.3J.

3.2. Auxiliaries

The power series in this paper are elements of Z[[¢]], the ring of formal power series in ¢
with coefficients in Z. We define a Z-linear operator

U : Zllq]] — Z[[q]]

by

UZa(n)q" = Za(mn)q".

Notice that if f(q), g(q) € Z[[¢]], then

U(f(9)g(q™)) = (Uf(q))g9(q)- (16)



Let

q .
hi = hi(q) = 1= for i > 0.
Then
N (n+i—1\ ,
hz = Z ( i )q )
n=1
so that
= (mn+r—1\ ,
£ ()
n=1
Simple calculations show that
Uho = ho,
Uhl = mhl,

Uhg = —%m(m - 1)h1 + m2h2.

We shall recursively define functions H, and L,. The motivation for these definitions will

become clear in the following section. First, let

1
HO = hQ and Hi—i—l = U(l—HZ>, 1 Z 0.
—q

We find
H1 = mhl,
H2 = —%TTLQ(TTL — 1)h1 + mghg.

We have similar results for each r > 2, as shown by the following lemma.

Lemma 3.1. Forr > 2 there exist integers ji,; such that
2r_2H7“ = Zﬂr,ihia
i=1

where .
i =0 (mod m" T2y for 1 < i <.

Second, we define

1
LO =0 and L/L'Jrl = H/L'Jrl - (UHZ)l— + UL“ 1 2 0.
—q

Then

Ll = (m — 1>h1,

Ly = —im(m — 1)(m — 2)hy + m?*(m — 1)h,.

(22)

(23)

(24)

(25)

(26)

(27)



Lemma 3.2. Forr > 2 there exist integers A\, ; such that
2L, = Aih, (28)
i=1

where L
Ari =0 (mod mr 1 ”)/2) for 1<i<r.

3.3. Proof of Theorem B7]

With the results of the previous section in hand, it is straightforward to prove Theo-
rem B-1. We start by applying the operator U to the functional equation ([(]). Using ([[0)
we get

so that

which is ([LT]).
Using ([[() we further obtain

UF) - Flo) = 1 (2P - )

1—q\1—gq 1—qm
1
1F(q™) 07— ¢
Application of U gives, by (R0) and (E1)),
1

U*F(q) — UF(q) = mhyF(q) — ho

l1—q
=mhy (F(q) — 1) + (m — 1)hy,

which proves ([J). Repeating this process once more, we get ([3)).
More generally, we claim that

UtF(q)—-U"F(q) = H,(F(q) —1) + L, forr>0. (29)

This follows by induction on r. The identity is true for » = 0. Suppose that it holds for
some 7 > 0. Then, by ([[0),

1 1
" Ep(q) - U F(q) = H, | ——F(¢™) — L,
UG - U = () - )

1
—(—H)F(@-H——— +L,.
(1 . ) (") — +



Application of U now gives, using (P9), ([[), and (P9),
1
UTF(q) = U™ F(q) = HraFlg) = (UH) 7= + UL,

=H,1 (F(q) — 1) + Ly

This proves our claim.

For r > 2, we multiply (29) by 2”72, and apply Lemma [-]] to 2""2H, and Lemma ] to
2 =2[,. Then we get ([[4) with the congruences ([J) satisfied. This completes the proof of
Theorem [.]]

3.4. Technical details

In this section we prove Lemmas ] and -7 For this, we shall need a few properties of
binomial coefficients. It is well known that the abelian group of all polynomials of degree at
most r in n with complex coefficients, and which map integers to integers, is free with basis

{(”’Lf_l) | i =0,1,...,7}. Moreover, the subgroup consisting of those polynomials which
also map 0 to 0, is free with basis {(”J“z_l) |i=1,...,r}. In particular, the following lemma
holds.

Lemma 3.3. For each positive integer r there exist unique integers «,.;, such that for all n,

<mn +Tr—1> _é%(nju;ﬂ)' . (30)

Comparing the coeflicients of n" in (B), we get
ay=m", (31)
and comparing the coefficients of n™~!, we get
o1 = —2(r —1)(m — 1)m" L. (32)
It follows from Lemma B.3, (1), and ([J) that

Uh, = Z oy ih; for r > 1. (33)
i=1

We now turn to Lemma .. We prove a slightly more precise result, which we shall need
in our proof of Lemma B.2. Notice that the set {hg, hq,...} is linearly independent over Z
(and over C), so the integers k,; in Lemma below are uniquely determined by r and
(and m). The same remark applies, of course, to other linear combinations of the h;.

Lemma 3.4. For 1 <1 <r there exist integers k,; such that
Hr = Z Rr,ihia (34)
i=1

where . o
2" =0 (mod m T -/2), (35)



Remark. Let r > 2. Notice that (BJ) for i = 1 implies 2" %x,.; = 0 (mod m"!). Thus, by
setting p,; = 2" %k, ;, Lemma B gives us Lemma B.1.

Note. In the following we set x,; = 0 if i+ = 0 or if ¢« > r. These values of x trivially

satisfy (B7).

Proof. We use induction on r. By (£J), the lemma is true for » = 1. Suppose that for
some r > 1, we have

r—1
H, 1= Z Kr—1,ili, (36)
i=1
where the x,_;; are integers satisfying
1, =0 (mod m™ 2 =19 -1 (37)

Then, by (£2), (Ed), and ([1),
r—1 T
H,=U (— r—1> = UZKJT—LihH—l = Zfir—1,j—1Uhj,
i—1 =1

—_

1—g¢q
and, by (B3),

r i r r
Hy =Y frajo1 Y ajihi =Y Y e 1j1h,
j=1 i=1

i=1 j=i

so that (B4) holds with
,
Kri = Z QjiRr—1,j-1,
j=i

and all the k,; are integers.
Moreover, for 1 <i < r we have

2l =Y 2y 2 k. (38)

By (E7),

2"k, 151 =0 (mod m”(’a’im) for j > i+ 2,
so that, by (B9), (E1)), (E2), and ([1),

r—i — r—i r—1—i
2 Rpi = Qg4 ¢ 2 Kr_14-1+ 20%+1,¢ -2 Rr—1
— 7 r—i . 7 r—1—i
=m'-2""k_1,01 —i(m—1)m" -2 Kr—1,i

7’+(i2—i)/2).

=0 (modm .

Incidentally, we have k., = m(”"+7/2,

10



Next we consider the term UH, appearing in the definition (). We have, by (PJ) and

(BD),
UH1 == m2h1.

Similarly we find
UHy = —im3(m — 1)(m + 1)hy + mPho.

Lemma 3.5. For 1 <1 <r there exist integers v,; such that

2 UH, =Y vpihi, (39)
i=1
where o
v =0 (mod m /2, (40)

Proof. For r > 1, we have by Lemma and (BJ),
r T J
2r71UHr = 2T71 Z KZT’jUhj = 21"71 Z Rrj Z ijﬂ'hz’
j=1 j=1 =1

T T
r—1
=2 E g ajiter ihi,

i=1 j=1i

so that (BY) is satisfied by setting

r
r—1 §
l/f,_,i =2 O‘j,z’ﬁr,j-
j=i

Then all the v, ; are integers.
Moreover, by (B3),

2y, =0 (mod m™H/2) for j >4 1.
Hence, using (B1]) and (B7),
Vei =2 Yy ke =m' - 27 K, =0 (mod m”(iQH)m). .

Finally, we prove Lemma 7. Again we use induction on r. By ([7), the lemma is true
for r = 2. Suppose that for some r > 3 there are integers A,_; ; such that

r—1

27‘73[/1‘71 = Z )\rfl,jhja
j=1
where .
)\7«_173' =0 (mod mT_2+(7 _])/2>. (41)

11



Then

r—1 r—1 J

U2 L) = ) MergUhy = D Ay Y agih
j=1 j=1 i=1
r—1 r—1

= Z Z Oéj,z‘)\r—Ljhi

i=1 j=i

Hence,

1
2" 2L, =2""%H, — 2" *(UH,_,) - +2"2UL,_; by (20

—Zum ; Zvr Lihier +22UL_, by (F9) and (B7)

7j=1
r—1 r—1
—Z/’I’T"L ) Zyr 15— 1h —|—QZZO@1 7"1]
=1 j=1
Thus, (P9) holds with
r—1
Arji = Pri = Vp—1,i-1 1 2 Z jiAr—1,j; (42)

J=t

where v,_19 = 0. In particular we have, by () and ([I0),

)\'fﬂ“ = Ury — Vr—1p-1 = 0 (mOd mr_H(TQ_T)ﬂ)

and, for 1 <i <r—1,
Ao, =0 (mod m™ 1 FF=D/2) for j >4 1,

Hence, using ({2), (3), (£0), (B), and (), we have

)‘r,z' = Mri — Vr—1,i—1 + 204@,’)\,«_1’1- =0 (mod mr—1+(z’2—i)/2)‘

This completes the proof of Lemma B3

As in the case of Lemma and Lemma .4, we can state a more precise form of
Lemma [.7. While we used the more precise Lemma [.4] in the proof of Lemma [.5 on our
way towards the proof of Lemma .3, there is no such reason to sharpen Lemma B.J.

4. Closing remarks

It is interesting to note that the results above provide a general framework for proving
a number of similar identities. Indeed, thanks to the bijection given in ([]), we now have
the means to prove an infinite family of similar partition results. For, if instead of ([}]) we
restrict (f]) in another way, we get a different type of restricted m-non-squashing partition.

12



Then, by (f]), we can prove that the number of such partitions of n is equal to the number
of suitably restricted m-ary partitions of n.

Once we have established that a certain restricted m-non-squashing partition function is
equal to a suitably restricted m-ary partition function, it will most likely be straightforward
to find a closed form for the corresponding generating function G(g) (similar to ([) above).
If a functional equation relating G(q) and G(¢™) (similar to ([]) above) can then be found,
then one can use the method utilized in this paper to prove arithmetic properties for the
restricted m-non-squashing partition function in question.
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