Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5

Sequences That Satisfy $a(n-a(n))=0$

Nate Kube囱 and Frank Ruskey
Department of Computer Science
University of Victoria
Victoria, British Columbia V8W 3P6
CANADA
nkube@cs.uvic.ca
ruskey@cs.uvic.ca

Abstract

We explore the properties of some sequences for which $a(n-a(n))=0$. Under the natural restriction that $a(n)<n$ the number of such sequences is a Bell number. Adding other natural restrictions yields sequences counted by the Catalan numbers, the Narayana numbers, the triangle of triangular binomial coefficients, and the Schröder numbers.

1 Introduction, set partitions

We consider here sequences $a(1), a(2), \ldots, a(n)$ with the property that $a(j-a(j))=0$ for all $j=1,2, \ldots, n$. Naturally, we must have $1 \leq j-a(j) \leq n$ for $j=1,2, \ldots, n$. Let $\mathbf{F}(n)$ be the set of all such sequences, and let $\mathbf{F}(n, m)$ be the subset of those for which m of the $a(j)$ are zero. ${ }^{3}$

Theorem 1.1. For all $1 \leq m \leq n$,

$$
|\mathbf{F}(n, m)|=\binom{n}{m} m^{n-m}
$$

[^0]Proof. There are $\binom{n}{m}$ ways to choose the m indices $J=\left\{j_{1}, j_{2}, \ldots, j_{m}\right\}$ for which $a(j)=0$. Each of the $n-m$ other elements t can take on any value from the m-set $\{t-j: j \in J\}$. For such a value of t, we have $a(t-a(t))=a(t-(t-j))=a(j)=0$.

The numbers occurring in Theorem 1.1 are not in the OEIS [6] but summing on m yields A000248, the number of labelled forests in which every tree is a star (isomorphic to $K_{1 s}$ for some s). To get a correspondence with our sequences, let the parent of node j be node $j-a(j)$, with roots regarded as self-parents.

Comtet [1] calls these numbers the "idempotent numbers" (see pp. 91,135). The number of idempotent functions on an n-set that have m fixed-points is $\binom{n}{m} m^{n-m}$.

If we take the subset of $\mathbf{F}(n)$ that is closed under the taking of prefixes (or, equivalently, that the $a(j)$ only take on non-negative values), then we get the additional constraint that $a(j)<j$ for $j=1,2, \ldots, n$. (Of course, the set of sequences that only satisfy the condition $a(j)<j$ has cardinality n !, but our condition is stronger.) Let $\mathbf{A}(n)$ denote the set of all such sequences and let $\mathbf{A}(n, m)$ denote the subset of $\mathbf{A}(n)$ consisting of sequences with exactly m zeroes. Below we list the elements of $\mathbf{A}(n)$ for $n=1,2,3,4$.

$$
\begin{aligned}
\mathbf{A}(1)= & \{0\} \\
\mathbf{A}(2)= & \{00,01\} \\
\mathbf{A}(3)= & \{000,001,002,010,012\} \\
\mathbf{A}(4)= & \{0000,0001,0002,0003,0010,0012,0013,0020, \\
& 0022,0023,0100,0101,0103,0120,0123\}
\end{aligned}
$$

Note that 011 is missing from $\mathbf{A}(3)$ since then $a(3-a(3))=a(3-1)=a(2)=1 \neq 0$. Using the notation of Comtet [罒] and Knuth [3], we denote the n-th Bell number, A000110, by ϖ_{n} and Stirling numbers of the second kind, A008277, by $\left\{\begin{array}{c}n \\ m\end{array}\right\}$.

Theorem 1.2. For all $0<m \leq n$,

$$
|\mathbf{A}(n)|=\varpi_{n} \quad \text { and } \quad|\mathbf{A}(n, m)|=\left\{\begin{array}{c}
n \\
m
\end{array}\right\} .
$$

Proof. Let $j_{1}, j_{2}, \cdots, j_{m}$ be the positions for which $a(j)=0$. Now define the i-th block of a partition to be the set

$$
B_{i}=\left\{k: k-a(k)=j_{i}\right\} .
$$

Note that j_{i} is the smallest element of B_{i}. It should be clear that this specifies a one-to-one correspondence.

Example: The sequence that corresponds to the partition $\{1,3,4\},\{2,5,8\},\{6,7\}$ is ($0,0,2,3,3,0,1,6$).

There is a natural pictorial representation of the sequences in $\mathbf{A}(n)$ as what we call a linear difference diagram, as shown in Figure (1)(i) for the sequence ($0,0,0,3,2,4,0,1,2,7$). For each value $x \in\{1,2, \ldots, n\}$, we draw an arc from x to $x-a(x)$, except if $a(x)=0$. Our condition $a(n-a(n))=0$ then translates into the property that each connected component of the underlying graph is a star.

Figure 1: Linear difference diagram representation of an element from: (i) $\mathbf{A}(n)$, (ii) $\mathbf{B}(n)$, (iii) $\mathbf{C}(n)$, and (iv) $\mathbf{D}(n)$.

Define the set $\mathbf{B}(n)$ to be the subset of $\mathbf{A}(n)$ that satisfy the constraint that if $a(j) \neq 0$, then $a(j-1)<a(j)$. We have that $\mathbf{B}(n)=\mathbf{A}(n)$ for $n=1,2,3$ and $\mathbf{B}(4)=\mathbf{A}(4) \backslash$ $\{0022\}$. Let $\mathbf{B}(n, m)$ denote the subset of $\mathbf{B}(n)$ consisting of sequences with exactly m zeroes. The numbers $|\mathbf{B}(n, m)|$ appear in OEIS [6] as sequence A098568 but no combinatorial interpretation is assigned to them. Summing on m gives the sequence A098569.

In terms of set partitions, the set \mathbf{B} corresponds to those in which every element j such that j is not smallest in its block is in a block whose smallest element is no greater than the smallest element of the block containing $j-1$.

Example The sequence ($0,0,2,3,0,0,2,6,0,1$), depicted in Figure (ii), is in $\mathbf{B}(n)$.
Theorem 1.3. For all $1 \leq m \leq n$,

$$
\begin{equation*}
|\mathbf{B}(n, m)|=\binom{n-1+\binom{m}{2}}{n-m} . \tag{1}
\end{equation*}
$$

Proof. Denote $B(n, m)=|\mathbf{B}(n, m)|$. Classify the sequences in $\mathbf{B}(n, m)$ according to the index k of the rightmost zero. The sequences that occur in the first $k-1$ positions are exactly those in $\mathbf{B}(k-1, m-1)$. The values that can go into positions $k+1$ to n must be increasing and can be thought of as a selection with repetition of size $n-k-1$ from the set of positions of the 0's, call them $1=j_{1}<j_{2}<\cdots<j_{m}=k$. Arrange the selection as a nonincreasing sequence $l_{k+1} \geq l_{k+2} \geq \cdots \geq l_{n}$. Now, if $l_{s}=j_{t}$, then set $a(s)=s-j_{t}$. Note that $a(s-a(s))=a\left(j_{t}\right)=0$. Furthermore, $a(s)<a(s+1)$ since $a(s)=s-j_{t}<s+1-j_{t^{\prime}}=a(s+1)$ where $t^{\prime} \geq t$. This classification implies that the following recurrence relation holds, with the initial condition that $B(n, 1)=1$.

$$
B(n, m)=\sum_{k=m}^{n} B(k-1, m-1)\binom{n-k+m-1}{n-k}
$$

We will now show that the expression in (1) satisfies this recurrence relation. The following identity is well-known (see Gould [2], equation (3.2)).

$$
\begin{equation*}
\binom{x+y+t+1}{t}=\sum_{j=0}^{t}\binom{j+x}{j}\binom{t-j+y}{t-j} \tag{2}
\end{equation*}
$$

We wish to show that

$$
\binom{n-m-1+\binom{m+1}{2}}{n-m}=\sum_{k=m}^{n}\binom{k-m-1+\binom{m}{2}}{k-m}\binom{n-k+m-1}{n-k} .
$$

But this is the same as (2) with $j=k-m, t=n-m, x=\binom{m}{2}-1$, and $y=m-1$.

2 Catalan and Schröder correspondences

Note that the linear difference diagram of Figures 1 (i) and 1 (ii) have crossing arcs. How many such sequences have no crossing arcs?

Define the set $\mathbf{C}(n)$ to be the set of sequences $a(1), a(2), \ldots, a(n)$ for which (a) $0 \leq$ $a(j)<j$ and (b) there is no subsequence such that $i-a(i)<j-a(j) \leq i<j$. Note that $\mathbf{C}(n)=\mathbf{B}(n)$ for $n=1,2,3,4$ and $\mathbf{C}(5)=\mathbf{B}(5) \backslash\{00203\}$, since $3-a(3)<5-a(5) \leq 3<5$. Let $\mathbf{C}(n, m)$ denote the subset of $\mathbf{C}(n)$ consisting of sequences with exactly m zeroes. The numbers $|\mathbf{C}(n, m)|$ appear in OEIS [6] as sequence A001263, the Catalan triangle. Summing on m gives the Catalan numbers A000108.

Lemma 2.1. For all $n \geq 1, \mathbf{C}(n) \subseteq \mathbf{A}(n)$.
Proof. Suppose that there is some value j for which $a(j-a(j))>0$, and let $i=j-a(j)$. We will show that

$$
i-a(i)<j-a(j)=i<j
$$

which will prove the lemma. First note that $a(j)>0$ since otherwise $a(j-a(j))=a(j)=0$. Thus $i<j$. Finally, $i-a(i)=j-a(j)-a(j-a(j))<j-a(j)$ by our assumption that $a(j-a(j))>0$.

Lemma 2.2. For all $n \geq 1, \mathbf{C}(n) \subseteq \mathbf{B}(n)$
Proof. If there is some sequence $a(1), a(2), \ldots, a(n)$ that is not in $\mathbf{B}(n)$, then there is some value of j such that $a(j-1) \geq a(j)$ and $a(j)>0$. Setting $i=j-1$ we would then have $i-a(i)<j-a(j) \leq i<j$ and so the sequence is not in $\mathbf{C}(n)$ either.

A Dyck path on $2 n$ steps is a lattice path in the coordinate plane (x, y) from $(0,0)$ to $(2 n, 0)$ with steps $(1,1)(U p)$ and $(1,-1)(D o w n)$, never falling below the x-axis. Figure 2 shows a typical Dyck path of length 24.

The numbers shown below for $|\mathbf{C}(n, m)|$ are called the Narayana numbers [1. They count the number of Dyck paths on $2 n$ steps with m peaks.

Let C_{n} denote the n-th Catalan number, $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$. The correspondence used in the proof below is mentioned in Stanley [5], problem 6.19(f^{4}).

Theorem 2.1.

$$
|\mathbf{C}(n)|=C_{n} \text { and }|\mathbf{C}(n, m)|=\frac{1}{m}\binom{n-1}{m-1}\binom{n}{m-1}
$$

Proof. Considering $U p$ steps as left parentheses and Down steps as right parentheses, a Dyck path of length $2 n$ corresponds to a well-formed parentheses string of equal length. Furthermore, a peak corresponds to a () pair.

Let $\mathbf{S}_{2 n}$ denote the set of well-formed parenthesis strings of length $2 n$. Define the function f from $\mathbf{S}_{2 n}$ to $\mathbf{C}(n)$ as $f(s)=(a(1), a(2), \ldots, a(n))$ where $a(j)$ is the number of right parentheses that are properly enclosed by the j-th parentheses pair where the parentheses pairs are numbered by the order in which their right parentheses occur. The left parenthesis that matches the j-th right parenthesis is referred to as j 's match. For example, consider $s=$ $(())(()))((()))()()())$. Subscripting the right parentheses and overlining matching parentheses pairs we obtain
and thus $f(s)=(0,1,0,1,4,0,1,2,0,0,0,6)$ (represented as a linear difference diagram in Figure [1iii)).

We now need to explain why $f\left(\mathbf{S}_{2 n}\right) \subseteq \mathbf{C}(n)$. Let $s \in \mathbf{S}_{2 n}$ and consider $f(s)=$ $(a(1), a(2), \ldots, a(n))$. By definition $a(i)<i$. Furthermore the sequence satisfies the noncrossing property. If it did not, for some $i<j$ we would have that both $j-a(j) \leq i$ and $i-a(i)<j-a(j)$. Notice that $j-a(j)$ is the position of the leftmost right parenthesis to the right of j 's match. Now, $j-a(j) \leq i<j$ implies that the i-th right parenthesis must lie between j and its match. As well, $i-a(i)<j-a(j)$ implies that the leftmost right parenthesis to the right of i 's match is left of the leftmost right parenthesis to the right of j 's match. This implies that i 's match is left of j 's match which contradicts the fact that s is well-formed. Hence $f(s) \in \mathbf{C}(n)$ thus $f\left(\mathbf{S}_{2 n}\right) \subseteq \mathbf{C}(n)$.

We now show that f is indeed a bijection. Let $b=(b(1), b(2), \ldots, b(n)) \in \mathbf{C}(n)$. We show by induction that it is possible to construct exactly one $s \in \mathbf{S}_{2 n}$ such that $f(s)=$ $(a(1), a(2), \ldots, a(n))=b$. Let $k=1$ and s be the well-formed parenthesis string (). Then $f(s)=(a(1))=(0)=b(1)$ and s is the only such string. Assume $f(s)=(a(1), a(2), \ldots, a(n))$ $=(b(1), b(2), \ldots, b(n))$ for some $n \geq 1$ where s is the only such string. Consider $b(n+1)$. If $b(n+1)=0$ then appending () to s, in which there is only one way, results in $f(s)=$ $(a(1), a(2), \ldots, a(n), a(n+1))=(b(1), b(2), \ldots, b(n), b(n+1))$ and s is the only such string. Similarly, if $b(n+1)=n$, then enclosing s within a right and a left parenthesis produces the desired result.

Suppose that $0<b(n+1)<n$. Consider the substring s^{\prime} consisting of all elements of s to the right of the $\{n+1-b(n+1)-1\}$-th right parenthesis. If s^{\prime} is not well-formed then there exists a right parenthesis i with $n+1-b(n+1) \leq i<n+1$ whose match is to the left of the $\{n+1-b(n+1)-1\}$-th right parenthesis. This implies that $i-b(i) \leq n+1-b(n+1)-1$. However then, $i-b(i)<n+1-b(n+1) \leq i<n+1$ which contradicts the fact that b is in $\mathbf{C}(n)$. Therefore s^{\prime} is well-formed and simply enclosing it in a left and right parentheses pair within s produces the desired result.

Furthermore, note that a zero in an element of $\mathbf{C}(n)$ corresponds to a () in an element of $\mathbf{S}_{2 n}$ which corresponds to a peak in a Dyck path of length $2 n$. Thus $|\mathbf{C}(n, m)|$ is the number of Dyck paths of length $2 n$ with m peaks.

The reader may wonder what happens if we were allowed to have $i-a(i)<j-a(j)=i<j$

Figure 2: The sequence $(0,1,0,1,4,0,1,2,0,0,0,6)$ represented as: (i) a Dyck path of length 24, (ii) a Schröder path of length 11.
but not $i-a(i)<j-a(j)<i<j$. Call the resulting set $\mathbf{D}(n)$. Such sequences need no longer satisfy $a(j-a(j))=0$ so strictly speaking are outside the scope of this paper, but the question is interesting nonetheless. They are counted by Schröder numbers.

Let D_{n} denote, A006318, the n-th Schröder number, $D_{n}=\left\langle z^{n}\right\rangle\left(1-z-\sqrt{1-6 z+z^{2}}\right) /(2 z)$ (see Stanley (14, pg. 178).

Example The sequence $(0,1,1,3,1,2,3,1,2,3)$, depicted as a linear difference diagram in Figure $1(\mathrm{iv})$, is in $\mathbf{D}(n)$ but $\operatorname{not} \mathbf{C}(n)$.

A Schröder path is a lattice path in the coordinate plane (x, y) from $(0,0)$ to $(n, 0)$ with steps $(1,1)(U p),(1,-1)(D o w n)$ and $(1,0)(S t r a i g h t)$ never falling below the x-axis. The length of a Schröder path is the number of $U p$ and Straight steps in the path. Figure 冋shows a typical Schröder path of length 11.

The numbers $\binom{2 n-m-1}{m-1} C_{n-m}$ count the number of Schröder paths from $(0,0)$ to $(n-1, n-$ 1) containing $m-1$ Straight steps (A060693).

Theorem 2.2.

$$
|\mathbf{D}(n)|=D_{n-1} \text { and }|\mathbf{D}(n, m)|=\binom{2 n-m-1}{m-1} C_{n-m}
$$

Proof. Let \mathbf{P}_{n} denote the set of Schröder paths of length n. Define the function g from \mathbf{P}_{n-1} to $\mathbf{D}(n)$ as $g(p)=(0, a(1), a(2), \ldots, a(n-1))$ where $a(j)$ is 0 if the j-th counted step is Straight or is the number of counted steps (starting with itself) between it and its corresponding Down step. For example, let p be the Schröder path shown in Figure 2 . Then $g(p)=(0, a(1), a(2), \ldots, a(11))=(0,1,0,1,4,0,1,2,0,0,0,6)$. Notice that $a(i)=0$ exactly when the i-th counted step in p is Straight.

We now need to explain why $g\left(\mathbf{P}_{n-1}\right) \subseteq \mathbf{D}(n)$. Let $p \in \mathbf{P}_{n-1}$. Consider $g(p)=$ $(0, a(1), a(2), \ldots, a(n-1))=(b(1), b(2), \ldots, b(n))$. Since p is a Schröder path $a(i) \leq i$. Since $b(i+i)=a(i)$ we have that $b(i+1)<i+1$. Now, suppose that there exists an $1<i<j \leq n$ such that $i-b(i)<j-b(j)<i<j$. Then there exists some $1 \leq x<y<n$ such that $x-a(x)<y-a(y)<x<y$. Since both $a(y)$ and $a(x)$ must be non-zero to satisfy this inequality, we have that they both count the number of countable steps (beginning with themselves) between them and their respective matches. Now, x lies between y and its match. Furthermore, $y-a(y)$ is the position of the first countable step to the left of y 's
match. Since $x-a(x)<y-a(y)$, the first countable step to the left of x 's match is to the left of the first countable step to the left of y 's match which implies that x 's match is to the left of y 's match. This means that between y and its match there is one more $U p$ step then Down step thus y and its match are not on the same level contradicting the fact that this is indeed y 's match. Hence $g(p) \in \mathbf{D}(n)$ thus $g\left(\mathbf{P}_{n-1}\right) \subseteq \mathbf{D}(n)$.

We now show that g is a bijection. Let $b=(b(1), b(2), \ldots, b(n)) \in \mathbf{D}(n)$. We show by induction that it is possible to construct exactly one $p \in \mathbf{P}_{n-1}$ such that $g(p)=$ $(0, a(1), a(2), \ldots, a(n-1))=b$. Let $k=2$. If $b(2)=a(1)=0$ let p^{\prime} be the Schröder path of length 1 consisting of 1 Straight step. Then $g\left(p^{\prime}\right)=(0,0)=(b(1), b(2))$ and there was only one such p^{\prime}. Otherwise let p^{\prime} be the Schröder path of length 1 consisting of one $U p$ step and its match. Then $g\left(p^{\prime}\right)=(0,1)=(b(1), b(2))$ and there was only one such p^{\prime}.

Assume $g\left(p^{\prime}\right)=(0, a(1), a(2), \ldots, a(j-1))=(b(1), b(2), \ldots, b(j))$ for some $j \geq 1$ and p^{\prime} is the only such path. Consider $b(j+1)$. If $b(j+1)=0$ then appending a Straight step to p^{\prime}, in which there is only one way, results in $g\left(p^{\prime}\right)=(0, a(1), a(2), \ldots, a(j))=$ $(b(1), b(2), \ldots, b(j), b(j+1))$ and p^{\prime} is the only such string. Similarly, if $b(j+1)=j$ appending an $U p$ step to the end p^{\prime} and placing its match at the front produces the desired result.

Suppose that $0<b(j+1)<j$. Consider the path $p^{\prime \prime}$ consisting of all elements of p^{\prime} to the right of the $j-a(j)$-th countable step. If $p^{\prime \prime}$ is not a Schröder path then there exists some $U p$ step at position $j-a(j)<i<j$ whose match is to the left of the $j-a(j)$-th countable step. However, this implies that the first countable step to the left of i 's match is to the left of the first countable step to the left of j 's match. This implies that $i-a(i)<j-a(j)<i<j$ and hence $i+1-b(i+1)<j+1-b(j+1)<i+1<j+1$ contradicting the fact that b is in $\mathbf{D}(n)$. Therefore $p^{\prime \prime}$ is a Schröder path. Now, within p^{\prime}, simply appending an $U p$ step to the end of $p^{\prime \prime}$ and placing its match at the front of $p^{\prime \prime}$ produces the desired result.

Furthermore, since a zero in an element of $\mathbf{D}(n)$ in any position other than the first corresponds to a Straight step in a Schröder path of length $n-1,|\mathbf{D}(n, m)|=$ the number of Schröder paths of length $n-1$ with $m-1$ zeros.

References

[1] Louis Comtet, Advanced Combinatorics, D. Reidel Publishing Company, 1974.
[2] H.W. Gould, Combinatorial Identities, Morgantown Printing and Binding, revised edition, 1972.
[3] Donald E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3, Generating All Combinations and Partitions, Addison-Wesley, 2005.
[4] Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999.
[5] Richard P. Stanley, Catalan Addendum, version of 17 February 2005, available online at http://www-math.mit.edu/ ${ }^{\circ}$ rstan/ec/catadd.pdf.
[6] Neil J. Sloane, The Online Encyclopedia of Integer Sequences (OEIS), March 2005.

2000 Mathematics Subject Classification: Primary 05A15; Secondary 68R15.
Keywords: Bell number, Catalan number, Schröder number, bijection.
(Concerned with sequences A000108, A00011, A000248, A001263, A006318, A008277, A060693, A098568, and A098569.)

Received March 28 2005; revised version received October 24 2005. Published in Journal of Integer Sequences, October 242005.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ Research supported in part by a NSERC PGS-M scholarship.
 ${ }^{2}$ Research supported in part by NSERC.
 ${ }^{3}$ Throughout the paper we will use a bold-case letter, like \mathbf{X} to denote a set of sequences, $\mathbf{X}(n)$ to denote the sequences in \mathbf{X} of length n, and $\mathbf{X}(n, m)$ to denote the sequences in $\mathbf{X}(n)$ that contain exactly m zeroes.

