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Abstract

We give upper and lower bounds for the largest integer not representable as a posi-

tive linear combination of three given integers, disproving an upper bound conjectured

by Beck, Einstein and Zacks.

1 Introduction

Let a, b, c be integers. The Frobenius problem is to determine the greatest integer n which
cannot be represented as a positive linear combination of a, b, c; this integer will henceforth
be denoted by f(a, b, c). Of course, if a, b, c have a common divisor m ≥ 2, an integer not
divisible by m cannot be represented as an integral linear combination of a, b, and c, we will
therefore suppose that gcd(a, b, c) = 1.

Beck, Einstein and Zacks[1] conjectured that, apart from certain explicit families of ex-
ceptions, we have f(a, b, c) ≤ (abc)5/8. They supported their conjecture by an impressive
amount of numerical data and stated that counterexamples are not to be expected unless
a, b, c are close to some arithmetic progression. However, in this note we will show that their
conjecture fails for somewhat generic examples, while it holds true for the vast majority of
triples. We do so by using diophantine approximations inspired by the circle method. The
idea to use such an approach is already present in the work of Beck, Diaz and Robins[2];
however, it has not yet been fully exploited.
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2 The Main Result

Define Na(b, c) to be the least integer n such that for every integer x the congruence x ≡
νa+ µb (mod a) is solvable with 0 ≤ ν, µ ≤ n. The basic relations between the functions f
and N are summarized as follows.

Proposition 1. Let a, b, c be positive integers satisfying gcd(a, b, c) = 1.

(i) We have
min(b, c)Na(b, c) ≤ f(a, b, c) ≤ (b+ c)Na(b, c).

(ii) Suppose that gcd(a, b) = 1. Let b denote the modular inverse of b, modulo a. Then we
have Na(b, c) = Na(1, cb).

(iii) Suppose that gcd(p, q) = 1 and
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Proof. (i) In every residue class modulo a there exists an element x which can be represented
as x = bν + cµ with 0 ≤ ν, µ ≤ Na(b, c), in particular, x ≤ (b + c)Na(b, c). Hence, every
integer n ≥ (b + c)Na(b, c) can be written as n = aα + bν + cµ with α ≥ 0 and 0 ≤
ν, µ ≤ Na(b, c). Thus, f(a, b, c) ≤ (b + c)Na(b, c). Conversely, there exists an integer x

such that the congruence x ≡ νa + µb (mod a) is unsolvable with 0 ≤ ν, µ ≤ Na(b, c) − 1;
that is, every element in this class which is representable by a, b, c can only be represented
using Na(b, c) summands b or c, and is therefore of size at least min(b, c)Na(b, c). That is,
f(a, b, c) ≥ min(b, c)Na(b, c).

(ii) Our claim follows immediately from the fact that x ≡ bν + cµ (mod a) is equivalent to
xb ≡ ν + cbµ (mod a).

(iii) Define the integers 0 = x0 < x1 < · · · < xq−1 < a by the relation {x0, . . . , xq−1} =
{0, cb mod a, 2cb mod a, . . . , (q − 1)cb mod a}. Then we have

max(xi+1 − xi) ≤
a

q
+ (q − 1)δ ≤

a

q
+ q;

hence, every residue class x modulo a can be written as ν+µcb with ν ≤ a
q
+q and µ ≤ q−1.

Hence Na(1, cb) ≤
a
q
+ q. Together with (ii), the upper bound follows. For the lower bound

suppose, without loss of generality, that
{
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}

> p
q
, and consider x = ba

q
− 1c. We claim that

x cannot be represented with fewer than 1
2
min
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)

summands modulo a.
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First suppose that δ < 1
a
. Then 1 ≤ qcb mod a ≤ q − 1, and no multiple µcb mod a with

q - µ, µ ≤ a
q
falls in the range [1, x]. Hence, for all pairs ν, µ with 1 ≤ ν, µ ≤ a

2q
, such that

ν + µcb mod a ∈ [1, x] we have q|µ and

ν + µcb mod a ≤ ν +
q − 1

q
µ < b

a

q
c,

which implies our claim in this case.

If δ > 1
a
, and µ < 1

2δq
, µcb mod a either does not fall into the range [1, x], or satisfies

µcb mod a ≤ δµ, which implies the lower bound in this case as well.

From this result we draw the following conclusion:

Theorem 1. For each integer a there are ϕ(a)
2

pairs (b, c) such that a < b < c < 2a,

gcd(a, b) = gcd(a, c) = 1, and a2

2
≤ f(a, b, c) ≤ 2a2. Moreover, for ε > 0, α, β ∈ [0, 1] and

a > a0(ε), there exist b ∈ [(1 + α)a, (1 + α + ε)a] and c ∈ [(1 + β)a, (1 + β + ε)a], such that
f(a, b, c) ≥ a2

2
. On the other hand, the number of pairs (b, c) such that a < b < c < 2a,

(a, b, c) = 1 and f(a, b, c) > a3/2+δ is bounded above by O(a2−2δ).

Proof. Choose b ∈ [a, 2a] subject to the condition gcd(a, b) = 1, then choose c ∈ [a, 2a]
such that bc ≡ 1 (mod a). The proposition implies that Na(b, c) ≥

a
2
, whereas the upper

bound follows from f(a, b, c) ≤ f(a, b) ≤ 2a2. Since there are ϕ(a) choices for b, and at
least half of them satisfy b < b, our first claim follows. For the second claim it suffices
to prove that for every α, β ∈ [0, 1] there exist integers b ∈ [(1 + α)a, (1 + α + ε)a] and
c ∈ [(1+β)a, (1+β+ε)a], such that bc ≡ 1 (mod a). However, this follows immediately from
Weil’s estimate for Kloosterman sums[4] together with the Erdős-Turán-Koksma inequality
(cf., e.g., [3, p. 116]). Finally, let δ > 0 be fixed, and set Q = a1/2+δ. For every real number
α ∈ [0, 1] there exists some q ≤ Q, such that |α − p

q
| ≤ 1

qQ
. Denote by M the set of all

α ∈ [0, 1], such that |α− p
q
| < 1

q2 does not hold for any q ∈ [a1/2−δ, a1/2+δ]. Then M consists

of a1−2δ intervals of total measure bounded above by

∑

q≤a1/2−δ

ϕ(q)

qQ
≤ a−2δ,

thus, there are O(a1−2δ) integers ν, such that Na(1, ν) ≥ a1/2+δ, and our claim follows.
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