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Abstract

We detail the continued fraction expansion of the square root of monic sextic poly-

nomials. We note in passing that each line of the expansion corresponds to addition

of the divisor at infinity, and interpret the data yielded by the general expansion. In

particular we obtain an associated Somos sequence defined by a three-term recurrence

relation of width 6.

1 Introduction

In the present note I study the continued fraction expansion of the square root of a sextic
polynomial, inter alia allowing the identification of sequences generated by recursions

Ah−3Ah+3 = aAh−2Ah+2 + bA2
h .

Specifically, see §6 at page 6 for the case (Th) = (. . . , 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 8, 17, 50,
107, 239, 1103, . . .), where I illustrate how the continued fraction expansion data readily
allows one to identify the genus 2 curve C : Y 2 = (X3 − 4X + 1)2 + 4(X − 2) as giving rise
to the sequence.

1 The author’s only support was a grant from the Australian Research Council.
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2 Some Brief Reminders

A reminder exposition on continued fractions in quadratic function fields appears as §4 of
[8]. However, the näıve reader needs little more than that a continued fraction expansion of
a quadratic irrational integer function Z is a two-sided sequence of lines, h in Z ,

Z + Ph

Qh

= ah −
Z + Ph+1

Qh

; in brief Zh = ah −Rh ,

with (Z+Ph+1)(Z+Ph+1) = −QhQh+1 defining the sequences (Ph) and (Qh) of polynomials.
Necessarily, one must have Q0 divides (Z + P0)(Z + P0) in which case the sequence (ah)
consisting of polynomials guarantees that always Qh divides (Z + Ph)(Z + Ph). If each
partial quotient ah is always chosen as the polynomial part of Zh then Z0 reduced (that is,
degZ > 0 and degZ < 0) implies that all the Zh and Rh are reduced; and always ah also is
the polynomial part of Rh . Then conjugation — in brief: studying the lines Rh = ah−Zh —
retrieves the left hand half of the expansion of Z0 from the right hand half of the expansion
of R0 .

3 Curves of Genus

Set A(X) = X3 + fX + g and R(X) = u(X2 − vX + w). Then

C : Z2 − AZ −R = 0 (1)

defines a quadratic irrational integer function Z as a Laurent series
∑∞

h=−3
zhX

−h in X−1 .

Here degZ = 3 refers to the degree in X of Z . Note that because the other zero Z of
equation (1) satisfies ZZ = −R , and degR ≤ 2, we must have degZ < 0, so Z is reduced.
We also note that the discriminant D(X) of (1) is given by D = A2 + 4R and is thus a
general sextic polynomial. Evidently, if Y 2 = D we may think of Z as Z = 1

2
(Y + A).

However, in defining Z by (1) we allow the base field F to be of arbitrary characteristic,
whereas any talk of Y of course requires that charF 6= 2.

Now set Z0 = (Z+P0)/Q0 with P0 = d0(X+e0). Suppose that Q0(X) = X2−v0X+w0

divides the norm
Z0Z0 = −R + d0(X + e0)

(

A + d0(X + e0)
)

,

and that Z0 has been so chosen that its partial quotients are of degree 1. Such a choice
is ‘generic’ if the base field is infinite. It follows from recursion formulæ immediately below
that our requirement on Z0 is the same as insisting that the dh alll† be nonzero.

For h = 0, 1, 2, . . . we denote the complete quotients of Z0 by

Zh =
(

Z + dh(X + eh)
)

/uh(X
2 − vhX + wh) , (2)

noting that the Zh all are reduced, namely degZh > 0 but degZh < 0. The upshot is that
the h-th line of the continued fraction expansion of Z0 is

Zh =
Z + dh(X + eh)

uh(X2 − vhX + wh)
=

X + vh

uh

−
Z + dh+1(X + eh+1)

uh(X2 − vhX + wh)
. (3)

†Of course it suffices that just those dh actually participating in our discussion not vanish.
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Theorem 3.1. In the special case u = 0, that is: R = −v(X − w), the sequence of

parameters (dh) given by the continued fraction expansion of Z0 satisfies

dh−2d
2
h−1d

3
hd

2
h+1dh+2 = v2dh−1d

2
hdh+1 − v3(g + wf + w3) . (4)

Note here that g+wf +w3 = A(w) and, I add this en passant, the result, with g+wf +w3

replaced by A(w), does not in fact depend on the convenient assumption throughout that
A(X) has no term in X2 . However, the main feature is that the recursion (4) depends only
on the given curve C and not on the ‘initial’ complete quotient Z0 .

Now define a sequence (Th) of elements of F by the recursive relation

Th−1Th+1 = dhT
2
h , h ∈ Z . (5)

One then sees fairly readily that

Th−2Th+2 = dh−1d
2
hdh+1T

2
h and Th−3Th+3 = dh−2d

2
h−1d

3
hd

2
h+1dh+2T

2
h ;

and thus that multiplying (4) by T 2
h provides the principal result of this note.

Theorem 3.2. A curve

C : Z2 − (X3 + fX + g)Z + v(X − w) = 0

gives rise to sequences (Th) of Somos type defined by suitable initial values and the recursive
relation

Th−3Th+3 = v2Th−2Th+2 − v3(g + wf + w3)T 2
h . (6)

Remarks. All that is well and good of course but the real point here is this. The dh are
generically, so to speak, random rationals growing in height with h so as to have logarithmic
height O(h2); thus they become complicated indeed. Very differently, however, recursions
such as (6) of ‘Somos type’ and width, or ‘gap’ (the maximum difference of the indices), at
most seven — 6 in the present case — are now well known to ‘want to’ consist of integers.
Specifically, results of Fomin and Zelevinsky summarised in [6] guarantee that the Th are
Laurent polynomials in the ‘initial values’ T−3 , . . . , T2 , say, with coefficients in the ring
Z[a, b] — where in the present case a = v2 and b = −v3(g + wf + w3). This explains why
the example sequence (at page 6) with a = b = 1 and the six initial values all 1 takes only
integer values — mind you, integers whose logarithm grows at rate O(h2).

For a different emphasis, notice that the pair of zeros of each Qh(X) produced by the
continued fraction expansion defines a divisor on C ; I talk loosely immediately below of the
‘divisor class Qh ’, meaning the class of the divisor given by the pair of points on C defined
over some quadratic extension of the base field F with X co-ordinates the two zeros of the
polynomial Qh(X). Viewed as points on the additive group JacC it is well understood that
the sequence of divisor classes (Qh) is an arithmetic progression with common difference S
the class of the divisor at infinity. In brief, exactly as in the elliptic case [8]. each step of
the continued fraction expansion adds the divisor at imfinity to the divisor belonging to the
complete quotient. Concerned readers might contemplate the introduction to Cantor’s paper
[5] and the instructive discussion by Kristin Lauter in [7]. A central theme of the paper [1]
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is a generalisation of the phenomenon to Padé approximation in arbitrary algebraic function
fields.

More of course, Theorem 3.2 is in tight analogy with the corresponding result for quartic
polynomials detailed in [8]. In that case, however, singular cases are incorporated. Here,
cases when one or more of the dh vanish and therefore one or more of the Th vanish are more
problematic and will have to be the subject of further analysis elsewhere. I do not yet know
whether my assumption that the continued fraction expansion is generic, thus that none of
the dh vanish, is or is not essential to the validity of the present results.

4 Continued Fraction Expansion of the Square Root of

a Sextic

Given that the h-th line of the continued fraction expansion of Z0 is given by

Zh =
Z + dh(X + eh)

uh(X2 − vhX + wh)
=

X + vh

uh

−
Z + dh+1(X + eh+1)

uh(X2 − vhX + wh)
, (3)

evident recursion formulas yield

f + dh + dh+1 = −v2
h + wh (7)

g + dheh + dh+1eh+1 = vhwh (8)

and

− uhuh+1(X
2 − vhX + wh)(X

2 − vh+1X + wh+1)

=
(

Z + dh+1(X + eh+1)
)(

Z + dh+1(X + eh+1)
)

. (9)

Hence, noting that ZZ = −u(X2−vX +w) and Z +Z = A = X3+fX +g , we may equate
coefficients in (9) to see that

dh+1 = −uhuh+1 . (9 : X4)

Given that, we obtain, after in each case dividing by −uhuh+1 ,

eh+1 = −vh − vh+1 ; (9 : X3)

(f + dh+1) = vhvh+1 + (wh + wh+1) + u/dh+1 ; (9 : X2)

(f + dh+1)eh+1 + (g + dh+1eh+1) = −vhwh+1 − vh+1wh − uv/dh+1 ; (9 : X1)

(g + dh+1eh+1)eh+1 = whwh+1 + uw/dh+1 . (9 : X0)

The :X2 equation readily becomes

−dh = f − wh + v2
h + dh+1 = vh(vh + vh+1) + wh+1 + u/dh+1 ,
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so dh+1(vheh+1 −wh+1) = dhdh+1 + u . With similar manipulation of the next two equations
we felicitously obtain

dh+1(vheh+1 − wh+1) = dhdh+1 + u ; (10a)

−vhdh+1(vheh+1 − wh+1) = dhdh+1(eh + eh+1)− uv ; (10b)

whdh+1(vheh+1 − wh+1) = dhdh+1eheh+1 + uw . (10c)

That immediately yields

dhdh+1(eh + eh+1 + vh) = u(v − vh) ; (11a)

dhdh+1(eheh+1 − wh) = −u(w − wh) . (11b)

Incidentally, by

−dh+1 = f − wh + v2
h + dh = vh(vh−1 + vh) + wh−1 + u/dh ,

we also discover that, mildly surprisingly,

dhdh+1 + u = dh+1(vheh+1 − wh+1) = dh(vheh − wh−1). (12)

5 A Ridiculous Computation

It is straightforward to notice that the three final equations (9) yield

e2
h(vh−1vh + wh−1 + wh) + eh(vh−1wh + vhwh−1) + wh−1wh = −u(e2

h + veh + w)/dh .

Remarkably, by (12)

(dh−1dh + u)(dhdh+1 + u) = d2
h(vh−1eh − wh)(vheh − wh−1)

= e2
hvh−1vh − eh(vh−1wh−1 + vhwh) + wh−1wh

and so, because

− (vh−1wh−1 + vhwh) = vh−1wh + vhwh−1 − (wh−1 + wh)(vh−1 + vh)

= vh−1wh + vhwh−1 + eh(wh−1 + wh) ,

we obtain the surely useful identity

(dh−1dh + u)(dhdh+1 + u) = −udh(e
2
h + veh + w) . (13)

This is just one of the nine such identities provided by the equations (10), and (12).
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5.1 The special case u = 0

Consider now the case in which R , the remainder term u(X2 − vX + w), is replaced by
−v(X − w). In effect u← 0 except that uv ← v , uw ← vw . For instance, (13) becomes

dh−1dhdh+1 = −v(eh + w) , (13′)

and, we’ll need this, we now have

eh + eh+1 + vh = v/dhdh+1 ; (11′a)

eheh+1 − wh = −vw/dhdh+1 . (11′b)

Indeed, we find that

dh−1d
2
hd

2
h+1dh+2 = v2(eheh+1 + w(eh + eh+1) + w2) = v2(wh − wvh + w2) (14)

and therefore that

dh−2d
3
h−1d

4
hd

3
h+1dh+2 =

v4
(

wh−1wh + w2
(

vh−1vh + (wh−1 + wh)
)

− w(vh−1wh + wh−1vh)− w3(vh−1 + vh) + w4
)

.
(15)

This last expression is transformed by the equations (9) to become

v4
(

(g + dheh)eh − vw/dh + w2(f + dh)+

+ w
(

(f + dh)eh + (g + dheh) + v/dh

)

+ w3eh + w4
)

= v4(eh + w)
(

(g + dheh) + w(f + dh) + w3
)

. (16)

Thus
dh−2d

2
h−1d

3
hd

2
h+1dh+2 = −v3

(

(g + dheh) + w(f + dh) + w3
)

. (17)

But wait, there’s more! By (13′) we know that −veh = dh−1dhdh+1 + vw , so

dh−2d
2
h−1d

3
hd

2
h+1dh+2 = v2dh−1d

2
hdh+1 − v3(g + wf + w3) , tag6 (18)

already announced as Theoren 3.1.

6 A Cute Example

The example
Th−3Th+3 = Th−2Th+2 + T 2

h , (19)

with T0 = T1 = T2 = T3 = T4 = T5 = 1 is readily found to derive from the genus 2 curve

C : Z2 − (X3 − 4X + 1)Z + (X − 2) = 0 . (20)

To indeed see this, we first note that of course we need d1 = d2 = d3 = d4 = 1 to produce
the initial values from T0 = T1 = 1. Since, plainly, T−1 = T6 = 2, clearly d0 = 2. By the

6



Theorem, we expect to require v2 = 1 and −v3(g+wf+w3) = 1. Without loss of generality,
we may take v = −1. From (13′) we then read off that

e1 = 2− w and e2 = 1− w .

Thus, by (7) and (8) we have

f + 2 = −v2
1 + w1 and g + 3− 2w = v1w1 .

But from (11′a) and (11′b) we evaluate v1 and w1 in terms of w as

3− 2w + v1 = −1 and (2− w)(1− w)− w1 = w .

Substituting appropriately we find that 1 = g+fw+w3 = 6w−11 so, as already announced,
v = −1, w = 2, g = 1, and f = −4.

Furthermore, we have v1 = 0 and v0 + v1 + e1 = 0, so v0 = 0; then f + 3 = −v2
0 + w0

yields w0 = −1. Noting that g + 2e0 + e1 = 0, we find that e0 = −1/2. Thus the relevant
continued fraction expansion commences

Z0 :=
Z + 2X − 1

X2 − 1
= X −

Z + X

X2 − 1

Z + X

−(X2 − 2)
= −X −

Z + X − 1

−(X2 − 2)

Z + X − 1

X2 −X − 1
= X + 1−

Z + X − 1

X2 −X − 1

Z + X − 1

−(X2 − 2)
= −X −

Z + X

−(X2 − 2)

Z + X

X2 − 1
= X −

Z + 2X − 1

X2 − 1

· · ·

providing a useful check on our allegations and displaying an expected symmetry (both the
defining recursion and the set of initial values are symmetric). Denote by M the divisor class
defined by the pair of points (ϕ, 0) and (ϕ, 0) — here, ϕ is the golden ratio, a happenstance
that will please adherents to the cult of Fibonacci — and by S the divisor class at infinity.
Then the sequence (Th) = (. . . , 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 8, 17, 50, 107, 239, 1103, . . .)
may be thought of as arising from the points . . . , M − S , M , M + S , M + 2S , . . . on the
Jacobian of the curve C displayed at (20). Evidently, M −S = −M so 2M = S on Jac(C).

Allegation. Of course I do not do it here, but I suggest that my remarks suffice to show that
one may readily prove that given a sequence (Ah) satisfying a recusive relation Ah−3Ah+3 =
aAh−2Ah+2 + bA2

h and with given values Ah−3 , Ah−2 , . . . , Ah+2 one may identify both a
genus 2 curve C : Z2 − AZ − R = 0, degA = 3, degR = 1 and a divisor M on C giving
rise to the sequence.
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7 Comments

I consider the argument given in §5 above to be quite absurd and am ashamed to have spent
a great deal of time in extracting it. Such are the costs of truly low lowbrow arguments;
see [3] for heights of ‘brow’. The only saving grace is my mildly ingenious use of symmetry
in the argument’s later stages. I do not know whether there is an appealing result of the
present genre if u 6= 0; but see my remarks below. I should admit that I realised, but only
after having successfully selected u = 0, that Noam Elkies had suggested to me at ANTS,
Sydney 2002, that an identity of the genre (6) would exist, but had in fact specified just the
special case degR = 1.

Mind you, with some uninteresting effort one can show (say by counting free parameters)
that over an algebraic extension of the base field there is a birational transformation which
transforms the given curve to one where degR = 1. That does not truly better the present
theorem.

On the other hand, a dozen years ago‡, David Cantor [5] mentions that his results lead
readily to Somos sequences both in genus 1 and 2; the latter of width 8. That his results
provide Somos sequences in genus 2 is not obvious; however, recently, Cantor has told me a
rather ingenious idea which clearly yields the result for all hyperelliptic curves Y 2 = E(X), E
a quintic, say with constant coefficient 1. In brief, Cantor’s result is more general than mine
but does not deal with all cases I handle here; nor does it produce the expected recursion
formulæ of width 6. Moreover, after this paper was submitted I learned of the work [2]
which produces Cantor’s width 8 recurrences from addition formulas for the corresponding
hyperelliptic functions.

The most serious disappointment is that the best argument I can produce here is just a
much more complex version of that of [8] for genus 1. Seemingly a new view on the issues
is needed if my methods are to yield results in higher genus.
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