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Abstract

We detail the continued fraction expansion of the square root of the general monic
quartic polynomial, noting that each line of the expansion corresponds to addition of
the divisor at infinity. We analyse the data yielded by the general expansion. In that
way we obtain “elliptic sequences” satisfying Somos relations. I mention several new
results on such sequences. The paper includes a detailed “reminder exposition” on
continued fractions of quadratic irrationals in function fields.

1 Introduction

A delightful essay [18] by Don Zagier explains why the sequence (Bj)pez, defined by B_o =1,
B_1=1, By=1, By =1, B, =1 and the recursion

By_2Bpny3 = ByioBy_1 + Bpy1 By, (1)

consists only of integers. Zagier comments that “the proof comes from the theory of elliptic
curves, and can be expressed either in terms of the denominators of the co-ordinates of the
multiples of a particular point on a particular elliptic curve, or in terms of special values of
certain Jacobi theta functions.”

In the present note I study the continued fraction expansion of the square root of a
quartic polynomial, inter alia obtaining sequences generated by recursions such as (1). Here,
however, it is clear that I have also constructed the co-ordinates of the shifted multiples of a
point on a cubic curve and it is it fairly plain how to relate the surprising integer sequences
and the curves from which they arise.

A brief reminder exposition on continued fractions in quadratic function fields appears
as §0, starting at page 14 below.



It turns out that several of my results related to sequences a la (1) also appear in the
recent thesis [16] of Christine Swart; for further comment see §5. Michael Somos, see [5], had
inter alia asked for the inner meaning of the behaviour of the sequences (B},), above, and
of (Ch) defined by Ch_20h+2 = Ch_lChH + Cg and 0_2 = 1, C_l = 1, CO = 1, Cl =1:
of the sequences 5-Somos A006720 and 4-Somos A006721. More generally, of course, one
may both vary the initial values and coefficients and generalise the “gap” to 2m or 2m + 1
by studying Somos 2m sequences, respectively Somos 2m + 1 sequences, namely sequences
satisfying the respective recursions

m m
Dy Dhym = E KiDn—myi Dhim—i O Dy Diymy1 = E KiDn—mii Dngym—it1 -

i=1 i=1

I show in passing, a footnote on page 6, that a Somos 4 is always a Somos 6, while Theorem 2
points out it is always a Somos 5. After seeing [16], I added a somewhat painful proof,
Theorem 4 on page 14, that it is also always a Somos 8. For example, 4-Somos satisfies all
of

Ch—3Chi3 = Ch_1Chi1 + 5CF
Ch—2Chy3 = =Ch_1Chyo + 5CLChy1
Ch—sChia = 25C,_1Chpq — 4CF.

In the light of such results one can be confident, see §3.3, page 6, that in general if (A) is a
Somos 4, equivalently an elliptic sequence satisfying A, o Apio = WFA, 1 Ap — WiW3 A7,
then for all m both

WiWo Ap—m Anymar = WouWog1 An 1 Appo — Wi i Wi o Ap A

and
WEA-—mAnem = W2 A1 Ani1 — Wi i Wi 45,

2 Continued Fraction Expansion of the Square Root of
a Quartic

We suppose the base field F is not of characteristic 2 because that case requires nontrivial
changes throughout the exposition and not of characteristic 3 because that requires some
trivial changes to parts of the exposition. We study the continued fraction expansion of a
quartic polynomial D € F[X]; where D is not a square and for convenience suppose D to
be monic and with zero trace. Set

C:Y?=D(X):=(X*+ f) + 4(X —w), (2)

and for brevity write A = X% + f and R = v(X —w). Set Y for the conjugate —Y of Y.
For h =0, 1, 2, ... we denote the complete quotients of Yy by

Yh = (Y—i—A—i—th)/vh(X—wh), (3)
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noting that” the Y}, all are reduced, namely degY), > 0 but degY), < 0. The upshot is that
the h-th line of the continued fraction expansion of Y, satisfies

Y4+ A+2e,  2(X +wp) Y + A+ 2ep44
’Uh(X — ’LUh) Up, Uh(X — wh) '

Thus evident recursion formulas, see (32) at page 14, yield
f+enten=—wi (4)
and —vpvp41 (X —wp)(X —wpgr) = (Y 4+ A+ 2e,01)(Y + A+ 2e,41). Hence
VU1 (X — wp) (X — why1) = —4(X2+ f+ enp1)en + 4v(X —w). (5)

Equating coefficients in (5), and then dividing by —4ep+1 = vpvp41, We get

_ . 2.

—4dep11 = VpUngt; X

_ . 1.

v/epi1 = wp + What; X1t

_ 0.

f+en +vw/epn = wpwpy - X0

The five displayed equations immediately above readily lead by several routes to
eneni1 = v(w — wp) . (6)

For example, apply the remainder theorem to the right hand side of (5) after noting it is
divisible by X — wy,, and recall (4).

Theorem 1. Denote the two points at infinity on the quartic curve (2) by S and O, with
O the zero of its group law. The points Myy1 := (wp,ep, — ept1) all lie on C. Set My = M,
and My, =: M+ Sy. Then Sy, = hS.

Proof. The points Mj,; lie on the curve C : Y? = D(X) because
(en —ent1)® — (wip + )7 = (en — (ens1 +wjy + f)) ((en +wp + f) — ensa)
= —depepsy = dv(w, —w).
The birational transformations
X=(V-v)/U  Y=2U-(X"+[); (7)

conversely,

U=Y+X>+f, 2V=XY+X°+fX+2v, (8)

2Conditions apply. For instance we must choose the constants eg and wy so that X — wy divides the
norm (Y + A+ 2¢)(Y + A+ 2¢g) of its numerator. See page 14 for more details.

Note also that I presume that the vy, equivalently the ey, all are nonzero. See comments in §3.3, page 6
on the “singular case”.




move the point S to (0,0), leave O at infinity, and change the quartic model to a Weierstrass
model
W:V2 oV =U?— fU* +vwU . (9)

Specifically, one sees that U(Mp+1) = —epy1, and V(Mpyq1) = v — wpep1. We also note
that U(_Mh—H) = —€p+1, V(—Mh+1) = WhCH+1 -

To check S+ (M + Sp—1) = M + S, on W it suffices for us to show that the three
points (0,0), (—en,v — wp_1ep), and (—epi1, wpepyr) lie on a straight line. But that is
(v —wp_1ep)/en = wp. So wp_1 + wy, = v/ey proves the claim. O

One might view the preceding discussion culminating in Theorem 1 as making explicit
the argument of Adams and Razar [1].

3 Elliptic sequences

Theorem 2. Let (Ay) be the sequence defined by the “initial” values Ay, Ay and the recur-
sive definition

Ap_1Ape = ep Az (10)
Then, given Aoy, A1, Ag, As, Ay satisfying (10), the recursive definition
Ap_oApio =V Ap_1 Apr + 03 (f +w?) A3 (11)
defines the same sequence as does (10). Just so, also
ApoApis = =V (f +w) A 1 Apo +0° (v +2w(f + wQ))AhAhH (12)
defines that sequence.
Proof. By (6) we obtain
en_1€ieni1 = V3w — wy_1)(w — wp,)
= v} (whp_rwy, — w(wp—1 + wy) + w?) = 0° ((f +en +vw/en) —w - (v/ey) + w?).

Thus
eh,leiehﬂ = (eh + (f + wz)) i (13)

However, A;_1An.1 = e, A entails
Ap 2 Ap A1 A1 AnAnys = eh71€h€h+1A271AiAi+1 )
and so Ah_gAh+2 = eh_16h6h+1Ah_1Ah+1, which is
Ah_gA;H_g = eh_leiehHA,% . (14)

On multiplying (13) by A% we obtain (11).
Similarly (10) yields Ap_1Apt1AnAnte = enent1AzAL,, and so

Ap—1Anto = epeni1 ApApgr (15)
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It follows readily that
Ap—2Anis = en_1€ier1eni2AnAntr - (16)

Moreover, (13) implies that
6h71€2€2+16h+2 = (€h€h+1 + (f +w?)(en+ens) + (f + w2)2) .

However, by (4) we know that v?(ej + ep1 + f + w?) = v*(w? — wj). Here v(w — wy,) =

enens1 and v(w + wy) = —v(w — wp,) + 20w = —epepyq + 20w, So
En—1€1€) 1€ht2 = U (—(f + w?)epentt +0° + 20w(f + w2)) ; (17)
which immediately allows us to see that also (12) yields the sequence (Ajy). O

The extraordinary feature of the identities (13) and (17) is their independence of the
translation M : thus of the initial data vy, wg, and eg.

3.1 Two-sided infinite sequences

It is plain that the various definitions of the elliptic sequence (Aj) encourage one to think
of it as bidirectional infinite. Indeed, albeit that one does feel a need to start a continued
fraction expansion — so one conventionally begins it at Y, one is not stopped from thinking
of the tableau listing the lines of the expansion as being two-sided infinite; note the remark
at the end of § 6.1, page 14. In summary: we may and should view the various sequences
(en), ..., defined above, as two-sided infinite sequences.

3.2 Vanishing

If say vy = 0, then line k of the continued fraction expansion of Y; makes no sense both
because the denominator Q(X) := vi(X —wy) of the complete quotient Y}, seems to vanish
identically and because the alleged partial quotient ay := 2(X + wy)/vg blows up.

The second difficulty is real. The vanishing of v, entails a partial quotient blowing up
to higher degree. We deal with vanishing by refusing to look at it. We move the point of
impact of the issue by dismissing most of the data we have obtained, including the continued
fraction tableau, and keep only a part of the sequence (ep). That makes the first difficulty
moot.*

Remark 3. There is no loss of generality in taking & = 0. Then, up to an otherwise
irrelevant normalisation, Yy =Y + A. If more than one of the v, vanish then it is a simple
exercise to confirm that the continued fraction expansion of Y + A necessarily is purely
periodic, see the discussion at page 17. If Y, does not have a periodic continued fraction
expansion then there is some hg, namely hy = 0, so that, for all h > hg, line h of the
expansion of Yy does make sense.

Except of course when dealing explicitly with periodicity, we suppose in the sequel that
if vy = 0 then k& = 0; we refer to this case as the singular case.

3In any case, the first apparent difficulty is just an artifact of our notation. If, from the start, we had
written Qp = v X 4y, as we might well have done at the cost of nasty fractions in our formulas, we would
not have entertained the thought that vy = 0 entails y = 0. Plainly, we must allow v; = 0 yet vpwy # 0.
Note, exercise, that vg(X — wy) never does vanish identically.



3.3 The singular case

We remark that in the singular case the sequence (ej)n>1 defines antisymmetric double-
sided sequences (W},), that is with W_;, = =W, by Wj,_1W,41 = e, W? and so that, for all
integers h, m, and n,

WhoWhamW2E + W Wi W2+ W W d Wi = 0. (18"

Actually, one may find it preferable to forego an insistence on antisymmetry in favour of
rewriting (18") less elegantly as

Wh—mWh—i-ng = Wh—nWh—i-nWr%, - Wm—nWm—s—nW}% ) (18>

just for h > m > n. In any case, (18) seems more dramatic than it is. An easy exercise
confirms that, if W7 =1, (18) is equivalent to just

Wh—nWihim = WaWp_ i Wit — Wi a Wil W7 (19)

for all integers h > m. Indeed, (19) is just a special case of (18). However, given (19),
obvious substitutions in (18) quickly show one may return from (19) to the apparently more
general (18).

But there is a drama here. As already remarked in a near identical situation, the re-
currence relation Wy, oWy o = WEW,,_ Wy — WiW3W2 | and four nonzero initial values,
already suffices to produce (WW}). Thus (19) for all m is apparently entailed by its special
case m = 2.

I can show this directly*, by way of new relations on the e, for m = 3. But the case
m = 4 already did not seem worth the effort. Whatever, my approach gave me no hint as
to how to concoct an inductive argument leading to general m. Plan B, to look it up, fared
little better. In her thesis [12], Rachel Shipsey shyly refers the reader back to Morgan Ward’s
opus [17]; but Ward does not comment on the matter at all, having defined his sequences by
(19). Well, perhaps Ward does comment. The issue is whether (19) is coherent: do different
m yield the one sequence? Ward notes that if o is the Weierstrafl o-function then a sequence
(o(hu)/ o (u)” ) satisfies (19) for all m. Whatever, a much more direct argument would be
much more satisfying.’

*Plainly e,_se}_,€ejer, enya-en = vt (en—1+ (f +w?)) (ent1+ (f +w?))ei. Now notice that (ep—1ep +
enent1)en = v(w — wp—1 +w — wp)e, = 2vwep, — v? and recall that ep_jeien 1 = v? (eh +(f+ w2)) . The
upshot is a miraculous cancellation yielding

eh_ge%_leieiﬂehw cep = v4((f + wQ)Qei +ou(v+2w(f + wg))eh)
and allowing us to divide by the auxiliary ej. Thus the bottom line is
Ah_gAh+3 = 1}4((f + w2)2Ah_1Ah+1 + ’U(’U + 2’LU(f + w2))Ai),

which is Ah_3Ah+3 = W32Ah_1Ah+1 - W2W4A%L

5For additional remarks, and a dissatisfying proof for the case m = 4, see §5.2 on page 12.

Note Added in Proof: Christine Swart and the author have recently succeeded in applying the ideas of her
thesis and of this paper to obtain a succinct inductive proof (thus, a much more satisfying direct argument)
of the conjectures hinted at in §3.3, and stated at the end of §1.



Theorem 2 shows that certainly Wy oWy o = WEiW), Wiy — WiW3W7? for h =1, 2,
., in which case (19) apparently follows by arguments in [17] and anti-symmetry; (18) is
then just an easy exercise.

Up to multiplying the expansion by a constant, the singular case is initiated by v; = 4v,
wy =w, e, =0, e = —(f +w?). For temporary convenience set z = v/(f +w?). From the
original continued fraction expansion of Y + A or, better, the recursion formulas of page 3,
we fairly readily obtain vy = 1/z, wo = w — x, e3 = —x(z + 2w), e; = v(z*(xr + 2w) —
v)/2?(x + 2w)?.

We are now free to choose, say Wi = 1, Wy = v, leading to W5 = —v?(f + w?),
Wy = —v*(v+2w(f 4+ w?)), Ws = =0®(v(v + 2w(f +w?)) — (f +w?)?), ...

That allows us to notice that (12) apparently is

WiWoAp o Apis = WoWsAp 1 Apo — WiWs AR Ap s
and that (11) of course is
Ap—2Ania = W5 Ap 1 Appn — WiWs A3 .

Given that also Ay _3Aj,3 = W2A, 1Ay — WeW,AZ it is of course tempting to guess that
more is true. Certainly, more is true in the special case (A;) = (W},), that’s the point of the
discussion above. Moreover, the same “more” is true, see for example [16, Theorem 8.1.2,
p. 191], for sequence translates: thus (Ap) = (Whik).

3.4 Elliptic divisibility sequences

Recall that in the singular case and for h =1, 2, ... the —e;, are in fact the U co-ordinates
of the multiples hS of the point S = (0,0) on the curve V? — oV = U3 — fU? + vwU .

Suppose we are working in the ring Z = Z[f,v,vw] of “integers”. If ged(v,vw) = 1,
so the exact denominator of the “rational” w is v, then our choices W7 =1, Wy = v lead
the definition Wj,_1Wj 11 = e, W2 to be such that W7 is always the exact denominator of
the “rational” ep. It is this that is shown in detail by Rachel Shipsey [12]. In particular it
follows that (W},) is an elliptic divisibility sequence as described by Ward [17]. A convenient
recent introductory reference is Chapter 10 of the book [3].

Set hS = (U, /W72, V,/W3), thus defining sequences (Uy), (V4), and (W},) of integers,
with W}, chosen minimally. Shipsey notices, provided that indeed gcd(v,vw) = 1, that
ged(Up, Vi) = Wy—1 and Wj,_1W),41 = —Uy,. Here, I have used this last fact to define the
sequence ().

Starting, in effect, from the definition (18), Ward [17] shows that with Wy =0, W; =1,
and WQ‘W4, the sequence (W)},) is a divisibility sequence; that is, if a|b then Wa’Wb. A little
more is true. If also ged(W3, Wy) = 1 then in fact ged(W,, W,) = Weed(ap)- On the other
hand, a prime dividing both W5 and W, divides W), for all h > 3.

3.5 Quasi-periodicity of the continued fraction expansion

Suppose now that the sequence (W) has a zero additional to its zero Wy = 0. From the
continued fraction expansion and, say, [8], we find that v = 0 (but w’ = vw # 0 if our curve
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is to be elliptic) is the case of the continued fraction having quasi-period r = 1 and the
divisor at infinity on the curve having torsion m = 2. Just so, f + w? = 0, thus W5 = 0,
signals r =2 and m =3, and z +2w =0, or Wy =0,is r =3 and m = 4. And so on;
for more see [8]. In summary, m > 0 is minimal with W,, = 0 if and only if the continued
fraction expansion of, say, Z = %(Y + A) has a minimal quasi-period of length r =m — 1.

Note 1. It has been suggested in my hearing that “Mathematics is the study of degeneracy”.
Given that slogan, it is equivalent to W,, = 0 that the sequence (ej) be periodic with
period m. However, recall that Wy = 0 and Wi, = £1 entails ey must be infinite. Just
so then, W,, = 0 entails e, infinite and e, ; = 0. It also follows, see §6, that the
word ey, €9 -+, en,_1 is a palindrome. Note that, in effect, we define (WW}) by way of
antisymmetry, its initial values Wy = 1, Wy, WiW3 = e, W3, WolWy = 63W32, and the
recurrence relation Wy, oWy 9 = WEW,,_ Wy, 11 — Wi W3W7? — plainly that relation allows
us to “jump over” zeros of the sequence. Note that, in contrast, Christine Swart [16] declares
her elliptic sequences as undefined beyond a 0.

As for the singular continued fraction expansion, our notation has us set Z; := —Z/v(X —
w). In consequence, we are committed to the line Z = A — Z in effect functioning as the
pair of lines m — 1 and m; just so then it must also be the pair of lines 1 and 0. These
matters are no great issue here; but they will matter in generalising the present work to
hyperelliptic curves of higher genus.

The periodicity of (ey) is necessary, but not at all sufficient for the periodicity of (W},).
Indeed, Ward [17] shows and one fairly readily confirms that precisely the periods 1, 2, 3,
4,5, 6, 8, or 10 are possible for an integral elliptic divisibility sequence defined by (19).

4 Examples

4.1

Consider the curve C : Y2 = (X? —29)? — 4 - 48(X + 5); here a corresponding cubic model
is £ : V2448V = U3 +29U? + 240U . Set A = X? —29. The first several preceding and



succeeding steps in the continued fraction expansion of Yy = (Y + A + 16)/8(X + 3) are®

Y+A+18 X-2 Y+A+32

16(X +2)/3  8/3 16(X +2)/3 line 3
Y+A+32:X—1_?+A+24 line 3
12(X 4 1) 6 12(X +1)
Y+A+24:X—3_7+A+16 e T -
4(X +3) 2 4(X +3)
Y+A+16:X—3_?+A+24 line 0 -
8(X +3) 4 8(X +3)
Y+A+24:X—1_?+A+32 e 1 -
6(X +1) 3 6(X +1)

Y+A+32 X-2 Y+A+18 .

= — line 2 :

32(X +2)/3  16/3  32(X +2)/3
Y+A+18
93X +10)/8

where elegance has suggested we write “line h” as short for “line —h”.

The feature motivating this example is the six integral points (—2,47), (—1,44), and
(—=3,£4) on C. With My = (—3,4) and Sc the “other” point at infinity these are in fact
the six points My + hSe for h= -3, =2, —1, 0, 1, and 2.

Correspondingly, on £ we have the integral points M + 2S5 = (—16,—32) and M — 25 =
(—16,—16), M — S = (—12,—-36) and M + S = (—12,—12); here M = Mg = (-8, —24);
S = Sg = (0,0). Of course & is not minimal; nor, for that matter was C. In fact the
replacements X «— 2X + 1, Y « 4Y yield

V2= (X?+ X —7)>—4-6(X+3), (20)

correctly suggesting we need a more general treatment than that presented in the discussion
above. It turns out to be enough for present purposes to replace e; < 4e;, obtaining

— _ _ _ _ — 9
., E_3 = ,6_2—4, 6_1—3, 60—2, 61—3, 62—4, 63—Z7 cee .

[ el

Then Ag=1, A; =1 and

Ap 1 Appr = €hAi
yields the sequence ..., A_, = 2°3%, A_3 =232, A, =233, A1 =2, Ay =1, A, =1,
Ay = 3, Ay = 2232, A, = 223%, .... Notice that we’re hit for six’ by increasingly high
powers of primes dividing 6 appearing as factors of the Aj,. However, we know that (12)
derives from (17). With the original eps divided by 4 that yields

Ap—oApis =62 Ap_1Apio + 62 Ay Ap iy .

SHere my choice of vy = 8 is arbitrary but not at random.
"My remark is guided by knowing that V2 + UV + 6V = U+ 7U? 4 12U is a minimal model for £, and
noticing that ged(6,12) = 6. Notice too that 62 divides the discriminant of this model.
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Remarkably, one may remove the effect of the 6 by renormalising to a sequence (Bj) of
integers satisfying
Bn_2By13 = By_1Bpi2 + BpBry1

Speciﬁcally, ceey B_4 = 3, B_3 = 2, B_2 = 1, B_1 = 1, BO = 1, Bl = 1, B2 = 1, B3 = 2,
B, =3, By =5, B¢ =11, B; = 37, Bg = 83, ..., and the sequence is symmetric about
B = 0. Interestingly, the choice of each By, as a divisor of Aj, is forced, in the present case
by the data Ag = A; = 1 and the decision that the coefficient of B, By, be 1. Of course it
is straightforward to verify that A,_pA, 5 is always divisible by 63 and Aj,_; Ay, always
by 6. For a different treatment see §4.4 below.

4.2

Take v = +1 and f +w? = 1. Thus, by (13), es_1€2ep11 =€, +1 and so ¢g =1, 1 = 1
yields the sequence ..., 2, 1, 1, 2, 3/4, 14/9, ..., of values of e,. As explained above,
with Cp = 1 and C; = 1, the definition Cj,_1C)y1 = €,C7 yields the symmetric sequence

ey, 2,1,1,1, 1,2, 3,7, 23, 59, ..., of values of C), satisfying the recursion
Ch—2Chy2 = Cho1Chyr + C;% .

Set Y? = A% + 4v(X — w), where A = X? + f. Then the recursion for (C},) entails v? =1
and f + w? = 1. Plainly, one can get four consecutive values 1 in a sequence (C},) only
by having two consecutive values 1 in the corresponding sequence (es). Thus (4) yields
f+2=—w? and then f+ w? =1 entails w? — wZ = 3. Hence w? =4 and f = —3. The
identity (6) implies vw is positive.

Sov==1,w=42, f=-3. Upto X «— —X, the sequence (C}) is given by the curve
C:Y?=(X?-3)?+4(X —2) and its points M¢ + hS¢, Me = (1,0), Se¢ the “other point”
at infinity; equivalently by

E: V-V =U+3U*+2U with M =(-1,1), S = (0,0).

Indeed, M + S = (—1,0), M +2S = (—2,1), M +3S = (—3/4,3/8), .... Note that it is
impossible to have three consecutive values 1 in the sequence (e,) if also v = +1, except for
trivial periodic cases, so the hoo-ha of the example at §4.1 above is in a sense unavoidable.

4.3 Remarks

The two examples get a rather woolly treatment in [15] and its preceding discussion; see
[5] for context. Before seeing [16] I had also remarked that “the observation that a twist
V2 -0V = dU? — fU? +vwU becomes VZ—dvV = U? — fU*+dvwU by U « dU, V « dV
allows one to presume v = 1. A suitable choice of ey, e; and Ay, A; should now allow one
to duplicate the result claimed in [15] in somewhat less brutal form.” Namely, one wishes to
obtain elliptic curves yielding a sequence (Aj) with nominated A_;, Ay, Ay, Az and such
that A, _9Ani0 = KA, 1Ap 1+ )\A,ZL; only the cases k not a square are at issue. In fact, this
issue is dealt with by Christine Swart at [16, p. 153ff] in more straightforward fashion than
I had in mind. In very brief, if A, 1A 1 = e, A%, then

Bh = K%h(h+1)Ah entails Bh—lBh+1 = /iehB,%,
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and so Bj,_9Bpy2 = (1/k)*By_1Bni1 + (A/x*)B7. Yet more simply, one may remark that
there always is an elliptic curve defined over the base field with \/k adjoined; that is, over
a quadratic twist — exactly as I had mooted.

4.4 Reprise

It seems appropriate to return to the example of §4.1 so as to discover the elliptic curve
giving rise to (Bp) = (...,1,1,1,1,1,...), given that B, 9Bpi3 = Bp_1Bni2 + BpBpyi1-
Recall we expect the squares of the integers Bj to be the precise denominators of the points
M + hS on the minimal Weierstral model W of the curve; here M is some point on that
model and S = (0,0).

Suppose e_s, €_1, €9, €1, ez supply the five integer co-ordinates yielding B_5, B_1, By,
B1, By. Because no more than two of these e; can be 1 we must have

eoB_1B1 = eyBj, €1BoBy=e1B], 3e2B1B;=eB;,
since of course the recursion for (B},) entails B3 = 2. Suppose in general that
chBh_1Bny1 = e, B .
Then the identity (17),
en1€€p,1€nya = 0> (—(f + w’)epepyr +v° + 20w (f + w?)),
and Bj_9Bpi3 = Bp_1Bpio + BpBpry1 entail
Cho1CiCh 41 Cha = =V (f + w?)epenpr = v* (v + 2w(f + w?)).
Thus cpep1 = kv, say, is independent of h and we have
B> = —(f+w? and Kk +2uwk®—-v=0.
Note that if f+ w?, or 2w and v, are integers, also k must be an integer. Also,
eoe; = vk and ejey = 2vk. (21)
Remark 1. However, e),_1€2¢;.1 = v?ep, + v*(f + w?) implies
k*Bj—2Bpya = cnBy—1Bpy1 + (f + w?) By,

without the coefficients necessarily being independent® of h. In particular, k* = —(f + w?)
entails ¢y = eg = 2k? and ¢; = e; = 3k2.

8Both Christine Swart and Andy Hone have pointed out to me that cpcp+1 constant, and thus both cgp,
and copy1 constant, of course boils down to a Somos 5 corresponding to a pair of interlinked Somos 4.
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On the other hand, the identity (6) now reports that k¥ = w —wq and 2k = w — w;. By
(5) we then have
wo +wy; =v/e; = 2w — 3k

whilst by (4) we see that f+ey+e; = —(w —k)?, f+ e + ey = —(w — 2k)?, so, recalling
that ey = 2e, also ey = (2w — 3k)k. Hence

(2w — 3k)k = 2k* and so 2w = 5k. (22)
In summary, we then can quickly conclude that also
v=~6k, 4f=—29k?, and 2uw,=3k. (23)

The normalisation k = —2 retrieves the continued fraction expansion in §4.1 on page 8.
As shown in §7 on page 17 the corresponding minimal Weierstral model is V2 + UV +6V =
U3 +7U%+12U; and M = (—2,—2) is a point of order two.

5 Somos Sequences

5.1 Christine Swart’s thesis [16]

Much of the work reported by me here is sui generis with original intent to make explicit the
ideas of Adams and Razar [1] and to rediscover the rational elliptic torsion surfaces (thus,
the “pencils” of rational elliptic curves with, say (0,0), a torsion point of given order m) by
a new method, see [8] and its references. Eventually, I learned of Michael Somos’s sequences,
see [5], and realised how they arise from my data. I had sort of heard of Christine Swart’s
work from Nelson Stephens in 2003 but, fortunately as it turned out?, did not have access to
her thesis [16] until very recently when this paper was already essentially complete; see [9].
Christine Swart’s discussion of the interrelationship between elliptic sequences and elliptic
curves is more detailed and complete than mine. Among many other things, she is careful
to recognise that the formulas neither know nor care whether the given elliptic curve is
in fact elliptic: thus, for example, also my quartics may have multiple zeros. If so, extra
comment — mostly, quite straightforward — is required at a number of points above; but is
neglected by me. Further, Christine Swart reports inter alia that Nelson Stephens (personal
communication to her) had noticed, by completely different methods, identities equivalent
to (13) and (11), see page 4; these are her Theorems 3.5.1 and 7.1.2 [16, p.29 and p. 153].

5.2 Much more satisfying?

I can in fact show that an elliptic sequence (Ay) is also given by Aj,_4Apia = WZA, 1 Apy1—
W3WsA2 . However, I consider my argument as typical of the sort of thing that gives math-
ematics its bad name: and regret to have to admit that this sort of nonsense seemingly does
generalise to proving that a Somos 4 also always is a three-term Somos (4 4 n).

9Tt was fun to puzzle out not just the answers to questions, but also to attempt to guess what the questions
ought to be.
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Specifically, we know that
Ah,QAthQ = WZQAhflAthl - W1W3Ai R by deﬁnition; (24)
Ap_3Apyz = W3iA, 1 Apy — WoW AZ | see footnote page 0, (25)

and intend to show that

Ap_gApyg = WAL 1 Ay — WsW5AS (26)

Notice that, in particular, W W5 = WiW,W, — W W3W2; so because Wy = 1, Wy =
W3W3sW, — W3W5. Now observe that

Ap—aAny2An—oAnia = WiAL 2 Ay — WoW, A ) (Wi ApApya — WoWAG ) .
In the product on the right, the first term is
(WIWsW,AZ — WsWs AZ) Ap_oAp o
and half of it contributes half of (26). Similarly, half the final term of the product, thus of
WfAhthH : W22Ah7114h+1 = WfAhflAthl(AhfZAthQ + W3A;ZL) )

provides the other half of (26). Thus it’s ugly but true that we have proved that (26) holds
if and only if W3W,; =0 or
WA A2 Ay — WaWs(Ap_a ApA2 | + A2 Ay Ay o) + Wiy 1 A2Ap = 0.

I now compound this brutality by fiercely replacing the two occurrences of Aj,_o by the
evident relation
Ap—z = (szAh—lAhH - W1W3Ai)/Ah+2 .
That necessitates our then multiplying by Aj.o. Fortunately, we can compensate for this
cruelty by dividing by Aj,. We are left with needing to show that
W3 Ap—1 ApAns1Anyo — WiW3AS Ao — W3W3 AL 1 A

— W2W3A,2171A,21+2 + WQW??AZAiH + WyAp 1 ApApi1 A = 0. (27)
It’s now natural to despair, and to start looking for a Plan B. However, one might notice,
on page 7, that Wy = —v*(v + 2w(f + w?)); and W, = v. Moreover W3 = —v?(f + w?).
Thus, conveniently,

Wy 4+ Wy = —20*w(f +w?) = WiWs.

Hence, just as our result is trivial if W3W, = 0, so also it is trivial if W5 = 0. All this is a

sign that we may not as yet have made an error. We may divide (27) by W,W3. Better yet,
let’s also divide by A7A?. | by using the definitions

Ap 1Ap = ehAfL, whence also  Ap_1An0 = epen i1 ApAniy .
Then all that remains is a confirmation that
2wepen i1 — v (en + ent1) — eneny — v (f +w®) =0. (28)
However (13), page 4, is epepy1 = v(w — wy), while e, + ep = —f —wi is (4), page 3.

Astonishingly, the claim (28) follows immediately.
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Theorem 4. If (Ay) is a Somos 4 then it is a Somos 8 of the shape
Ah_4Ah+4 = KAh_lAh.:,_l + )\AZ

Proof. Given the argument above, it suffices to note that any Somos 4 is equivalent to an
elliptic sequence. |

6 Rappels

6.1 Continued fraction expansion of a quadratic irrational

Let Y = Y(X) be a quadratic irrational integral element of the field F((X ~')) of Laurent
series

Z fon X" some d €Z (29)

h=—d
defined over some given base field F; that is, there are polynomials 7" and D defined over
F so that

Y2 =T(X)Y + D(X). (30)

Plainly, by translating Y by a polynomial if necessary, we may suppose that degD >
2degT + 2, with deg D = 29+ 2, say, and degT" < g; then degY = g+ 1. Recall here that
a Laurent series (29) with f; # 0 has degree d.

Set Yy = (Y + Py)/Qo where Py and )y are polynomials so that )y divides the norm
(Y + Py)(Y + Py); notice here that an F[X]-module (Q,Y + P) is an ideal in F[X, Y] if and
only if Q|(Y + P)(Y + P).

Further, suppose that degYy, > 0 and degY, < 0; that is, Yj is reduced. Then the
continued fraction expansion of Yj is given by a sequence of lines, of which the hA-th is

Yh = (Y+Ph)/Qh:ah—(?+Ph+1)/Qh; in brief Yh:ah—Eh. (31)

Here the polynomial aj, is a partial quotient, and the next complete quotient Yyiq is the
reciprocal of the preceding remainder —(Y +Py11)/Qp . Plainly the sequences of polynomials
(P,) and (Qp,) are given by the recursion formulas

Ph + Ph+1 + (Y + ?) = ath and Y?—F (Y + ?)Ph+1 + P]3+1 = —Qth+1 . (32)

It is easy to see by induction on h that Qj divides the norm (Y + P,)(Y + P,).
We observe also that we have a conjugate expansion with h-th line

By = (Y + Pu1)/Qn=an — (Y + P,)/Qp, thatis, B,=ay—Y}. (33)

Note that the next line of this expansion is the conjugate of the previous line of its conjugate
expansion: conjugation reverses a continued fraction tableau. Because the conjugate of
line 0 is the last line of its tableau we can extend the expansion forming the conjugate
tableau, leading to lines h =1, 2, ...

(Y +Pop1)/Qp=a_p— (Y +P_y)/Qp; thatis, B_p=a_p—Y_.
Plainly the original continued fraction tableau also is two-sided infinite and our thinking of
it as “starting” at Y| is just convention.
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6.2 Continued fractions

One writes Yy = [ag , a1 , as , . ..], where formally
[ag,a1,as,...,a5] =ao+1/]ay,as,...,ap,1] and | ]=o0. (34)

It follows, again by induction on h, that the definition

ag 1 a; 1 [ I A
0 1 0 1 0 1) "\wn Yn

entails [ag, a1 ,as,...,an] = xp/y,. This provides a correspondence between the con-
vergents xp/yn, and certain products of 2 X 2 matrices (more precisely, between the se-
quences (xp,), (yn) of continuants and those matrices). It is a useful exercise to notice that
Yo=ao,a1,...,an, Yy | implies that

Yigr = —(Wn1Y —zn1)/(ynY — n)
and that this immediately gives
YiYy o Yap = (=)™ (@n —ynY) (35)

The quantity — deg(z, — ynY) = degypi1 is a weighted sum giving a measure of the “dis-
tance” traversed by the continued fraction expansion to its (h + 1)-st complete quotient.
Taking norms yields

(xh — ynY)(@n — YY) = (=1)"" Qnya - (36)

6.3 Conjugation, symmetry, and periodicity

Each partial quotient ay, is the polynomial part of its corresponding complete quotient Y.
Note, however, that the assertions above are independent of that conventional selection rule.

One readily shows that Y; being reduced, to wit degYy, > 0 and degY, < 0, implies
that each complete quotient Y} is reduced. Indeed, it also follows that deg B, > 0, while
plainly deg B;, < 0 since —B;, is a remainder; so the B, too are reduced. In particular ay,
the polynomial part of Y}, is also the polynomial part of Bj,.

Plainly, at least the first two leading terms of each polynomial Pj, must coincide with the
leading terms of Y —T'. It also follows that the polynomials P, and @) satisfy the bounds

degP,=9g+1 and degQ,<g. (37)

Thus, if the base field I is finite the box principle entails the continued fraction expansion
of Yy is periodic. If F is infinite, periodicity is just happenstance.

Suppose, however, that the function field F(X,Y") is exceptional in that Yy, say, does
have a periodic continued fraction expansion. If the continued fraction expansion of Yj is
periodic then, by conjugation, also the expansion of By is periodic. But conjugation reverses
the order of the lines comprising a continued fraction tableau. Hence the conjugate of any
preperiod is a “postperiod”, an absurd notion. It follows that, if periodic, the two conjugate
expansions are purely periodic.
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Denote by A the polynomial part of Y, and recall that Y +Y = T. It happens that
line 0 of the continued fraction expansion of Y + A — T is

Y+A-T=2A~-T—- Y +A-T) (38)

and is symmetric. In general, if the expansion of Yy has a symmetry, and if the continued
fraction expansion is periodic, its period must have a second symmetry'. So if Y is excep-
tional in having a periodic continued fraction expansion then its period is of length 2s and
has an additional symmetry of the first kind P, = P, 1, or its period is of length 2s+1 and
also has a symmetry of the second kind, Qs = Qs.1. Conversely, this is the point, if the
expansion of Y has a second symmetry then it must be periodic as just described.

6.4 Units

It is easy to apply the Dirichlet box principle to prove that an order Q[w] of a quadratic
number field Q(w) contains nontrivial units. Indeed, by that principle there are infinitely
many pairs of integers (p, ¢) so that |qw—p| < 1/q, whence |p?—(w+@)pg+wwg?| < (w—w)+
1. It follows, again by the box principle, that there is an integer [ with 0 < [I| < (w—®)+1
so that the equation p* — (w + @)pg + wwq? = [ has infinitely many pairs (p,¢) and (p',¢)
of solutions with p = p’ and ¢ = ¢’ (mod [). For each such distinct pair, 2l = pp’ — wivqq/,
yl=pqd —p'q+ (w+w)qq, yields (z —wy)(z —wy) = 1.

In the function field case, we cannot apply the the box principle for a second time if the
base field F is infinite. So the existence of a nontrivial unit z(X)—y(y)Y (X) is exceptional.
This should not be a surprise. By the definition of the notion “unit”, such a unit u(X) say,
has a divisor supported only at infinity. Moreover, u is a function of the order F[X,Y],
and is say of degree m, so the existence of u implies that the class containing the divisor at
infinity is a torsion divisor on the Jacobian of the curve (30). The existence of such a torsion
divisor is of course exceptional.

Suppose now that the function field F(X,Y) does contain a nontrivial unit u, say of
norm —k and degree m. Then deg(yY — ) = —m < —degy, so x/y is a convergent of Y
and so some @) is £k, say (), = k with r odd. That is, line r of the continued fraction
expansion of Y+ A — T is

Y, =(Y+A-T)/k=24/k— (Y +A-T)/k; line r:

here we have used the fact that (Y + P,)/k is reduced to deduce that necessarily P, =
P7‘+1 - A - T
By conjugation of the (r + 1)-line tableau commencing with (38) we see that

Yor =Y +A-T=2A-T—(Y+A-T), line 2r:

so that in any case if Y+ A — T has a quasi-periodic continued fraction expansion then it is
periodic of period twice the quasi-period. This result of Tom Berry [2] applies to arbitrary

IThe case of period length 1 is an exception unless we count its one line as having two symmetries;
alternatively unless we deem it to have period r = 2.
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quadratic irrationals with polynomial trace. Other elements (Y + P)/Q of F(X,Y), with
Q dividing the norm (Y + P)(Y + P), may be honest-to-goodness quasi-periodic, that is,
not also periodic.

Further, if Kk # —1 then r must be odd. To see that, notice the identity

B[Cao,BCL1 ,CCLQ,Bag s ] :C’[Bao,C’al,Bag,Cag s ], (39)

reminding one how to multiply a continued fraction expansion by some quantity; this cute
formulation of the multiplication rule is due to Wolfgang Schmidt [11]. The “twisted sym-
metry” occasioned by division by &, equivalent to the existence of a non-trivial quasi-period,
is noted by Christian Friesen [4].

In summary, if the continued fraction expansion of Y is quasi-periodic it is periodic, and
the expansion has the symmetries of the more familiar number field case, as well as twisted
symmetries occasioned by a nontrivial x.

One shows readily that if z/y =[A,a1,...,a,—1] and x — Yy is a unit of the domain
F[X,Y] then, with a,_y = ka1, a,_2 = as/kK, a,_3 = Kag, ...,

[2A—=T ;a1 ,...,a,1,2A-T)/k,a,—1,...,a1]

is the quadratic irrational Laurent series Y + A — T'. Alternatively, given the expansion of
Y + A—T, and noting that therefore deg @, = 0, the fact that the said expansion of z/y
yields a unit follows directly from (36).

7 Comments

7.1

According to Gauss (Disquisitiones Arithmetice, Art. T6) ... veritates ex notionibus potius
quam ex hauriri debebant?. Nonetheless, one should not underrate the importance of no-
tation; good notation can decrease the viscosity of the flow to truth. From the foregoing
it seems clear that, given Y2 = A? + 4v(X — w), one should study the continued fraction
expansion of Z = %(Y + A), as is done in [1]. Moreover, it is a mistake to be frustrated by
minimal models V2 4+ UV — oV = U? — fU + vwU.

Specifically, we understand that V2 — 8V = U? — (4f — 1)U? + 8v(2w — 1)U yields
V2 = (X?244f—1)2+4-8(X — (2w —1)) by way of 2U = X? +Y + (4f — 1) and
(V. —8v) = XU. Now X « 2X + 1, Y « 4Y means that, instead, we obtain Y? =
(X2 + X + f)? 4+ 4v(X — (w—1)). This derives from V2 + UV —ovV = U? — fU +vwU by
taking 2U = X2+ X +Y + f and V —v = XU.

7.2

The discussion above may have some interest for its own sake, but my primary purpose is to
test ideas for generalisation to higher genus ¢g. An important difficulty when ¢g > 1 is that

2[mathematical] truths flow from notions rather than from notations.
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partial quotients may be of degree greater than one without that entailing periodicity, whence
my eccentric aside on page 8. Happily, the generalisation to translating by a point (wg, eg—e;)
on the quartic model effected above also is a simplification in that one surely may always
choose a translating divisor so as to avoid meeting singular steps in the continued fraction ex-
pansion. In that context one finds that the sequence (... ,2,1,1,1,1,1,1,2,3,4,8,17,50,...)
satisfying the recursion Tj, 3Ty 3 = Tj_oTh 12 + T} arises from adding multiples of the class
of the divisor at infinity on the Jacobian of the curve Y? = (X —4X +1)? 4+ 4(X — 2) of
genus 2 to the class of the divisor defined by the pair of points (¢,0) and (3, 0); here ¢ is
the golden ratio.
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