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Abstract

Diffusion walks take steps in the four directions N, E, S, and W. We derive a closed
form for the number of diffusion walks from the origin to some point (n, n) on the
diagonal in k steps inside the first octant, touching the diagonal exactly c times.

1 Notation and Results

A diffusion walk is a random walk in the square lattice Z2, equally likely taking one of the
four unit steps North = (0, 1), South = (0,−1), East = (1, 0), and West = (−1, 0). The
walk stays in the first octant, also called principal wedge, if it only visits lattice points (n,m)
satisfying 0 ≤ m ≤ n. We will call such restricted diffusion walks octant walks in this paper.
We denote by D2k (0→n; c) the number of octant walks from (0, 0) to (n, n) taking 2k steps
and contacting the diagonal y = x exactly c times. Note that the start and end point of such
walks are counted as contacts with the diagonal. The walks may self-intersect, and they
may touch (contact) but not cross either boundary of the octant. Synonyms for contacts
are visits, and points of adsorption. Figure 1 shows a path from (0, 0) to (3, 3) making four
visits.
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Table 1: A diffusion walk in the first octant from (0, 0) to (3, 3) with 20 steps and 4 contacts

We prove in this paper that D2k (0→n; c) =
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Of course, there are various ways to shorten this expression; for example, D2k (0→n; c) =
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)(
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We leave it to the reader to show that the total number of walks in the first octant ending
somewhere on the diagonal after 2k steps and c visits equals

∑

n≥0

D2k (0→n; c) =
c (c− 1)

2k + 1− c

(

2k + 1− c

k

)

1

k + 1

(

2k

k

)

for k ≥ c− 1.

This follows from (1), but there may be better arguments, noticing the (generalized)
Catalan numbers in the formula. Another challenge is an elementary proof showing that
the number of octant walks with l steps and c visits (ending anywhere) equals f (l, c) =

c
b(l+1)/2c

(

l−c
bl/2c+1−c

)(

l
b(l−1)/2c

)

for 1 ≤ c ≤ bl/2c+ 1.

This paper is based on the work of Janse van Rensburg [1, p. 115],[2, p. 470], who derived
a generating function for D2k (0→n; c), and on some computer experiments by my student
Tom Campbell that uncovered certain difficulties in applying the generating function, as
pointed out in the next section. Because Janse van Rensburg derived the generating function
from a more general setting in many complex steps, we added a straightforward verification
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k =
c ↓ 1 2 3 4 5 6

2 2 4 20 140 1176 11 088
3 0 6 30 210 1764 16 632
4 0 0 20 168 1512 14 784
5 0 0 0 70 840 9240
6 0 0 0 0 252 3960
7 0 0 0 0 0 924

Table 2: The number of octant walks contacting the diagonal c times, and ending there after
2k steps

l =
c ↓ 1 2 3 4 5 6 7 8

1 1 1 3 6 20 50 175 490
2 0 2 3 8 20 60 175 560
3 0 0 0 6 10 45 105 420
4 0 0 0 0 0 20 35 224
5 0 0 0 0 0 0 0 70

Table 3: The number of octant walks with l steps, and c contacts with the diagonal

to that section. In Section 3 we extract the coefficients D2k (0→n; c) from the generating
function. This involves finding a closed expression for a double sum. We have been assured
that computer algebra can do such a summation; however, it is also easily done by classical
arguments, which we sketch in that section.

2 The Contact Generating Function

Janse van Rensburg [1],[2] investigated the more general problem considering walks that end
somewhere inside the octant, instead of just on the diagonal. Let Dk (0→ (j, l) ; c) be the
number of diffusion walks from (0, 0) to (j, l) taking k steps in the first octant contacting
the diagonal y = x exactly c times, thus D2k (0→n; c) = D2k (0→ (n, n) ; c), and let

rk (j, l; 0, 0) =
∑

c≥0

Dk (0→ (j, l) ; c) zc.

In Table 4 the first few generating functions rk (j, l; 0, 0) are shown, where each cell (j, l) (in
double frames) is subdivided into subcells for k = 1, 2, 3, 4.
Janse van Rensburg constructed this generating function as a special case of walks starting

somewhere in the octant, not necessarily at the origin. However, the general problem seems to
be difficult to bring to an explicit form, and we will write now rk (j, l) instead of rk (j, l; 0, 0).
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l = 2
l = 1
l = 0

z2 + z3

z2 2z2 + 3z3 z + z2 2z + z2

z2 z2 + 2z3 z z + 2z2 z 3z + 3z2 z

k = 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
j = 0 j = 1 j = 2 j = 3

Table 4: The generating functions rk (j, l)

Omitting many details he finally derives for k ≥ l + j > 0,

rk (j, l) = z

∞
∑

m1=0

∞
∑

m2=0

(z − 1)m1+m2 Uk (j +m1 +m2, l +m1 −m2) (2)

= z

∞
∑

i=0

i
∑

q=0

(z − 1)i Uk (j + i, l + i− 2q) ,

where Uk (n,m) =

(m+ 1) (2 + n) (m+ 3 + n) (n+ 1−m)

(k + 1) (k + 2) (k + 3)2

(

k + 3
1
2
(k + n−m) + 2

)(

k + 3
1
2
(k + n+m) + 3

)

. (3)

Only for 0 ≤ m ≤ n we can say that Uk (n,m) equals the number

Dk (0→ (n,m)) :=
∑

c≥0

Dk (0→ (n,m) ; c)

of all octant walks from (0, 0) to (n,m) in k steps. For an elementary derivation of this
result and references see [3]. In the generating function (2) we mean the formula for
Uk (j +m1 +m2, l +m1 −m2), not the number of walks, i.e., Uk (j +m1 +m2, l +m1 −m2)
is not vanishing everywhere outside the first octant (unfortunately, this distinction was not
made by Janse van Rensburg, aggravating the error in the formula [1, (4.186)],[2, (3.23)] for
Uk (n,m)). Indeed, for the proof of (2) it is essential that

Uk (n, n− 2q) = −Uk (n, 2q − n− 2) , (4)

a symmetry not shared by the counts Dk (0→ (n,m)).
In the following proposition we verify (2) in an elementary way.

Proposition 2.1. [2] If the binomial coefficient
(

u
v

)

is defined the usual way,
(

u
v

)

= 0 if
v > u or v < 0 or v not an integer, and Uk (n,m) is given as in (3), then

∑

c≥0

Dk (0→ (j, l) ; c) zc = z

k−j
∑

i=0

(z − 1)i
i
∑

q=0

Uk (j + i, l + i− 2q)

for k > 0. We define D0 (0→ (j, l) ; c) = 1 if j = l = c = 0, and 0 otherwise.
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Proof. Let σk (j, l) := z
∑k−j

i=0 (z − 1)
i∑i

q=0 Uk (j + i, l + i− 2q). We show that σk (j, l)
solves the same recursion as rk (j, l),

rk (j, l) = rk−1 (j + 1, l) + rk−1 (j − 1, l) + rk−1 (j, l + 1) + rk−1 (j, l − 1) (5)

for all 1 ≤ l ≤ j and k > 0, and has the same initial values

rk (j, j) = z (rk−1 (j, j − 1) + rk−1 (j + 1, j)) for all j ≥ 0, k > 0 (6)

r0 (j, l) = δ0,jδ0,l (7)

and
rk (j, 0) = rk−1 (j + 1, 0) + rk−1 (j − 1, 0) + rk−1 (j, 1) for all l > 0, k > 0. (8)

The recursion (5) and condition (7) hold for Uk (j, l), and therefore for σk (j, l). Condition
(8) follows if we can show that σk (j,−1) = 0. Thus we verify

σk (j,−1) = z
∑

i≥0

(z − 1)i
i
∑

q=0

Uk (i+ j, i− 2q − 1)

= z
∑

i≥0

(z − 1)i





b(i−1)/2c
∑

q=0

Uk (i+ j, i− 2q − 1) +
i
∑

q=b(i+1)/2c

Uk (i+ j, i− 2q − 1)





= z
∑

i≥0

(z − 1)i





b(i−1)/2c
∑

q=0

Uk (i+ j, i− 2q − 1) +

d(i−1)/2e
∑

q=0

Uk (i+ j, 2q − i+ 1− 2)





= z
∑

i≥0

(z − 1)i





b(i−1)/2c
∑

q=0

Uk (i+ j, i− 2q − 1)−

d(i−1)/2e
∑

q=0

Uk (i+ j, i− 1− 2q)





using equation (4). If i is odd the two inner sums cancel each other. For even i the difference
equals −Uk (i+ j,−1), which is also 0.
Finally we verify (6), noting that

z (σk−1 (j, j − 1) + σk−1 (j + 1, j))

= (z − 1) (σk−1 (j, j − 1) + σk−1 (j + 1, j)) + σk−1 (j, j − 1) + σk−1 (j + 1, j)

A closer look at the first two term shows that

(z − 1) (σk−1 (j, j − 1) + σk−1 (j + 1, j))

= z
∑

i≥0

(z − 1)i+1
i
∑

q=0

(Uk−1 (j + i, j − 1 + i− 2q) + Uk−1 (j + 1 + i, j + i− 2q))

= z
∑

i≥1

(z − 1)i
i−1
∑

q=0

(Uk−1 (j − 1 + i, j − 2 + i− 2q) + Uk−1 (j + i, j − 1 + i− 2q))

= z
∑

i≥1

(z − 1)i
i
∑

q=0

(Uk−1 (j − 1 + i, j + i− 2q) + Uk−1 (j + i, j + 1 + i− 2q))

5



using Uk−1 (j − 1 + i, j + i) = 0 and Uk−1 (j + i, j + 1 + i) = 0 in the last step. Hence
z (σk−1 (j, j − 1) + σk−1 (j + 1, j)) = σk−1 (j − 1, j)+σk−1 (j, j + 1)+σk−1 (j, j − 1)+σk−1 (j + 1, j)
= σk (j, j), as desired.

3 Summing the Double Sum

Extracting the coefficient of zc from the contact generating function

∑

c≥0

Dk (0→ (j, l) ; c) zc = z

k−j
∑

i=0

(z − 1)i
i
∑

q=0

Uk (j + i, l + i− 2q)

gives the double sum D2k (0→n; c) =

k
∑

l=c−1

(

l

c− 1

)

(−1)c−1−l
l
∑

q=0

(n+ l − 2q + 1) (2 + l + n) (2l + 2n+ 3− 2q) (1 + 2q)

(2k + 3)2 (2k + 2) (2k + 1)
(9)

×

(

2k + 3

k + q + 2

)(

2k + 3

k − n− l + q

)

.

Finding a closed form for this double sum is completely elementary under the right
approach; first note that (9) can be written as

D2k (0→n; c) =
k
∑

l=c−1

(

l

c− 1

)

(−1)c−1−l 2 + l + n

(2k + 2) (2k + 1)
(10)

× (s (k − n, k, n+ l)− s (k − n− l − 1, k, n+ l)) ,

where

s (N, k,m) =
N
∑

q=0

(2k + 3− 2q)

2k + 3

(

2k + 3

q

)

(2k −m+ 1− 2q) (2m− 2k + 1 + 2q)

2k + 3

×

(

2k + 3

2k −m+ 1− q

)

.

It easily follows by induction over N that

s (N, k,m) =
(2k − 2N + 2) (m+N + 2)− (2k − 2N + 3) (k + 1)

k + 1

×

(

2k + 2

N

)(

2k + 2

2k −m−N

)

.

Thus (10) simplifies to a single summation. Repeated application of Vandermonde convolu-
tion leads to the closed form (1) for D2k (0→n; c).
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