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Abstract

We enumerate isomorphism classes of several types of transitive relations (equiva-
lently, finite topologies) up to 15 or 16 points.

1 Introduction

Pfeiffer [3] presented a classification of various types of order relations and determined their
numbers up to 12 points. In this paper, we extend the counts to 15 or 16 points. We defer
to [3] for historical survey, and only give enough background to precisely define the objects
we are counting.
We consider only directed graphs (digraphs) that do not have multiple edges but may

have up to one loop per point. A transitive relation digraph (TRD) is a digraph such that

1Research supported by the Australian Research Council.

1

mailto:Gunnar.Brinkmann@ugent.be
mailto:bdm@cs.anu.edu.au


presence of edges (x, y) and (y, z) implies that (x, z) is also present (even if x, y, z are not
distinct). (We cannot use the more natural term “transitive digraph” since its most common
definition does not allow loops; this has the unfortunate consequence that transitive digraphs
don’t correspond to transitive relations.)
A strong component of a digraph is a maximal set of points P such that there is a directed

path within P from x to y for each pair x, y ∈ P . (This permits the zero-length path from
x ∈ P to itself.)
If a strong component of a TRD has only one point, there may or may not be a loop

on that point. However, larger strong components of a TRD have loops on every point and
edges in both directions between each pair of points. If the strong components of a TRD
are contracted to single points, the result is a TRD that has no directed cycles apart from
loops.
Two digraphs are isomorphic if there is a bijection between their point-sets that induces

a bijection between their edge-sets. Thus we can refer to isomorphism classes of digraphs.
Of course a digraph can be viewed as representing some kind of order relation ≤, where

x ≤ y iff there is an edge (x, y). In the language and notation of Pfeiffer, we have the
following correspondences:

• A transitive relation corresponds to an arbitrary TRD. Let t(n) be the number of
isomorphism classes of transitive relations. This is Sloane’s sequence A091073.

• A quasi-order corresponds to a TRD such that every single-point strong component
has a loop. Let q(n) be the number of isomorphism classes of quasi-orders. This is
Sloane’s sequence A001930.

• A soft order corresponds to a TRD whose strong components each have only one point
(with or without loop). Let s(n) be the number of isomorphism classes of soft orders.
This is Sloane’s sequence A079265.

• A partial order corresponds to an TRD whose strong components are all single points
with loops. Because we can remove and replace the loops in a unique fashion, the
counts here are the same as for acyclic TRDs. Let p(n) be the number of isomorphism
classes of partial orders.

There are also relationships with finite topologies: general topologies are in bijective
correspondence with quasi-orders, and T0-topologies are in bijective correspondence with
partial orders. These bijections preserve isomorphism, so we are also counting isomorphism
classes of topologies.

For enumerative purposes, we will define some specialized numbers.

• q(n,m) is the number of isomorphism classes of TRDs with n points and m strong
components, such that each single-point strong component has a loop.

• t(n,m) is the number of isomorphism classes of TRDs with n points and m strong
components (with single-point strong components having a loop or not).
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In terms of these specialized numbers, we have

q(n) =
n
∑

m=1

q(n,m), t(n) =
n
∑

m=1

t(n,m),

p(n) = q(n, n), s(n) = t(n, n).

2 Computing t(n, m) and q(n, m) for small n

Our main tool is a program which generates non-isomorphic partially ordered sets (posets).
In our paper [1], we gave values of p(n) up to n = 16 based on output from that program.
Given a poset P , we can make a TRD G by replacing each point by a directed clique

(perhaps of a single point). Such directed cliques become the strong components of G.
If points v, w of P become strong components cv, cw of G, then an edge (v, w) of P becomes
the set of all possible edges from cv to cw in G. Clearly non-isomorphic posets lead to non-
isomorphic TRDs, since G uniquely determines P . The only remaining issue is that some of
the TRDs made from P may be isomorphic due to symmetries (automorphisms) of P .
Given a poset P , we can represent its expansion to a TRD by assigning a positive integer

weight to each point. This weight corresponds to the size of the directed clique that the
point will be expanded to. We also consider extended weights where there are two types of
weight with value 1 (corresponding to loop and non-loop).
For any permutation γ, define

Cγ(x) =
k
∏

i=1

(1− xai)−1

C ′γ(x) =
k
∏

i=1

(

1 + (1− xai)−1
)

,

where a1, a2, . . . , ak are the cycle lengths of γ.

Theorem 2.1. Let 1 ≤ m ≤ n. Then

q(n,m) = [xn−m]
∑

P

(

|Aut(P )|−1
∑

γ∈Aut(P )

Cγ(x)
)

t(n,m) = [xn−m]
∑

P

(

|Aut(P )|−1
∑

γ∈Aut(P )

C ′γ(x)
)

,

where the first sum in each case is over isomorphism class representatives P of posets on
m points, Aut(P ) is the automorphism group of P , and [xn−m] denotes extraction of the
coefficient of xn−m.

Proof. We prove the formula for q(n,m); the other is similar. Let P be a poset with m

points. By the Frobenius-Burnside Lemma, the number of equivalence classes under Aut(P )
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of weight assignments with total weight n is the average over γ ∈ Aut(P ) of the number
wn(γ) of such weight assignments fixed by γ.
Consider one such element γ ∈ Aut(P ) with cycles of length a1, a2, . . . , ak. A weight

assignment is fixed by γ iff it is constant on each cycle of γ, so wn(γ) is the coefficient of x
n

in
k
∏

i=1

(xai + x2ai + x3ai + · · · ) = xmCγ(x).

The result now follows by averaging over γ.

As mentioned earlier, q(n, n) = p(n). We can also identify q(n, n−1) as the total number
of orbits of Aut(P ) over all posets on n− 1 points. Using our previously-computed value of
p(16), this enabled us to determine q(n,m) for n ≤ 16 and t(n,m) for n ≤ 15 by computing
the automorphism groups of all the posets up to 15 points. Except in some simple (but
common) situations where the poset generator had already determined Aut(P ), this was
computed using nauty [2].
The resulting values are given in Tables 1–3. The programs were run twice in case of

machine errors. We also successfully recovered the numbers given by Pfeiffer [3] and the
values of p(n) up to n = 15 given by Brinkmann and McKay [1].

n q(n) s(n) t(n)

1 1 2 2
2 3 7 8
3 9 32 39
4 33 192 242
5 139 1490 1895
6 718 15067 19051
7 4535 198296 246895
8 35979 3398105 4145108
9 363083 75734592 90325655
10 4717687 2191591226 2555630036
11 79501654 82178300654 93810648902
12 1744252509 3984499220967 4461086120602
13 49872339897 249298391641352 274339212258846
14 1856792610995 20089200308020179 21775814889230580
15 89847422244493 2081351202770089728 2226876304576948549
16 5637294117525695

Table 1: Quasi-orders, soft orders, and transitive relations
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1 1 1 10 1 1 14 1 1
2 1 1 10 2 14 14 2 20
2 2 2 10 3 120 14 3 256
3 1 1 10 4 849 14 4 2790
3 2 3 10 5 5123 14 5 27637
3 3 5 10 6 27439 14 6 260840
4 1 1 10 7 127965 14 7 2385741
4 2 5 10 8 501591 14 8 21304106
4 3 11 10 9 1487301 14 9 184860968
4 4 16 10 10 2567284 14 10 1535230287
5 1 1 11 1 1 14 11 11832383054
5 2 6 11 2 15 14 12 80018898562
5 3 22 11 3 150 14 13 425004096962
5 4 47 11 4 1193 14 14 1338193159771
5 5 63 11 5 8406 15 1 1
6 1 1 11 6 53443 15 2 21
6 2 8 11 7 309719 15 3 299
6 3 35 11 8 1599822 15 4 3525
6 4 113 11 9 7040921 15 5 38420
6 5 243 11 10 23738557 15 6 401602
6 6 318 11 11 46749427 15 7 4124565
7 1 1 12 1 1 15 8 41997196
7 2 9 12 2 17 15 9 424381067
7 3 52 12 3 182 15 10 4221560826
7 4 213 12 4 1632 15 11 40603719604
7 5 682 12 5 13011 15 12 365485856203
7 6 1533 12 6 96226 15 13 2906408331804
7 7 2045 12 7 664467 15 14 18255153928204
8 1 1 12 8 4268404 15 15 68275077901156
8 2 11 12 9 24858756 16 1 1
8 3 71 12 10 124784466 16 2 23
8 4 367 12 11 484673601 16 3 343
8 5 1503 12 12 1104891746 16 4 4396
8 6 4989 13 1 1 16 5 52033
8 7 12038 13 2 18 16 6 597502
8 8 16999 13 3 218 16 7 6804011
9 1 1 13 4 2154 16 8 77823441
9 2 12 13 5 19320 16 9 897440095
9 3 95 13 6 162404 16 10 10402896209
9 4 570 13 7 1304373 16 11 119938485210
9 5 2923 13 8 10009358 16 12 1348204100877
9 6 12591 13 9 72589838 16 13 14281079724622
9 7 44842 13 10 483531684 16 14 134410089884839
9 8 118818 13 11 2803234294 16 15 1003992754517006
9 9 183231 13 12 12677658783 16 16 4483130665195087

13 13 33823827452

Table 2: Values of q(n,m) for various n,m
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1 1 2 9 1 1 13 1 1
2 1 1 9 2 15 13 2 21
2 2 7 9 3 174 13 3 335
3 1 1 9 4 1769 13 4 4852
3 2 6 9 5 17694 13 5 70797
3 3 32 9 6 170391 13 6 1066041
4 1 1 9 7 1577763 13 7 16906476
4 2 8 9 8 12823256 13 8 282183725
4 3 41 9 9 75734592 13 9 4922404711
4 4 192 10 1 1 13 10 87597193530
5 1 1 10 2 17 13 11 1521294651297
5 2 9 10 3 207 13 12 23426706135708
5 3 63 10 4 2380 13 13 249298391641352
5 4 332 10 5 26352 14 1 1
5 5 1490 10 6 294156 14 2 23
6 1 1 10 7 3243880 14 3 381
6 2 11 10 8 34592661 14 4 5964
6 3 84 10 9 325879156 14 5 93159
6 4 583 10 10 2191591226 14 6 1521101
6 5 3305 11 1 1 14 7 26315265
6 6 15067 11 2 18 14 8 486434324
7 1 1 11 3 248 14 9 9568317752
7 2 12 11 4 3068 14 10 197959166598
7 3 112 11 5 37919 14 11 4196507844123
7 4 883 11 6 472519 14 12 86930341478767
7 5 6537 11 7 6031290 14 13 1595279690032943
7 6 41054 11 8 77251333 14 14 20089200308020179
7 7 198296 11 9 960789368 15 1 1
8 1 1 11 10 10587762484 15 2 24
8 2 14 11 11 82178300654 15 3 435
8 3 139 12 1 1 15 4 7190
8 4 1294 12 2 20 15 5 120514
8 5 11096 12 3 288 15 6 2110489
8 6 90758 12 4 3911 15 7 39534004
8 7 643701 12 5 52415 15 8 798048843
8 8 3398105 12 6 724866 15 9 17393487215

12 7 10377573 15 10 406531057397
12 8 153952401 15 11 10041016241522
12 9 2314756589 15 12 254873608116034
12 10 33895893064 15 13 6326335208572503
12 11 440211138507 15 14 138933427209562650
12 12 3984499220967 15 15 2081351202770089728

Table 3: Values of t(n,m) for various n,m
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