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Abstract

We derive recurrence relations for the sequence of Maclaurin coefficients of the
function x = x(¢) satisfying (1 4+ x) In(1 + x) = 2x — ¢.
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1 Introduction
Consider the function x = x(¢) satisfying
(14+x)In(l4+x)=2x—t (1)

The sequence of coefficients in the Maclaurin expansion of y plays an important role in

algebraic geometry. Namely, the n-th coefficient is equal to the dimension of the cohomology

ring of the moduli space of n-pointed stable curves of genus 0. These coefficients are also

related to WDVV equations of physics. Exact definitions can be found in [[, [, [, ] and

references therein.

It follows from ([) that

X = CC%( = # (2)
+1t—x

and x has the critical point ¢ = e — 2. Using this, Manin [[], Chap.4, p.194] provides for the

coefficients in the Maclaurin expansion of Y,

) n
(O =t+> 3)
n=2 :

the following expression:

M ~ % (62 . 26)”. (4)

Exact computation of the defined numbers is a challenging problem. Indeed, taking into
account that

2x—(1+x)1n(1+x)zx+2%x",

and differentiating n times the identity ¢ = t(x(¢)), we deduce from the Bruno formula [fJ,
p.36, (45a)] that

3 nv(—l)ﬂ(jj '2>! <%)J (%)J - ((n”jnl)!)w , n>2 (5)

]1! 1+

where my =1, j = j1+Jo+ -+ Jn_1, and the sum is over all non-negative integral solutions
to j1 +2jo+ -+ (n—1)j,—1 = n. This allows recurrent computation of the numbers m,,.

Indeed, by (),

my = 0lm? =1
mg = —1!m? + 0!(3mym,) = 2

my = 2lm] — 1(6mimy) + 0!(3m3 + dmymg) =7

However, when n increases, ([]) becomes intractable due to the fast growth of the number of
partitions of n.



Koganov [[J] used the Biirmann-Lagrange inversion formula and generalizations of the
Stirling numbers of the second kind [}], to deduce an efficient 3-dimensional scheme for
computation of m,,’s. Here the Stirling numbers of the second kind of first and second order
(S1(n, k) and Ss(n, k)) are defined by the two-dimensional recurrences:

Sl(n+ 1ak) = kSl(n> k) + Sl(nak - 1)a

n Z k 2 1,81(71,0) = 50,7”81(71, 1) = 1,
Sg(n + 1, k) = kSQ(Tl,k‘) + nSQ(n — 1,]{ — 1),
n Z k 2 1,82(Tl,0) = 61,,1,52(71, 1) =1.

Then, [,
1252
My =1+n-=11Y nn+1)-(n+k-1)

k=1

Si(g+ 1,0+ 1)(_2>,€_Z52(n— l—qg—(k=40),k—10)
i (n—1=g- =0

This made possible [J] computing the first 10 numbers m,,.
In what follows we present a simple computational method for m,, based on a quadratic
recurrence.

Theorem 1.1 The numbers m,, satisfy

n—1
—1
m, = Z (n , )mimn_i —(n=2)my_1, n>2 (6)

i=1 !
with the initial condition my, = 1.
Proof Multiplying both sides of (f) by 1 + ¢ — x and rearranging, we obtain
X' =xx'+x -t +1.

Applying (f) to this equation, we get

Zm”_ Zuzl

(7 — 1
+ f: L — f: My 11
— " "pl — "(n—1)! '
Equating the coefficients of "' /(n — 1)! in this equation we accomplish the proof. O



2 A generalization

A natural generalization of the numbers m,, is related to configuration spaces [ and was
introduced in [[], §4.3]. For an integer k, k > 1, consider the function x; = xx(t) defined by

k(1 + xk) In(L +xx) = (b + Dxi — 1, (7)
for some fixed k. The previously considered x thus coincides with y;. Evidently,

d - 1+ Xk(t)

T Tt — k() ®)

and expanding at t = 0 we get ,

t!
[

Xe(t) =t+ > mu(k)—. (9)

n:

In particular, m (k) = 1. Using ([J) analogously to the previous section we have the following
generalization of Theorem [].

Theorem 2.1 The numbers m, (k) are polynomials of degree (n — 1) in k, with integer
coefficients defined by the recursion

n—1
-1
ma(k) =k (” , )mi(k:)mn_i(k:) — (n—2mar(k), n>2, (10)
i
i=1
with initial condition mq(k) = 1. O

2.1 Coefficients of m, (k)

Set
M (k) = pr ()K" 4 pa ()K" 2 4+ - 4 1 (n)k + pn(n). (11)

Computation of the coefficients pi,,(n), ttn—1(n), ttn—2(n), ... is enabled by the following the-
orem.

Theorem 2.2 Forn >2 and { =1,...,n, the following recurrence holds:

n—1

) =353 (" )i @nessos(n =) = (0= sl = ) (12

j=1 i=1

Proof The relation ([[J) is obtained by equating coefficients of k"¢ in equation ([0)). O



Using ([[J) for £ =n,n —1,... we calculate recursively

tn(n) = S n>1,
fin—1(n) = (=1)"(n —2)! n=2,
pin—2(n) = (-1)" M n=2)(n—2+237 ") n >3,
fin—3(n) = (=1)"(n —2)!

(A =3+ 0+ - T+ T ) nz,

Let us now describe a recurrence for computation of the initial coefficients pi1(n), pa(n), . . ..
Set

M) = 3 paln) (13)

Theorem 2.3 Let M, = M,(3(1 — t%)), t > 0. Then for n > 2 the following recursion
holds:

d “—/d 1 d
—(tM,,) = —M; | M1y —tM,—y — =(1 — t3)—M,,_1, 14
Y (ear,) ,-:2(6% ) M LT (14)
with initial conditions
My=1-t, M,|—1 = 0. (15)

Proof Multiply on both sides of ([J) by 2"'/(n — 1)!, and sum over n > 1, to obtain the
following system of equations for M(x):

Mi(z) = My(z)Mi(z) +1,  M(0) =0, (16)
M)(x) = iM{(x)Mg,iH(a:) + My (x) — M, _|(z), M,(0) = 0,0 > 2. (17)

From ([[{) we find
1
Mi(z) = M) + 7,

and
Mi(z)=1-VI—2z=1-t (18)
with ¢ = (1 — 22)2. Finally, changing variables in ([7) from z to ¢, and using
1 d dtd d
M(z) =t =—(1-¢ — ===
i) =17 w=g-0 G wa dt’
we obtain (after multiplication by —1), for n > 2, the formula ([[7). O



Notice that from Theorem P.J it follows by induction that for n > 2, M, is a polynomial
in ¢ and ¢t~! of the form:

M, = > )t (19)

Thus Theorem P.J recursively yields

Ml - —t—|—1,
1, 1, 1 1
My = —t*—~t+-— =t}
A L R
1 1 2 1 1
My = 3 —t4+- -ty 73
° 2 T3 te s Twmt
1 1 1 11 1 1
My = —t*— 3 t4+ - — ¢ty 3 470
! o0 14 T Tl 0 T m 4327 7
23 1 1 1 5 1 59
My = — " — — "+ —*+ —#*— — ¢4+ — — — ¢!
° 17280 270' 5760 405’ 1152' 90 4320
+4—3t_3_ 5 t_5+ 5 t—7
5760 1728 10368°
Setting (—1)!! = 1, this easily implies
pi(n) = 2n=3)!II, n>1,
—2
po(n) = _n3 (2n =31, n>2
(n—1)(n—2)(n—3)
ps(n) = P (2n =5, n>2
—3)(n—4)(Bn—-12+1
pa(n) = _(n=3) 32( 5(" )+ )(Qn—5)!!, n>3,
—3)(n—4)(n—5)(5(n—1)>*+4n—1
psn) = =3 >(”2 3)5( (5” L VS TR

Finally, we will state a conjecture we have not been able to verify.

Conjecture 1 The expressions for M, do not contain monomials corresponding to the in-
tegral negative degrees of (1 — 2x).

This conjecture is confirmed by our calculations for n < 5.

2.2  Yet another property of m, (k)

In this section we consider another combinatorial property of the polynomials m,, (k).

Theorem 2.4
mu(—1) = (1 — n)"_l (20)



Proof Substitute £ = —1 into (f), to obtain

X ==x-ixg txa -t + 1L (21)
Now let
00 . 4
£ =30 —ny
n=1 ’
and note that, from Lagrange’s Theorem as stated in [[, §1.2] we obtain
t
t)y=—=—-1
f( ) T )
where T' = —te. Differentiating the functional equation for 7" with respect to ¢, we obtain
dr —eT B T
dt 1+t t(1-T)
so that
dad  T—-t1" 1
a1 1-T
and it is now routine to check that f is a solution to (P1)). We conclude from the initial
condition f(0) = 0 that x_;(¢) coincides with f(t). O

3 Numerical Calculation

The derived result allows extending sequence A074059 of Sloane’s on-line Encyclopedia of
Integer Sequences which previously contained only 5 terms. We give here the first 19 terms
of the sequence:

m = {1,1,2,7,34,213,1630, 14747, 153946, 1821473,

24087590, 352080111, 5636451794, 98081813581,
1843315388078, 37209072076483, 802906142007946,

18443166021077145, 449326835001457846, . . .}



The first 10 polynomials m,, (k) for n = 1,...,10, are given in the following table:

m., (k)

1

k

3k? — k

15k3 — 10k2 + 2k

105k* — 105k3 + 40k* — 6k

945k° — 1260k* + 700k — 196k2 + 24k

10395k% — 17325K° + 12600k* — 5068k> + 1148k2 — 120k

135135k7 — 270270k5 + 242550k° — 126280k* + 40740k —

—7848k? + 720k

9 2027025k% — 4729725k + 5045040k° — 3213210k°+
+1332100k* — 363660k3 + 61416k% — 5040k

10 34459425k° — 91891800%° + 113513400k7 — 85345260k5+

+43022980k° — 15020720k* + 3584856k — 541728%2 + 40320k

0~ O ULk W — 3

Acknowledgement

The third author is grateful to L. M. Koganov for introducing the problem.

References

1]

2]
[3]

[4]

[. P. Goulden, and D. M. Jackson, Combinatorial Enumeration, Wiley, 1983 (Dover
reprint, 2004).

L. Comtet, Analyse Combinatoire, vol. 11, Presse Universitaire, Paris, 1970.

W. Fulton, and R. MacPherson, A compactification of configuration spaces, Ann. of
Math. 139 (1994), 183-225.

S. Keel, Intersection theory of moduli space of stable n-pointed curves of genus zero,
Trans. Amer. Math. Soc. 330 (1992), 545-574.

L. M. Koganov, Inversion of a power series and a result of S. K. Lando, in Proc. VIth Int.
Conf. on Discr. Models in Control Systems Theory, Moscow, MSU, 2004, pp. 170-172.

M. Kontsevich, and Yu. Manin, Quantum cohomology of a product (with Appendix by
R. Kaufmann), Inv. Math. 124 (1996), 313-339.

Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, AMS
Colloquium Publications, 47, American Mathematical Society, Providence, Rhode Is-
land, 1999.

M. A. Readdy, The pre-WDVV ring of physics and its topology, preprint, 2002. Available
at http://www.ms.uky.edu/readdy/Papers/pre WDVV.pdi]

8


http://www.ms.uky.edu/~readdy/Papers/pre_WDVV.pdf

[9] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1967.

2000 Mathematics Subject Classification: Primary 11Y55.
Keywords: cohomology rings of the moduli space, exponential generating functions, recur-
rences.

(Concerned with sequence [E071059)

Received July 15 2005; revised version received October 12 2005. Published in Journal of
Integer Sequences, October 12 2005.

Return to Journal of Integer Sequences home pagd.



http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A074059
http://www.cs.uwaterloo.ca/journals/JIS/

