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Abstract

In this short essay, we consider hyper-sums of powers of integers, namely sums of

power sums. We can obtain easily their formulae as polynomials by using formulae for

ordinary sums of powers of integers. The coefficient of the first-degree term in each

polynomial coincides with the matrix element of the Akiyama-Tanigawa matrix.

1 The Akiyama-Tanigawa matrix

The Akiyama-Tanigawa algorithm which is reformulated by K. W. Chen [1] and M. Kaneko
[3] is described by the sequence {an, m};

an, m = (m+ 1)(an−1, m − an−1, m+1), n ≥ 1, m ≥ 0 (1)

with an initial sequence a0, m (m = 0, 1, 2, . . .).
Let Bn(x) be the n-th Bernoulli polynomial

text

et − 1
=

∞
∑

n=0

Bn(x)
tn

n!
, |t| < 2π

When the initial sequence is a0, m = 1/(m + 1) then this algorithm yields Bn(1) as the
leading element an, 0. Here Bn(1) are, in fact, the Bernoulli numbers Bn, with the sole
exception of n = 1, for which B1(1) = −B1 holds. We assume this situation here and the
Akiyama-Tanigawa matrix {an, m} is then
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an, 0 an, 1 an, 2 an, 3 an, 4 an, 5 an, 6 an, 7 an, 8 an, 9 an, 10

1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11
· · ·

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

· · ·
1
6

1
6

3
20

2
15

5
42

3
28

7
72

4
45

9
110

· · ·

0 1
30

1
20

2
35

5
84

5
84

7
120

28
495

· · ·

− 1
30
− 1

30
− 3

140
− 1

105
0 1

140
49

3960
· · ·

0 − 1
42

− 1
28
− 4

105
− 1

28
− 29

924
· · ·

1
42

1
42

1
140

− 1
105

− 5
231

· · ·

0 1
30

1
20

8
165

· · ·

− 1
30
− 1

30
1

220
· · ·

0 − 5
66

· · ·
5
66

· · ·

· · ·

Each matrix element an, m is determined uniquely by the recursive rule (1) and the initial
values.

2 Explicit formulation

In this section, we determine an explicit expression of an, m.

Proposition 1.

an, m =
1

m!

m
∑

i=0

(−1)i
[

m+ 1
i+ 1

]

Bn+i(1), n ∈ N. (2)

where
[

n

k

]

are the Stirling numbers of the first kind (Sloane’s A008275, cf. [2], Ch. 6.1).

Proof. First, we shall see that this an, m satisfies the recursive rule (1). To do this, we use
the well known recurrence relation

[

n+1
k

]

= n
[

n

k

]

+
[

n

k−1

]

.

(m+ 1)(an−1, m − an−1, m+1)

= (m+ 1)
( 1

m!

m
∑

i=0

(−1)i
[

m+ 1
i+ 1

]

Bn+i−1(1)−
1

(m+ 1)!

m+1
∑

i=0

(−1)i
[

m+ 2
i+ 1

]

Bn+i−1(1)
)

=
1

m!

m+1
∑

i=0

(−1)i
(

(m+ 1)

[

m+ 1
i+ 1

]

−

[

m+ 2
i+ 1

]

)

Bn+i−1(1)

=
1

m!

m+1
∑

i=0

(−1)i+1

[

m+ 1
i

]

Bn+i−1(1)

= an, m,
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where we have used the fact that
[

m+1
0

]

= 0.

Next, to show that the initial sequence a0, m = 1/(m + 1), we use an expression that
can be found in Kaneko [3]. Let

{

n

k

}

be the Stirling numbers of the second kind (Sloane’s
A008277, cf. [2], Ch. 6.1). Then

Bn(1) =
n
∑

i=0

(−1)ii!

i+ 1

{

n+ 1
i+ 1

}

, n ≥ 0,

By the well known inversion formula (cf. [2], Ch. 6.1),

n
∑

k=m

[

n
k

]{

k
m

}

(−1)n−k =

{

1, m = n

0, m 6= n
,

we can compute what we want easily.

(m+ 1)a0, m =
m+ 1

m!

m
∑

i=0

(−1)i
[

m+ 1
i+ 1

]

Bi(1)

=
m+ 1

m!

m
∑

k=0

k!(−1)k

k + 1

m
∑

i=k

(−1)i
[

m+ 1
i+ 1

]{

i+ 1
k + 1

}

=
(m+ 1)(−1)m

m!

m
∑

k=0

k!(−1)k

k + 1

m
∑

i=k

(−1)m−i

[

m+ 1
i+ 1

]{

i+ 1
k + 1

}

= 1

From the recursive rule (1) and initial values a0, m, the proof of this proposition is done and
we have an explicit expression of an, m.

3 Hyper-sum polynomials

Now we shall consider “hyper-sums” of powers of integers, namely sums of power sums.
Let P

(0)
k (n) =

∑n

i=1 i
k, P

(1)
k (n) =

∑n

i=1 P
(0)
k (i), P

(2)
k (n) =

∑n

i=1 P
(1)
k (i), . . . , and P

(m)
k (n) =

∑n

i=1 P
(m−1)
k (i), with k and n positive integers. P

(m)
k (n) is a (k+m+1)-th degree polynomial

in n and P
(0)
k (n) is the ordinary power sum 1k+2k+3k+ · · ·+nk. Let ck, m be the coefficient

of the first-degree term in P
(m)
k (n).

Since the formulae for P
(0)
k (n) have been investigated for a long time and abundant methods

of determining them have been developed, we can use some of them. Here we choose the
formula including the Stirling numbers of the second kind, which is for instance seen in the
paper of Srivastava, Joshi and Bisht [4].

P
(0)
k (n) =

k
∑

i=1

i!

(

n+ 1

i+ 1

){

k
i

}

, k ∈ N
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where the binomial coefficient
(

n+1
i+1

)

is taken to be zero for n < i. Here we use the well
known identity (cf. [2], Ch. 5.1),

n
∑

k=0

(

k

m

)

=

(

n+ 1

m+ 1

)

,

where the binomial coefficient
(

k

m

)

is zero for k < m. This yields

N
∑

n=0

(

n+ 1

i+ 1

)

=
N
∑

n=i

(

n+ 1

i+ 1

)

=
N+1
∑

n=i+1

(

n

i+ 1

)

=

(

N + 2

i+ 2

)

.

So we can get easily

P
(1)
k (n) =

k
∑

i=1

i!

(

n+ 2

i+ 2

){

k
i

}

, k ∈ N.

Thus, by means of the successive computations, we arrive at

P
(m)
k (n) =

k
∑

i=1

i!

(

n+m+ 1

i+m+ 1

){

k
i

}

, k ∈ N.

From the fact that
(

n+m+1
i+m+1

)

has the factor n for i ≥ 1, P
(m)
k (n) is divisible by n. Therefore,

to find ck, m, we shall use the following relation.

ck, m =
P

(m)
k (n)

n

∣

∣

∣

n=0

Since

1

n

(

n+m

k +m

)

∣

∣

∣

n=0
=

m!(k − 1)!(−1)k−1

(k +m)!
.

We obtain

ck, m =
k
∑

i=1

(m+ 1)!(i− 1)!i!(−1)i−1

(i+m+ 1)!

{

k
i

}

, k ∈ N. (3)

Now only c0, m has been left for us. But it is not difficult to see it, because the identity

P
(1)
0 (n) = P

(0)
1 (n) =

∑n

i=1 i yields P
(m)
0 (n) = P

(m−1)
1 (n) immediately. Thus we have c0, m =

c1, m−1 = 1/(m+1). By combining these consequences, we can state the following proposition.

Proposition 2.

ck, m =























1

m+ 1
, k = 0

k
∑

i=1

(m+ 1)!(i− 1)!i!(−1)i−1

(i+m+ 1)!

{

k

i

}

, k ≥ 1
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4 Equality between an,m and cn,m

As one of the important consequences in this essay, let us see the equality between an, m and
cn, m. To do this, we shall see the recurrence relation whom cn, m satisfies.

Lemma 1.

cn, m = (m+ 1)(cn−1, m − cn−1, m+1), n ≥ 1

Proof. For the initial case n = 1, by proposition 2 we have c0, m = 1/(m + 1) and c1, m =
1/(m+ 2) without difficulty. So we can confirm that c1, m = (m+ 1)(c0, m − c0, m+1) easily.

For the case n ≥ 2, we use the well known recurrence relation
{

n

k

}

= k
{

n−1
k

}

+
{

n−1
k−1

}

.

cn, m =
n
∑

i=1

(m+ 1)!(i− 1)!i!(−1)i−1

(i+m+ 1)!

{

n
i

}

=
n
∑

i=1

(m+ 1)!(i− 1)!i!(−1)i−1

(i+m+ 1)!

(

i

{

n− 1
i

}

+

{

n− 1
i− 1

}

)

=
n−1
∑

i=1

(m+ 1)!i!i!(−1)i−1

(i+m+ 1)!

{

n− 1
i

}

−

n−1
∑

i=1

(m+ 1)!i!(i+ 1)!(−1)i−1

(i+m+ 2)!

{

n− 1
i

}

=
n−1
∑

i=1

(m+ 1)!i!i!(−1)i−1

(i+m+ 1)!
·

m+ 1

i+m+ 2

{

n− 1
i

}

On the other hand,

(m+ 1)(cn−1, m − cn−1, m+1)

= (m+ 1)
(

n−1
∑

i=1

(m+ 1)!(i− 1)!i!(−1)i−1

(i+m+ 1)!

{

n− 1
i

}

−

n−1
∑

i=1

(m+ 2)!(i− 1)!i!(−1)i−1

(i+m+ 2)!

{

n− 1
i

}

)

= (m+ 1)
(

n−1
∑

i=1

(m+ 1)!(i− 1)!i!(−1)i−1

(i+m+ 1)!
·

i

i+m+ 2

{

n− 1
i

}

)

=
n−1
∑

i=1

(m+ 1)!i!i!(−1)i−1

(i+m+ 1)!
·

m+ 1

i+m+ 2

{

n− 1
i

}

.

Thus this lemma and the fact c0, m = 1/(m+ 1) yield the next consequence immediately.

Proposition 3.

cn, m = an, m.

Corollary 1.

1

m!

m
∑

i=0

(−1)i
[

m+ 1
i+ 1

]

Bn+i(1) =
n
∑

i=1

(m+ 1)!(i− 1)!i!(−1)i−1

(i+m+ 1)!

{

n
i

}

, n ∈ N.

Proof. It is clear from (2) and (3).

5



5 Acknowledgements

I should like to thank the referees for several comments and suggestions.

References

[1] K. W. Chen, Algorithms for Bernoulli numbers and Euler numbers, Article 01.1.6, J.
Integer. Seq 4 (2001), 1–7.

[2] R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics , Addison-Wesley, 1989.

[3] M. Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, Article 00.2.9, J.
Integer. Seq 3 (2000), 1–6.

[4] H. M. Srivastava, J. M. C. Joshi and C. S. Bisht, Fractional calculus and the sum of
powers of natural numbers, Stud. Appl. Math. 85 (1991), 183–193.

2000 Mathematics Subject Classification: Primary 11Y55; Secondary 11B68 .

Keywords: Bernoulli numbers, Stirling numbers, power sums.

(Concerned with sequences A008275 and A008277.)

Received January 5 2005; revised version received March 9 2005; April 1 2005; April 29 2005.
Published in Journal of Integer Sequences, May 15 2005.

Return to Journal of Integer Sequences home page.

6


