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Abstract

In this note, we study intimate relations among the Newton, Fermat and exactly

realizable sequences, which are derived from Newton’s identities, Fermat’s congruence

identities, and numbers of periodic points for dynamical systems, respectively.

1 Introduction

Consider a set S of all sequences with complex numbers, let I be the subset of S consisting
of sequences containing only integers, and let I+ be the subset of I containing only sequences
with nonnegative integers. We shall define two operators

N : S → S and F : S → S,

1

mailto:mabsdu@sinica.edu.tw
mailto:shunag@math.ncue.edu.tw
mailto:mcli@math.ncue.edu.tw


called Newton and Fermat operators, and we call each element of N(S) a Newton sequence
and each element of F (S) a Fermat sequence; this terminology is motivated by Newton iden-
tities and by Fermat’s Little Theorem, details of which are given below. The key questions
investigated in this note are as follows: What is N(I+)? What are N(I) and F (I)? What
are the relations between various Newton and Fermat sequences?

In Theorem 2, we observe that N(I) = F (I); this was earlier obtained by us in [4] but
here another proof is provided due to D. Zagier.

Further, we investigate sequences attached to some maps and their period-n points. Let
M denote a set of some maps which will be specialized later. We shall construct a natural
operator E : M → I+ and call each element of E(M) an exactly realizable sequence.

In Theorem 3, we show that E(M) = F (I+) ⊂ N(I) and for any {an} ∈ E(M), we
construct a formula for {cn} ∈ I such that N({cn}) = {an}. In Theorem 4, we show that
N(I+) ⊂ E(M) and N(I) is equal to the set of term-by-term differences of two elements in
E(M). We also investigate when a Newton sequence is an exactly realizable sequence in a
special case.

2 Newton’s Identities

In this note, we work entirely with sequences in C, but one could work with more general
fields. In particular, Newton’s identities below are valid in any field.

Newton’s identities were first stated by Newton in the 17th century. Since then there
have appeared many proofs, including recent articles [8] and [9]. For reader’s convenience,
we give a simple proof using formal power series based on [1, p. 212]; also refer to [3].

Theorem 1 (Newton’s identities). Let xk −∑k−1
j=0 ck−jx

j be a polynomial in C[x] with

zeros λj for 1 ≤ j ≤ k and let an =
∑k

j=1 λ
n
j for n ≥ 1 and cn = 0 for n > k. Then

an =
∑n−1

j=1 an−jcj + ncn for all n ≥ 1.

Proof. By writing xk −∑k−1
j=0 ck−jx

j =
∏k

j=1(x − λj) and replacing x by 1/x, we obtain

1−∑k
j=1 cjx

j =
∏k

j=1(1− λjx). Then the formal power series

∞
∑

n=1

anx
n =

∞
∑

n=1

( k
∑

j=1

λn
j

)

xn =
k
∑

j=1

( ∞
∑

n=1

(λjx)
n

)

=
k
∑

j=1

λjx

1− λjx

= −x
d
dx

(

∏k
j=1(1− λjx)

)

∏k
j=1(1− λjx)

= −x
d
dx

(

1−
∑k

j=1 cjx
j

)

1−∑k
j=1 cjxj

=

∑k
j=1 jcjx

j

1−
∑k

j=1 cjxj

and hence
∑∞

n=1 anx
n = (

∑∞
n=1 anx

n)(
∑k

j=1 cjx
j) +

∑k
j=1 jcjx

j. By comparing coefficients

and the assumption cj = 0 for j > k, we have an =
∑n−1

j=1 an−jcj + ncn for all n ≥ 1.
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Based on Newton’s identities, it is natural to give the following definition: for a se-
quence {cn} in C, the Newton sequence generated by {cn} is defined to be {an} by an =
∑n−1

j=1 an−jcj + ncn inductively for n ≥ 1. In this case, we define the Newton operator N by
N({cn}) = {an}.
Fermat’s little theorem states that given an integer a, we have that p|ap−a for all primes

p. In order to state its generalization, we use the following terminology: for a sequence
{bn} in C, the Fermat sequence generated by {bn} is defined to be {an} by an =

∑

m|n mbm

for n ≥ 1; in this case, we define the Fermat operator F by F ({bn}) = {an}. If {an} is
an integral Fermat sequence generated by {bn} and if p is any prime, then pbp = ap − a
and hence bp ∈ Z; this observation inspires the name Fermat Sequence. By the Möbius
inversion formula (refer to [10]), we have that if {an} is the Fermat sequence generated by
{bn}, then nbn =

∑

m|n µ(m)an/m and if, in addition, {bn} is an integral sequence, then

n|∑m|n µ(m)an/m, where µ is the Möbius function, i.e., µ(1) = 1, µ(m) = (−1)k if m is

a product of k distinct prime numbers, and µ(m) = 0 otherwise. (In [4], we called {an} a
generalized Fermat sequence if an is an integer and n|∑m|n µ(m)an/m for every n ≥ 1; now

it is the Fermat sequence generated by an integral sequence.)
Fermat sequences of the form {an} are related to both free Lie algebras and the number

of irreducible polynomials over a given finite field. Indeed, let X be a finite set of cardinality
a and let LX be a free Lie algebra on X over some field F. For any given n ∈ N let Ln

X be
its nth homogeneous part and let `a(n) be the rank of Ln

X . Then

an =
∑

m|n

m`a(m) for all n ∈ N

which shows that {an} is the Fermat sequence generated by {`a(n)} (See [12] and [7, Section
4 of Chapter 4]). Further, let Fq be a finite field with q elements and let Nq(n) be the number
of monic irreducible polynomials in Fq[X] of degree n. Then

qn =
∑

m|n

mNq(m).

Hence {qn} is the Fermat sequence generated by {Nq(n)}.
In [4], we show that a sequence is a Newton sequence generated by integers if and only

if it is a Fermat sequence generated by integers, by using symbolic dynamics. Here we give
another proof using formal power series pointed out by Zagier [13] to us; also refer to [2].

Theorem 2. Let {an}, {bn} and {cn} be sequences in C. Then

1. {an} is the Newton sequence generated by {cn} if and only if

exp

(

−
∞
∑

n=1

an
xn

n

)

= 1−
∞
∑

n=1

cnx
n as formal power series;

2. {an} is the Fermat sequence generated by {bn} if and only if

exp

(

−
∞
∑

n=1

an
xn

n

)

=
∞
∏

n=1

(1− xn)bn as formal power series;
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3. {an} is the Newton sequence generated by an integral sequence if and only if {an} is
the Fermat sequence generated by an integral sequence. That is, N(I) = F (I), where
I is the set of all integral sequences.

Proof. For convenience, we define formal power seriesA(x) =
∑∞

n=1 anx
n, C(x) =

∑∞
n=1 cnx

n,
F (x) = exp (−∑∞

n=1 anx
n/n), and H(x) =

∏∞
m=1(1− xm)bm .

We prove item 1 as follows. By comparing coefficients and using the trivial fact A(x) =
−x d

dx
logF (x), we have that an =

∑n−1
j=1 an−jcj + ncn for all n ≥ 1 ⇔ A(x) = C(x)A(x) +

xC ′(x) ⇔ A(x) = x C′(x)
1−C(x)

= −x d
dx

log(1 − C(x)) ⇔ F (x) = 1 − C(x). (Observe that

1 = F (0) = 1− C(0)).
We prove item 2 as follows. By rearranging terms of xn and using the fact that H(x) =

exp (−∑∞
m=1 bm

∑∞
r=1 x

rm/r), we have that an =
∑

m|n mbm for all n ≥ 1 ⇔ F (x) =

exp (−∑∞
m=1 bm

∑∞
r=1 x

rm/r) = H(x).
¿From the proof of items 1 and 2, {bn} and {cn} are both uniquely determined by {an}

such that {an} is the Newton sequence generated by {cn} and also the Fermat sequence
generated by {bn}. Then 1−

∑∞
n=1 cnx

n = F (x) =
∏∞

n=1(1−xn)bn . Therefore, item 3 follows
since cn ∈ Z for all n ≥ 1 ⇔ F (x) ∈ 1 + xZ[x] ⇔ bn ∈ Z for all n ≥ 1.

3 Connections with Dynamical Systems

In the following, we make a connection between the above number theoretical result with
dynamical systems. Let f be a map from a set S into itself. For n ≥ 1, let f n denote
the composition of f with itself n times. A point x ∈ S is called a period-n point for f if
fn(x) = x and f j(x) 6= x for 1 ≤ j ≤ n−1. Let Pern(f) denote the set of all period-n points
for f and let #Pern(f) denote the cardinal number of Pern(f) if Pern(f) is finite. Let a be
any period-n point for f . Then a, f(a), . . . , fn−1(a) are distinct period-n points and hence
n|#Pern(f). Since #Per1(f

n) =
∑

m|n #Perm(f), the sequence {#Per1(f
n)} is the Fermat

sequence generated by the sequence {#Pern(f)/n}.
Following [5], we say that a nonnegative integral sequence {an} is exactly realizable if

there is a map f from a set into itself such that #Per1(f
n) = an for all n ≥ 1; in this case,

we write E(f) = {an}. Let M be the set of maps f for which Pern(f) is nonempty and
finite, and let I+ be the set of all nonnegative integral sequences. Then E is an operator
from M to I+. Exact realizability can be characterized as follows.

Theorem 3. Let {an} be a sequence in C. Then the following three items are equivalent:

1. {an} is exactly realizable;

2. there exists a nonnegative integral sequence {bn} such that {an} is the Fermat sequence
generated by {bn}, that is, F ({bn}) = {an};

3. there exists a nonnegative integral sequence {dn} such that {an} is the Newton sequence
generated by an integral sequence {cn} with for all n ≥ 1,

cn =
∑

k1+2k2+···+nkn=n

(−1)k1+k2+···+kn+1

(

d1

k1

)(

d2

k2

)

· · ·
(

dn

kn

)
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where

(

p
q

)

denotes a binomial coefficient; that is, N({cn}) = {an}.

Moreover, if the above items hold then bn = dn for all n ≥ 1.

Proof. (1 ⇒ 2) Let f be a function such that #Per1(f
n) = an for all n ≥ 1 and let

bn = #Pern(f)/n for all n ≥ 1. Then {bn} is nonnegative and integral, and an =
∑

m|n mbm

for all n ≥ 1.
(1 ⇐ 2) By permutation, we can define f : N → N by that the first b1 integers are

period-1 points, the next 2b2 integers are period-2 points, the next 3b3 are period-3 points,
and so on. Then mbm = #Perm(f) for all m ≥ 1 and hence an =

∑

m|n mbm = #Per1(f
n)

for all n ≥ 1. Therefore, {an} is exactly realizable.
(2 ⇔ 3) By using item 3 of Theorem 2 and letting dn = bn for all n ≥ 1, it remains to

verify the expressions of cn’s. From items 1 and 2 of Theorem 2, we have 1−
∑∞

n=1 cnx
n =

∏∞
n=1(1− xn)dn . Equating the coefficients of xn on both sides, we obtain the desired result.
The last statement of the theorem is a by-product from the proof of (2⇔ 3).

Let {an} be the Newton sequence generated by {cn}. For exact realizability of {an}, it is
not necessary that all of cn’s are nonnegative. For example, the exactly realizable sequence
{2, 2, 2, · · · }, which is derived from a map with only two period-1 points and no other periodic
points, is the Newton sequence generated by {cn} with c1 = 2, c2 = −1 and cn = 0 for n ≥ 3.
Nevertheless, the nonnegativeness of all cn’s is sufficient for exact realizability of {an} as
follows.

Theorem 4. The following properties hold.

1. Every Newton sequence generated by a nonnegative integral sequence is exactly realiz-

able, that is, N(I+) ⊂ E(M).

2. Every Newton sequence generated by an integral sequence is a term-by-term difference

of two exactly realizable sequences, and vice versa.

Before proceeding with the proof, we recall some basic definitions in symbolic dynamics;
refer to [6, 11]. A graph G consists of a countable (resp. finite) set S of states together with
a finite set E of edges. Each edge e ∈ E has initial state i(e) and terminal state t(e). Let
A = [AIJ ] be a countable (resp. finite) matrix with nonnegative integer entries. The graph
of A is the graph GA with state set S and with AIJ distinct edges from edge set E with
initial state I and terminal state J . The edge shift space ΣA is the space of sequences of
edges from E specified by

ΣA = {e0e1e2 · · · |ej ∈ E and t(ej) = i(ej+1) for all integers j ≥ 0}.

The shift map σA : ΣA → ΣA induced by A is defined to be

σA(e0e1e2e3 · · · ) = e1e2e3 · · · .

Now we prove Theorem 4.
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Proof. First we prove item 1. Let {an} be the Newton sequence generated by a nonnegative
integral sequence {cn}. Define a countable matrix A = [AIJ ] with countable states S = N
by AIJ to be cJ if I = 1 and J ≥ 1, one if I = J + 1 and J ≥ 1, and zero otherwise. Let σA

be the shift map induced by A. Then an = trace(An) = #Per1(σ
n
A) for all n ≥ 1. Therefore

{an} is exactly realizable.
Next we prove the forward part of item 2. Let {an} be the Newton sequence generated

by an integral sequence {cn}. Setting bn = 1
n

∑

m|n µ(m)an/m for all n ≥ 1, Theorem 2

implies that {an} is a Fermat sequence generated by {bn} and each bn is an integer. Let
b+n = max(bn, 0) and b−

n = max(−bn, 0) for n ≥ 1. Then b+n ≥ 0, b−
n ≥ 0 and bn = b+n − b−

n

for all n ≥ 1. Setting a+
n =

∑

m|n mb+m and a−
n =

∑

m|n mb−
m, it follows from Theorem 3

that {a+
n } and {a−

n } are both exactly realizable sequences. Moreover, an =
∑

m|n mbm =
∑

m|n m(b+m − b−
m) = a+

n − a−
n for all n ≥ 1.

Finally we prove the backward part of item 2. By Theorem 3, we have that every exactly
realizable sequence is the Fermat sequence generated by a nonnegative integral sequence. It
is obvious that the term-by-term difference of two Fermat sequences is a Fermat sequence.
These facts, together with item 3 of Theorem 2, imply the desired result.

4 Formal Power Series

Combining the theorems above, we have the following result on formal power series.

Corollary 5. Let {bn} and {cn} be two sequences in C such that 1−∑∞
n=1 cnx

n =
∏∞

n=1(1−
xn)bn as formal power series. If {cn} is a nonnegative integral sequence then so is {bn}.

Proof. Let {an} be the Newton sequence generated by {cn}. By items 1 and 2 of Theorem 2,
the sequence {an} is the Fermat sequence generated by {bn}. By item 1 of Theorem 4, the
sequence {an} is exactly realizable such that an = #Per1(f

n) for some map f . Therefore,
we have that bn =

∑

m|n µ(m)an/m = #Pern(f)/n ≥ 0 for all n ≥ 1.

Finally, we give a criterion of exact realizability for the Newton sequence generated by
{cn} with cn = 0 for all n ≥ 3.

Corollary 6. Let {an} be the Newton sequence generated by a sequence {cn} with cn = 0
for all n ≥ 3. Then {an} is exactly realizable if and only if c1 and c2 are both integers with
c1 ≥ 0 and c2 ≥ −c21/4.

Proof. First we prove the “if” part. If c1 is even, we define a matrix A =

[

c1/2 c21/4 + c2
1 c1/2

]

.

Then A is a nonnegative integral matrix and an = trace(An) = #Per1(σ
n
A), where σA is the

shift map induced by A (see the proof of Theorem 4 with two states). Therefore, {an} is
exactly realizable. Similarly, if c1 is odd, then c2 ≥ −c21/4+1/4 because c2 is an integer, and

hence {an} is exactly realizable with respect to σA, where A =

[

(c1 + 1)/2 (c21 − 1)/4 + c2
1 (c1 − 1)/2

]

.

Next we prove the “only if” part. Since {an} is exactly realizable, c1 = a1 ≥ 0 is an
integer, c2 = (a2 − a1)/2− c1(c1 − 1)/2 is an integer, and an = trace(An) ≥ 0 for all n ≥ 1,

6



where A =

[

c1/2 c21/4 + c2
1 c1/2

]

. Suppose, on the contrary, that c2 = −c21/4 − α for some

α > 0. Let B =

[

c1/2 −√α√
α c1/2

]

. Then B has the same characteristic polynomial as A and

hence an = trace(An) = trace(Bn) for all n ≥ 1. Let r =
√

c21/4 + α and pick 0 < θ ≤ π/2 so

that r cos θ = c1/2 and r sin θ =
√
α. Then Bn =

[

rn cosnθ −rn sinnθ
rn sinnθ rn cosnθ

]

and an = 2rn cosnθ

for all n ≥ 1. This contradicts that an ≥ 0 for all n ≥ 1. Therefore, c2 ≥ −c21/4.
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