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Abstract

We study sequences of definite integrals. Some of them provide closed forms in-
volving factorials and/or double factorials. Other examples are associated with either
sequences or pairs of sequences of rational numbers, for which summations are found.

1 Introduction.

The study of sequences of either definite or improper integrals has connections with various
fields, such as combinatorics (see [}, [A]), infinite series (see [[]), and others. In this paper, we
study sequences of integrals, depending mostly on one parameter, sometimes on two param-
eters. The method generally used is a telescopic method (see [[, p. 579]); when a recurrence
relation based on multiplication by a homographic function exists, the implementation of
the method is easy. Otherwise it can be very hard, sometimes impossible.

In Section [], improper integrals depending either on one or two parameters (that are
non-negative integers) are considered, where the integrand involves a logarithm. In these
examples, various situations are described (different roles and influences of the parameters,
existence or non-existence of a closed expression for the general term of the sequence, etc.).

In Section [, three sequences of integrals are studied; the main one is the sum of a
sequence of rational numbers and a sequence of rational multiples of v/3. Then formulas for
related integrals are derived.
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2 Logarithmic integrals with a parameter.

For every natural number n, we define the improper integral

I, = /01 2 (In2)" d. (1)

As

lim 2? (lnx)? =0
z—0*t

holds for any two positive integers p and ¢, we can work with I,, as if it is a definite integral,
i.e., by writing “ordinary” expressions for the integrals and not writing limits for A arbitrarily
close to 0 of f/\l z (Inz)" dx.

We take u(z) = (Inx)" and v(z) = 2?/2 in order to perform an integration by parts; we

have )

1 1
I, = [—x2 (In x)”} _n / r (Inz)" ! dr,
2 2/,

0
thus,

By telescoping, we have

n n n—1 o
I =5k = (-3) (‘T) Ly =+ =(=1)" = I

A straightforward computation provides Iy = 1/2, and we have proved the following propo-
sition:

Proposition 2.1 For any natural number n,

! n . n!
/Oa:(lnx) dr = (—1) STISE

Note that the sequence whose general term is (—1)" 2"T'[, provides an integral repre-
sentation of factorials.
Now consider the sequence of integrals defined by

1
I, = / z (Inz)"t/2 de. (3)
0

The natural logarithm is a negative function over the interval (0, 1), thus the value of this
integral, if it exists, is a pure imaginary complex number. Actually, the square root function
is a multi-valued function with two branches. Each branch is analytic, thus an integral of
the form

1
/ z(Inz)""/2 dxr  where £ #0,



is path-independent (in fact, as x is a positive real number, Inz < 0 and the involved path
can be a segment on the y—axis), when computed along a path which does not intersect the
standard branch cut (see [[(]]). Moreover, for any non-negative integer n, we have

lim = (Inz)"*/2 = 0.
z—07F

Therefore the given integral I, is well-defined (we use a method as in [[J, p. 362]).
In a manner similar to the method used above, we obtain the following recurrence relation:

1 1 2 1
In - _5 <n+ _> In—l = - nt In—l‘ (4>

2 4

We need now to compute the first integral of the sequence:

1 /7
[0:/ .:E(lnzv)l/zdzvzZ s
0 8

We recall the definition of the double factorial of an odd number (see Sloane’s sequence

[A00TTT] and [H):
vneN, 2n—1)=1-3.5----. (2n—1),

and for an even number
VneN, 2n)l!=2-4-6----- (2n).
Therefore the following formula holds:
Proposition 2.2 For any natural number n:

1) nll

' ( o
/0 T <1nx)n+1/2 dr = W V2.
Now let p and ¢ be non-negative integers. We define
1
I, :/ 2P (Inx)? du. (5)
0

We take u(x) = (Inx)? and v(z) = 2P /(p + 1) in order to perform an integration by parts
and get

1 Loy 1
g = ﬁxpﬂ (In x)q] 1 — 2P (In2)? ! du,
b 0 b 0o T
=0
ie.,
4q
Ipg=— Pt Ipg-1- (6)
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Now we have

=— — 1 .,
D, p—i—l p,q—1

As I,o=1/(p+ 1), we have finally

Proposition 2.3 For any pair (p,q) of natural numbers,

RV Gt VL
[ o e = =T

This example of a parametric integral depending on two parameters that are non-negative
integers, together with another integral described in [[], shows the great difference between
the influences of the parameters: the whole computation is concentrated on one parameter
only, and the other one is “passive”. Nevertheless, the final result is depends on both
parameters.

Remark 2.1 Equation (£3) is equivalent to

1
q'= (=17 (p+1)r! / 2P (Inz)? dx.
0
This integral form for a factorial is surprising, as it contains a parameter without influence.

In the examples studied above, the reason for the computation of a closed form to be so
easy lies in the fact that, when performing the integration by parts, the integrated part of
the result is equal to 0. This provides a recurrence relation for the sequence (1,,) of the form

I, = f(n) In—la (7>

where f is a homographic function of n with integer coefficients. Other examples of this
kind have been studied in [[l, I, f]. When this situation does not occur, computations can
be more complicated, as the next example shows.

For every natural number n, we define the integral

I, = /1 "2 (nz)" da. (8)

We have



Choosing as above u(z) = (Inx)" and v(z) = 2%/2, an integration by parts yields

1 ¢ c
I, = {—xQ (In a:)”] - ﬁ/ r (Inz)" ! dr
2 2/,

1

and leads to the following recurrence relation:

1 n
Li=-e- "1, 9
5¢ — 5 I (9)
The presence of a non-zero integrated term makes the work harder than in previous
examples. We have

1 n (1 n—1
L=-e2=2 (22— .
2 72 (2e > 2)
1, n n(n —1)
ey .
3¢ (13 4 ?
1, n nn—1) (1, n-—2
= = 1——) a - n—
2 ( 2 4 <2e 2 P
1, n  n(n-—1) n(n —1)(n — 2)
. _n - I
2 (1 2 1 ) g i
1, n  n(n-—1) 4 on! (=1)" n!
= - 1—— " 1
26( A SR 7= I el
1, n nn—-1 nn-1)(n—2) noq 1! n!
—2° (1_5 92 93 T am R
|
n+1 n:
+(_1) on+1

(A* is the number of arrangements without repetition of n elements by k). Hence, the
following holds:

Proposition 2.4

¢ . 1 = Ak iy Nl
/1 x (Inz)" dx = 3 2y (—1)F 5 + (=) TESE
k=0



3 Three related parametric rational integrals

For n a positive integer, we define the integrals

1

1

I, /0 GRS dz, (10)
! T

In /0 (22 + 2+ 1)" 4, (11)
1 :L'2

K, :/ e (12)

0o @tz + 1)

3.1 First integral: complete computations

As in the previous examples, we wish to find a recurrence relation for the sequence (7,,), then
a closed form for the general term, if possible. We perform an integration by parts; let

1
u(z) = Eratl)r and  v(x) ==z,

whence
—n(2z + 1)

(513'2 + x + 1>n+1

1 1
x x(2z +1)
I,=|———F——— d
[(m2+x+1)”}0+n/0 (@ +a+ )t

1 /1 x(2z +1)
3n 0 (33'2 +x+ 1>n+1

=T,

and  v'(z)=1.

u'(z) =

It follows that

In order to compute K,,, we decompose the integrand into partial fractions:

Ve € R r(2x + 1) x 2 N 2
T = — —
T2+ 1)t (22 4+z+ 1"t (224 + 1) (224 x4+ 1)
1 2+ 1 3 1 . 2
2 (24t 2 (24 p+ D)t (24 D)
Thus,
1 [ 1 1 b3
I=——|———5—"7""—77| — = I, 21,
2 [ n (:z:Q—i—x—i—l)”}O g fnt T

1 1
T

By re-arranging the terms, we obtain the following relation of recurrence:

1 1 2(2n — 1)
Iy = — S e Ay 13
3 (3%1 ) R (13)
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We first compute the integral I;:

| ! 1 ! 1
h:/h7————d$:/)———7——dx:/) —— du.
R o 33 @)’ ]
Using the substitution ¢ = (2/v/3)(z + 1/2), we obtain:

V3
2 1 2 1 V3
[ = — —— dt = — [ arctan /3 — arctan —) = . 14
! ﬁ/wgtzﬂ \/g( )9 (14)

From Equations ([[3J) and ([4) follows that I, is given by a relation of the form

N9V
=~

I, = a, +b,mV3 (15)

where a,, and b,, are rational numbers. We study separately the sequences (a,) and (b,).
Consider b,, first:

2(2n — 1) 2 2n-1
bn :71771:_' bn
1 3n 3 n
N? 2n—-1 2n—3
i B : : bn—l
3 n n—1
/2\° 2m-1 2n-3 2n—5,
- \3 n n—1 n—2 "2

B é " @n—men—mgn—@.”&1b
_(§> . nin—1)(n—-2)...2-1 L

Inserting suitable factors into the numerator, and dividing out by the same factors, we obtain
a closed factorial form for b,,,1:

(2\" (2n)! 1 (2n)! 1 (2n)!
= (5) * FoE =B G = 1o

(oza?)); B (2: ) |

The interested reader will find concrete occurences of these numbers (special paths in graphs,
etc.) in Sloane’s encylopedia, sequence [R000987].
Another representation can be given for the sequence (b, ), using the double factorial (see

Sloane’s encyclopedia, and [[J]]). We have

Note that

9n=1 (2 — 3)II
VneN, b, = T T (17)
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A closed form for a, is harder to derive. From Equation ([J), we derive the following
recurrence relation for a,:

1 /1 2(2n — 1)
S L G 18
nt1 =3, (3n1 )+ 3n ¢ (18)

By Equation ([4), a; = 0, whence the sequence (a,,) is well defined by the above relation.
Let’s now use a telescopic process:

(1)« 2220,

()25 [ () Ao
()3 Bt () ) g
(5 -1) % ) (57

() P e () S

I[terations are needed until a, is reached, because ay = a; = 0. Finally, the following formula
is derived:

11 okt jqn ek (20— 1)(2n—3)...(2n — 2k +3)
an+1_3n<3”_1 1)+;2 (3 37 nn—1)n-2)...(n—k+1)

Apy1 =

The rational fraction on the right can be turned into a closed factorial formula. Shifting the
index n + 1 to n, we obtain

1 1 12 e =) ((n—k =11
"3 —1) (3n—2_1>+§z(3 "3 (2n—2k:—1)!< n—1)! ) (19)

k=2

A formula involving double factorials looks a little more compact (see Sloane’s sequence

[RO0TTTY and [{):

1 1 1S it o (20 =3) (n—k—1)!
T3 —1) (3%-2 _1> 3 ;2 (37 =37 (2n — 2k — D! (n — 1)1 (20)

In conclusion, we have

Proposition 3.1 For any non-negative integer n,

1
/ (L:an—kbnwx/g,
0

2?2 +x+1)"
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with

1 1 1= o o 2n=3) (n—k—1)
T 3m 1) (3%2_1)+_Z2k(3 "= (2n — 2k — 1)l (n — 1)!

and
- 2"t (2n — 3)!!
"3+l (n—1)°

3.2 Extensions

From the results above, the two related parametric integrals J, and K, can be computed:
We have

1
1+ 2x

In+2Jn:/ —— dx

o @Fe+Dr

! 1 '
C1—-n (22 42+ 1) |

1 1
— —1),
1—n (3”_1 )

h= 55 L 5 (3:_1 _ 1> _ % L. (21)

An expression of J, as a function of n is obtained by substitution.
A closed form for K, is obtained by substitution, according to the following remark:

Yt r+a? ! 1
In+Jn+Kn:/ —dx:/ de = Iy 22
o (@+x+1)" o (2?+x+1)"! ' 22)

ie.,
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