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Abstract

Suppose A = {a(i, j)}, for i ≥ 0 and j ≥ 0, is the dispersion of a strictly increasing
sequence r = (r(0), r(1), r(2), . . .) of integers, where r(0) = 1 and infinitely many
postive integers are not terms of r. Let R be the set of such sequences, and define t

on R by tr(n) = a(0, n) for n ≥ 0. Let F be the subset of R consisting of sequences
r satisfying ttr = r. The set F is characterized in terms of ordered arrangements
of numbers i + jθ. For fixed i ≥ 0, the sequence a(i, j), for j ≥ 1, is the (i +
1)st partial complement of r. Central to the characterization of F is the role of the
families of figurate (or polygonal) number sequences and the centered polygonal number
sequences. Finally, it is conjectured that for every r in R, the iterates t(2m)r converge
to a sequence in F .

1 Introduction

Let N denote the set of positive integers. Suppose r = (r(0), r(1), r(2), . . .) is a strictly
increasing sequence of integers with r(0) = 1 and infinite complement in N. Let r∗ be the
sequence obtained by arranging in increasing order the complement of r. Let

a(0, 0) = 1, a(0, 1) = r∗(1),

and inductively,
a(0, j) = r∗(a(0, j − 1))
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for j ≥ 1. The sequence a(0, j), for j ≥ 1, is the 1st partial complement of r. For arbitrary
i ≥ 0, suppose that the sequence a(i, j) for j ≥ 0 is defined, and let a(i + 1, 0) be the least
number in N that is not a(h, j) for any (h, j) satisfying 0 ≤ h ≤ i and j ≥ 0. Define

a(i+ 1, j) = r∗(a(i+ 1, j − 1)) (1)

for j ≥ 1. In this inductive manner, an array A = {a(i, j)}, for i ≥ 0, j ≥ 0, is defined.
It is called the dispersion of r∗. (In [3], where the terms dispersion and interspersion are
introduced, the indexing is by i ≥ 1, j ≥ 1 instead of i ≥ 0, j ≥ 0.) For fixed i ≥ 0 and
variable j ≥ 1, the sequence a(i, j) is the (i+ 1)st partial complement of r.

To summarize, the dispersion A of the complement of r, henceforth denoted by A(r),
consists of first column r together with the terms of r∗ dispersed into partial complements;
row i of A(r) consists of first term r(i) followed by the (i + 1)st partial complement of r.
It is sometimes desirable to use a recurrence for a(i + 1, j) that refers directly to r. To
develop such a recurrence, for any strictly increasing sequence ρ in N, let #(ρ(n) ≤ m)
denote the number of n ≥ 1 satisfying ρ(n) ≤ m. Clearly, ρ(h) is the least m satisfying
#(ρ(n) ≤ m) = h. Now take ρ = r∗ and h = a(i, j) to see that

a(i, j + 1) = least m satisfying (#(r∗(n) ≤ m) = a(i, j)).
As #(r(n) ≤ m) + #(r∗(n) ≤ m) = m, we obtain

a(i, j + 1) = least m satisfying (m−#(r(n) ≤ m) = a(i, j))
= min{m : max{n : r(n) ≤ m} = a(i, j)−m+ 1}. (2)

This recurrence is especially useful in coding computer programs that generate dispersions.
Let R be the set of sequences r described in the first sentence. Let tr denote the first

partial complement of r, and let F be the family of sequences r for which ttr = t. A main
objective of this paper is to characterize F in terms of sequences associated with multisets
of the form

Sθ = {i+ jθ : i ≥ 0, j ≥ 0}, (3)

where θ is a positive real number. The numbers in Sθ are distinct if θ is irrational; otherwise,
write θ = c/d, where c and d are relatively prime positive integers. Then a number i + jθ
occurs more than once in Sθ if and only if i ≥ c, and in this case the representations of i+ jθ
are these:

i, i− c+ dθ, i− 2c+ 2dθ, · · · , i− bi/cc c+ bi/cc dθ.
In order to treat these as distinct objects, we represent each h+kθ as an ordered pair (h, k),
so that the representations of i+ jθ become

(i, 0), (i− c, d), (i− 2c, 2d), · · · , (i− bi/cc c, bi/cc d).

Define an order relation ≺ on the set {(i, j) : i ≥ 0, j ≥ 0} by

(i1, j1) ≺ (i2, j2) if i1 + j1θ < i2 + j2θ

(i1, j1) ≺ (i2, j2) if i1 + j1θ = i2 + j2θ and j1 < j2.
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We extend this definition to the case that θ is irrational, noting that the condition i1+ j1θ =
i2 + j2θ does not occur. Now for any real θ > 0, the rank array of θ is defined by

Aθ = {aθ(i, j) : i ≥ 0, j ≥ 0},
where

aθ(i, j) = rank of (j, i) under ≺ .

(Defining aθ(i, j) as the rank of (j, i) rather than that of (i, j) facilitates later developments,
such as equation (13) and connections with Farey sequences. For irrational θ, the condition
“rank of (j, i) under ≺” can be replaced by “rank of j+ iθ under [ordinary] <”; in this case,
rθ(n) is simply the rank of nθ among all the numbers h+ kθ.)

As an example, let c = 4 and d = 3. Then

(0, 0) ≺ (1, 0) ≺ (0, 1) ≺ (2, 0) ≺ (1, 1) ≺ (0, 2) ≺ (3, 0) ≺ (2, 1) ≺ (1, 2) ≺
(4, 0) ≺ (0, 3) ≺ (3, 1) ≺ (2, 2) ≺ (5, 0) ≺ (1, 3) ≺ (4, 1) ≺ (0, 4) ≺ (3, 2) ≺
(6, 0) ≺ (2, 3) ≺ (5, 1) ≺ (1, 4) ≺ (4, 2) ≺ (0, 5) ≺ (7, 0) ≺ (3, 3) ≺ (6, 1) ≺
(2, 4) ≺ (5, 2) ≺ (1, 5) ≺ (8, 0) ≺ (4, 3) ≺ (0, 6) ≺ · · ·

Numbering these from 1 to 33 shows that the rank array A4/3 starts like this:

1 2 4 7 10 14 19 25 31
3 5 8 12 16 21 27
6 9 13 18 23 29
11 15 20 26 32
17 22 28
24
33

Theorem 1.1 Suppose θ > 0. Then Aθ is an interspersion.

Proof: We shall show that each of the propositions (I1)-(I4) that define an interspersion
in [3] is satisfied:

(I1) The rows of Aθ comprise a partition of N, as N is the set of ranks of numbers in
Sθ, and these ranks are partitioned by the rows of Aθ.

(I2) Every row of Aθ is an increasing sequence, as (j, i) ≺ (j + 1, i) for all i ≥ 0, j ≥ 0.

(I3) Every column of Aθ is an increasing sequence, as (j, i) ≺ (j, i + 1) for all i ≥ 0,
j ≥ 0.

(I4) If (uj) and (vj) are distinct rows of Aθ and if p and q are indices for which up <
vq < up+1, then up+1 < vq+1 < up+2. That is, in the present context, if i 6= i′ and a(i, p) <
a(i′, q) < a(i, p+ 1), or equivalently,

(p, i) ≺ (q, i′) ≺ (p+ 1, i),

then
(p+ 1, i) ≺ (q + 1, i′) ≺ (p+ 2, i),

or equivalently, a(i, p+ 1) < a(i′, q + 1) < a(i, p+ 2). ¤
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Corollary 1.1 For i ≥ 0, let s be the sequence obtained by deleting the initial term of row
i of Aθ. Then s is the (i+ 1)st partial complement of column 0 of Aθ.

Proof: By Theorem 1 of [3], the array Aθ is a dispersion, and as shown in the proof in
[3],

a(i, j + 1) = t(a(i, j)),

where (t(k)) denotes the sequence of numbers, arranged in increasing order, in the set
N\{a(0, j) : j ≥ 0}, this set being the complement of column 0 of Aθ. ¤

Let rθ denote column 0 of Aθ. By Corollary 1, row 0 of Aθ is the sequence trθ, a property
to be used in the next proof.

Corollary 1.2 Suppose θ is a positive irrational number. Then trθ = r1/θ and ttrθ = rθ.

Proof: Referring to the array A1/θ, we have, for m ≥ 0 and n ≥ 0,

a1/θ(m,n) = (rank of m+ n/θ in S1/θ)

= (rank of mθ + n in Sθ)

= aθ(n,m).

That is, A1/θ is the transpose of Aθ. Consequently, A1/(1/θ) = Aθ, so that ttrθ = rθ. ¤

A dispersion {a(i, j)} is transposable if its transpose, {a(j, i)}, is a dispersion. According
to Corollary 3, the dispersions of A√

2 and A1/
√

2 are transposable; northwest corners of
these arrays are shown in Example 1 We shall see in section 3 that there are transposable
dispersions other than those given by the proof of Corollary 3.

Example 1: The arrays Aθ and A1/θ for θ =
√
2

1 2 4 7 10 . . . 1 3 6 11 17 . . .
3 5 8 12 16 . . . 2 5 9 15 22 . . .
6 9 13 18 23 . . . 4 8 13 20 28 . . .
11 15 20 26 32 . . . 7 12 18 26 35 . . .
17 22 28 35 42 . . . 10 16 23 32 42 . . .
...

...
...

...
...

. . .
...

...
...

...
...

. . .

Initial terms of tr can be written out from initial terms of r, for any r in R, by means of
a handly little algorithm. We use the sequence r = (1, 2, 4, 7, 10, . . .) of column 0 of A√

2 to
exemplify:
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Step 1. Write initial terms of the complement, r∗, with counting numbers
above:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 5 6 8 9 11 12 13 15 16 17 18 20 21

Step 2. Determine the chain 1 → 3 → 6 → 11 → 17 → · · · , as indicated by
the paired rectangles. These numbers form the sequence tr, alias row 0 of A√

2,
alias (after the initial 1) the 1st partial complement of r. (Note that repeating
the procedure starting with the pair (2, 5) yields the 2nd partial complement of
r, and so on.)

If θ ∈ N, then the sequences rθ and r1/θ, we shall prove in section 2, are closely related
to certain well-known sequences. We continue this introduction with an overview of those
sequences, with reference to indexing systems in [5] and [6]. Sequences of polygonal (or
figurate) numbers, typified by

P1 = (1, 3, 6, 10, 15, . . .) = triangular numbers (A000217 in [6], 253 in [5])

P2 = (1, 4, 9, 16, 25, . . .) = square numbers (A000290 in [6], 338 in [5])

P3 = (1, 5, 12, 22, 35, . . .) = pentagonal numbers (A000326 in [6], 339 in [5]),

are given for k ≥ 1 by

Pk(n) = k

(
n+ 1
2

)
+ n+ 1 (4)

for n ≥ 0. Sequences of central polygonal numbers,

Q1 = (1, 3, 7, 13, 21, . . .) = central polygonal numbers (A002061 in [6])

Q2 = (1, 4, 10, 19, 31, . . .) = central triangular numbers (A005448 in [6])

Q3 = (1, 5, 13, 25, 41, . . .) = central square numbers (A001844 in [6]),

are given for k ≥ 1 by

Qk(n) = (k + 1)

(
n+ 1
2

)
+ 1 (5)

for n ≥ 0, so that
Qk(n) = Pk+1(n)− n. (6)

The sequences Pk and Qk are easily expressed in terms of P1 and Q1:

Pk(n) = P1(n) + (k − 1)P1(n− 1),

Qk(n) = Q1(n) + (k − 1)P1(n− 1),

for k ≥ 1, n ≥ 1. For a colorful introduction to the geometry associated with the numbers
Pk and Qk, see [1, pp. 38-42]. Consider next the sequences

P̂1 = (1, 2, 4, 7, 11, . . .) = lazy caterer sequence (A000124 in [6], 386 in [5])

P̂2 = (1, 2, 3, 5, 7, . . .) = (A001401 in [6], 354 in [5])

P̂3 = (1, 2, 3, 4, 6, . . .) = (A008748 in [6])
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and

Q̂1 = (1, 2, 4, 6, 9, . . .) = quarter-squares sequence (A002620 in [6], 105 in [5])

Q̂2 = (1, 2, 3, 5, 7, . . .) = (A001840 in [6], 207 in [5])

Q̂3 = (1, 2, 3, 4, 6, . . .) = (A001972 in [6], 208 on [5]).

These typify families defined for k ≥ 1 by

P̂k(n) = P̂k(n− 1) +

⌊
n+ k − 1

k

⌋
, (7)

Q̂k(n) = Q̂k(n− 1) +

⌊
n+ k + 1

k + 1

⌋
, (8)

for n ≥ 1, where P̂k(0) = Q̂k(0) = 1. For k = 1, the recurrence (7) gives P̂1(n) = P̂1(n−1)+n,
whence by induction,

P̂1(n) = P1(n)− n. (9)

Also, equation (7) implies that P̂k is the sequence obtained by arranging in increasing
order the numbers in the set

{1} ∪ {Pk(n) + i(n+ 1) + 1 : 0 ≤ i ≤ k − 1, n ≥ 1}. (10)

Likewise, equation (8), or alternatively the identity

Q̂k(n) = P̂k+1(n+ 1)− 1, (11)

can be used to prove that the sequence Q̂k results by ordering the numbers in the set

{1} ∪ {Qk(n) + in+ i− 1 : 0 ≤ i ≤ k, n ≥ 1}. (12)

The sequences Q̂k, for k ≥ 2, count certain restricted partitions called denumerants in
[2, pp. 108-124] and [5]. References listed in [6] and [5] lead to extensive literature on the
sequences Pk and Qk. However, observations of relationships (e.g., Theorem 4) between Pk

and P̂k (and between Qk and Q̂k) to be proved in section 2 may be new.
As a final introductory note, interspersions are closely related to fractal sequences; see

[7] for a list of references. Thus, results proved below for interspersions (hence dispersions)
could to be stated in terms of fractal sequences.

2 Rank Sequences

In this section, the word rank refers to the ordinary less-than-or-equal relation, ≤ (not the
θ-dependent relation ≺ defined in section 1, which will be considered further in section 4.)
Recall from section 1 that for rational θ, the multiset Sθ in (3) contains repeated elements,
so that an element may have more than one rank.
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Suppose θ > 0 and n ≥ 0. The minrank sequence of θ, denoted by mθ, is defined by

mθ(n) = least h such that n has rank h in Sθ,

and the maxrank sequence of θ, denoted by Mθ, is defined by

Mθ(n) = greatest h such that n has rank h in Sθ.

If θ is a positive integer, then the lower self-rank sequence of θ is defined by

`θ(n) = mθ(θn),

and the upper self-rank sequence of θ, by

Lθ(n) = Mθ(θn).

As Lθ is clearly the sequence rθ of section 1, we shall henceforth write it as rθ. Of course,
mθ = Mθ (and `θ = rθ) if and only if θ is irrational.

For any real θ > 0,
rθ(n) = #{(i, j) : i+ jθ ≤ nθ}.

Consider the set of (i, j) satisfying (n − 1)θ < i + jθ ≤ nθ, or equivalently, (n − j − 1)θ <
i ≤ (n− j)θ. There is one such i for j = n, and for j = 0, 1, . . . , n− 1, the number of such
i is b(n− j)θc − b(n− j − 1)θc . Summing gives a simple recurrence

rθ(n) = rθ(n− 1) + bnθc+ 1 (13)

for n ≥ 1, from which follows

rθ(n) = n+ 1 +
n∑

i=1

biθc . (14)

Alternatively, we may write

rθ(n) = #{(i, j) : i+ jθ ≤ nθ}
= #{(i, j) : j ≤ n− i/θ},

so that the numbers j to be counted are 0, 1, 2, . . . , bn− i/θc , for i = 0, 1, . . . , bnθc , and

rθ(n) =

bnθc∑

i=0

(1 + bn− i/θc)

= bnθc+ 1 +

bnθc∑

i=0

bn− i/θc . (15)

(Equations much like (14) and (15) appear in [4]; the sequence r3/2 is A077043 in [6].)
Clearly,

Mθ(n) = M1/θ(n/θ) = r1/θ(n). (16)
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If θ is rational, write θ = c/d, where c and d are relatively prime numbers in N. Then there
are a total of bn/cc+1 pairs (i, j) satisfying i+ jθ = n, so that there are Mθ(n)− (bn/cc+1)
pairs (i, j) satisfying i+ jθ < n. Consequently,

mc/d(n) = Mc/d(n)− bn/cc = rd/c(n)− bn/cc . (17)

Table 1. Sequences associated with θ = 2

n 0 1 2 3 4 5 6 7 8 9 10 11
Sθ(n) 0 1 2 2 3 3 4 4 4 5 5 5
mθ(n) 1 2 3 5 7 10 13 17 21 26 31 37
Mθ(n) 1 2 4 6 9 12 16 20 25 30 36 42
`θ(n) 1 3 7 13 21 31 43 57 73 91 111 133
rθ(n) 1 4 9 16 25 36 49 64 81 100 121 144

As suggested by Table 1, the self-rank sequences of a positive integer, k, are, loosely
speaking, the sequences Pk and Qk in section 1. A more precise statement of this connection
takes the form of Theorem 2.

Theorem 2.1 Suppose θ ∈ N . The upper self-rank sequence of θ is given by

rθ(n) = Pθ(n), n ≥ 0.

The lower self-rank sequence of θ is given by

`θ(n) = Qθ−1(n), n ≥ 0, if θ ≥ 2,

`1(n) = P̂1(n), n ≥ 0.

Proof: Suppose n ≥ 0. Putting biθc = iθ in (14) gives

rθ(n) = n+ 1 + θ
n∑

i=0

i.

= Pθ(n), by (4).

As the rank of the first occurrence of θn in Sθ, the number `θ(n) is easily obtained from
rθ(n), the total number of occurrences of θn being n+ 1; thus

`θ(n) = rθ(n)− n = Pθ(n)− n.

In case θ ≥ 2, we therefore have `θ(n) = Qθ−1(n), by (6), and if θ = 1, then `θ(n) = P̂1(n),
by (9). ¤
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Theorem 2.2 Suppose θ is an integer ≥ 2. If n ≥ 0, then

Mθ(n) = r1/θ(n) = Q̂θ−1(n), (18)

m1/θ(n) = Qθ−1(n), (19)

M1/θ(n) = Pθ(n), (20)

mθ(n) = P̂θ(n). (21)

Proof: That Mθ(n) = r1/θ(n) has already been established. Equations (14) and (8)
give

r1/θ(n) = r1/θ(n− 1) +

⌊
n

θ

⌋
+ 1 and Q̂θ−1(n) = Q̂θ−1(n− 1) +

⌊
n

θ

⌋
+ 1,

showing that the sequences r1/θ and Q̂θ+1 have a common recurrence relation. As they also
have identical initial terms, (18) follows.

Next,

m1/θ(n) = rθ(n)− n, by (17)

= Pθ(n)− n, by Theorem 2

= Qθ−1(n) by (6), and (18) is proved.

Further,

M1/θ(n) = rθ(n), by (12)

= Pθ(n), by Theorem 2, so that (19) holds,

and

mθ(n) = r1/θ(n)− bn/θc , by (17)

= Q̂θ−1(n)− bn/θc , by (18)

= P̂θ(n+ 1)− 1− bn/θc , by (11)

= P̂θ(n), by (7). ¤

Theorems 4 and 5 show the manner in which the sequences Pk, Qk, P̂k, Q̂k are related to
minrank and maxrank sequences. We turn next toward Theorem 6, which establishes that
two of the sequences are partial complements of the other two. A preliminary example may
be helpful. We begin by writing the complement P ∗

2 of P2 in labeled rows of consecutive
integers:

S0: 2 3
S1: 5 6 7 8
S2: 10 11 12 13 14 15
S3: 17 18 19 20 21 22 23 24
...

Two equally spaced numbers from Sn are boxed. These numbers, one can easily check,
taken together and preceded by 1, form the first partial complement of P2. By equation (7),

they also form the sequence P̂2. We generalize this method in the next proof.
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Theorem 2.3 Suppose k ≥ 1. The 1st partial complement of Pk is P̂k, and the 1st partial
complement of Qk is Q̂k.

Proof: The complement P ∗
k of Pk consists of segments Sn of k(n + 1) consecutive

integers, given by
Sn = {Pk(n) + 1, Pk(n) + 2, . . . , Pk(n+ 1)− 1}

for n ≥ 0. Thus, the initial segment S0 consists of the k numbers 2, 3, . . . , k + 1, for which
we have

tPk(h) = h+ 1 = P̂k(h) for 1 ≤ h ≤ k.

(Recall that tr denotes the first partial complement of a sequence r; the notation tr(h)
abbreviates (tr)(h).) As the number k+ 2 is not in P ∗

k , we have from S1 the k+ 1 numbers

k + 3, k + 5, . . . , 3k + 1

satisfying

tPk(k + 1) = k + 3,

tPk(k + 3) = k + 5,
...

tPk(3k − 1) = 3k + 1 = Pk(2)− 2.

In order to extend these patterns to represent the appropriate numbers in each segment Sn,
let

sn,j = Pk(n) + 1 + (j − 1)(n+ 1), for 1 ≤ j ≤ k, n ≥ 0,

and arrange these in segments of length k + 1 :

Table 2. The numbers sn,j

s0,1 = 2 s0,2 = 3 . . . s0,k = k + 1

s1,1 = k + 3 s1,2 = k + 5 . . .
s1,k = 3k + 1

= Pk(2)− 2

s2,1 = Pk(2) + 1 s2,2 = Pk(2) + 4 . . .
s2,k = Pk(2) + 3k − 2

= Pk(3)− 3
...

...
...

...

sn,1 = Pk(n) + 1 sn,2 = Pk(n) + n+ 2 . . .
sn,k = Pk(n) + (k − 1)n+ k + 1

= Pk(n+ 1)− n− 1
...

...
...

...

The numbers in the following tableau satisfy the chain of equations defining first partial
complement:

tPk(1) = s0,1 tPk(s0,1) = s0,2 . . . tPk(s0,k−1) = s0,k

tPk(s0,k) = s1,1 tPk(s1,1) = s1,2 . . . tPk(s1,k−1) = s1,k

tPk(s1,k) = s2,1 . . . . . . . . .
(22)
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In order to confirm that the sequence tPk has the values indicated by (22), these equations
must be proved:

(i) tPk(sn,k) = sn+1,1 for n ≥ 0, as in column 1;
(ii) tPk(sn,j) = sn,j+1 for 1 ≤ j ≤ k − 1, n ≥ 0, as in columns 2 to k.

We begin with (ii). Within Sn lie the consecutive integers

sn,j, sn,j + 1, . . . , sn,j+1.

Inductively, the first of these is tPk(sn,j−1), so that in P ∗
k , these integers are indexed as

indicated by the top row of the next array:

sn,j−1 sn,j−1 + 1 sn,j−1 + 2 . . . sn,j−1 + n+ 1 = sn,j
sn,j sn,j + 1 sn,j + 2 . . . sn,j + n+ 1 = sn,j+1

In other words, because the integers in both rows are consecutive, the inductively assumed
relation tPk(sn,j−1) = sn,j implies tPk(sn,j) = sn,j+1.

Now regarding (i), we modify (22) to obtain

sn,k−1 . . . sn,k−1 + n sn,k−1 + n+ 1 = sn,k
sn,k . . . sn,k + n sn,k + n+ 2 = sn+1,1

The point here is that the integers in row 1 are consecutive, but that those in row 2, con-
secutive up to the penultimate term, skip over the number sn,k + n+ 1 = Pk(n).

As indicated by Table 2, tPk is the sequence having initial term 1 and difference sequence
consisting of k 1s followed by k 2s followed by k 3s, and so on. The same characterization
holds, by (7), for the sequence P̂k. Therefore, P̂k = tPk.

We turn now to the proposition that the 1st partial complement of Qk is Q̂k. The
complement Q∗

k of Qk consists of segments Tn of (k+1)(n+1)−2 consecutive integers, given
by

Tn = {Qk(n) + 1, Qk(n) + 2, . . . , Qk(n+ 1)− 1}
for n ≥ 0. The method of proof used above for Pk is P̂k applies to these segments, leading
to the conclusion, via (8), that Q̂k = tQk. ¤

3 Farey trees

In section 1, it is proved that if θ is a positive irrational number, then ttrθ = rθ, or equiva-
lently, that the dispersion Aθ is transposable. In case θ ∈ N, the sequences rθ and r1/θ are
those discussed in section 2. Here in section 3, we consider rθ when θ is a rational number
and introduce certain limiting sequences, to be denoted by rθ− . In section 4, we outline a
possible proof that the only sequences r satisfying the equation ttr = r are of the forms rθ
and rθ− .
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Suppose n ≥ 1. The set Fn of Farey fractions of order n consists of the rational numbers
c/d for which 0 ≤ c ≤ d, 1 ≤ d ≤ n, and c and d are relatively prime. For example, the
Farey fractions of order 5 are

0,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
, 1.

The numbers in Fn, taken consecutively as endpoints, determine a partition of the interval
[0, 1); for example, for n = 5, the subintervals are

[0,
1

5
), [

1

5
,
1

4
), [

1

4
,
1

3
), [

1

3
,
2

5
), [

2

5
,
1

2
), [

1

2
,
3

5
), [

3

5
,
2

3
), [

2

3
,
3

4
),[

3

4
,
4

5
), [

4

5
, 1). (23)

The connection between Farey fractions and sequences rθ is indicated by the following ex-
ample: for 0 ≤ θ < 1, the number rθ(5) has one of the ten values

6, 7, 8, 9, 10, 12, 13, 14, 15, 16

according to which of the intervals in (23) contains θ.
Corresponding to successive sets Fn, we show six levels of the 0-Farey tree, which repre-

sents all the sequences rθ for which θ ∈ [0, 1) :

1

2

3 4

4 5 6 7

5 6 7 9 10 11

6 7 8 9 10 12 13 14 15 16

"
"

""

b
b
bb

¡¡ @@ ¡¡ @@

­­ JJ ­­ JJ

££BB ££BB ££BB ££BB

Level n consists of |Fn| numbers, ranging from n + 1 to P̂1(n). When progressing from
level n to level n+1, a branching occurs at a number if and only if the corresponding n-level
interval contains a fraction (in reduced form) having denominator n + 1. For example, if
θ ∈ [1/5, 1/4) then rθ(8) = 13, in level 8 of the Farey tree. The fraction 2/9 lies in [1/5, 1/4),
so that a branching occurs at 13:

rθ(9) =

{
15 if θ ∈ [1/5, 2/9)
16 if θ ∈ [2/9, 1/4).

.

It is easy to adapt the Farey tree for numbers θ′ in an interval bh, h + 1), where h is a
positive integer; viz., equation (14) yields

rθ′(n) = rθ(n) + h

(
n+ 1
2

)
, (24)
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where θ = θ′ − h, so that the desired tree, which we call the h-Farey tree, results by adding
n(n+ 1)/2 to the n-level nodes of the Farey tree, for all n ≥ 0. It follows from (24) that in
the h-Farey tree at level n the numbers range from Ph(n) up to Qh(n).

The set of infinite paths from 1 down through a Farey tree are of three types:

(i) paths that eventually stay left
(ii) paths that eventually stay right
(iii) all other paths.

The description, “paths that eventually stay left,” applies to any path such that, after
some level in a Farey tree, every time a branching occurs, the path takes the left branch,
and likewise for “paths that eventually stay right”.

In order to interpret these paths as representations of three kinds of sequences rθ, recall
that each node x of a Farey tree corresponds to an interval bu,w). If x connects to only one
successor, y, in the next level, then y corresponds to the same interval, bu,w). The only
other possibility is that x is a branching node, meaning that x has two successors, y and z,
in the next level, and that there is a rational number v such that y ∈ bu, v) and z ∈ bv, w).

Clearly then, paths of type (i) represent rθ when θ is a rational number, and the property,
“eventually stay left” corresponds to θ lying in the interval bθ, w) for every w.

Next, consider an eventually-stay-right path. From some node on, the corresponding
intervals are of the form bvm, w) where (vm) is a nondecreasing sequence of rationals with
rational limit w. The sequence corresponding to these intervals, which we denote by r(w−),
is therefore given by

r(w−) = lim
m→∞

rvm
. (25)

For example, r(2−) = Q1 (whereas r2 = P2).
Paths of type (iii) represent rθ when θ is an irrational number, the limit point of a nest

of intervals bum, wm) having rational endpoints.

Theorem 3.1 Suppose θ = c/d, where c and d in N are relatively prime. Then

r(c/d−)(n) = rd/c(n)− bn/cc . (26)

Proof: Clearly (26) holds for n = 0. Suppose n ≥ 1, and let

µ = min{kd/c− bkd/cc : 1 ≤ k ≤ n, c - k}. (27)

Let p, q in N be relatively prime satisfying d/c − p/q < µ. (That is, the interval [p/q, c/d)
is of the form [vm, w) used for (25) to define r(c/d−).) Then

r(c/d−)(n) = rp/q(n)

= n+ 1 + bp/qc+ b2p/qc+ · · ·+ bnp/qc . (28)

By (27),

bkp/qc =
{
bkd/cc if c - kd;
bkd/cc − 1 if c | kd

13



for 1 ≤ k ≤ n. As c and d are relatively prime, the values of k for which c | kd are
c, 2c, . . . , bn/cc c, so that (28) gives

r(c/d−)(n) = n+ 1 + bd/cc+ b2d/cc+ · · ·+ bnd/cc − bn/cc
= rd/c(n)− bn/cc , by (14). ¤

4 Rank Arrays and the Family F

Throughout section 4, the word rank refers to the order relation ≺ except where otherwise
indicated. (The relation ≺, dependent on rational θ, is defined in section 1 on the set of
ordered pairs (i, j), i ≥ 0, j ≥ 0.)

Theorem 4.1 Suppose θ = c/d, where c and d in N are relatively prime. Then the 1st
partial complement of rθ is given by

trθ(n) = mθ(n) = r1/θ(n)− bn/cc . (29)

Proof: The sequence trθ is row 0 of Aθ, so that trθ(n) is the rank of (n, 0), for all
n ≥ 0. This means that trθ(n) is the rank of the first occurrence of the number n when
the numbers in Sθ are ranked under ≤ . In other words, trθ(n) = mθ(n), where mθ is the
minrank sequence of section 2. Thus, (29) follows from (17). ¤

Corollary 4.1 Suppose θ = c/d, where c and d in N are relatively prime. Then the 1st
partial complement of rθ is given by

trθ(n) = r(θ−)(n) (30)

for n ≥ 0.

Proof: This is an obvious consequence of Theorems 5 and 6. ¤

Lemma 4.1 Suppose r ∈ R and n1 ∈ N. Then there exists n0 in N such that if s in R
satisfies s(n) = r(n) for n = 0, 1, . . . , n0, then s∗(n) = r∗(n) for n = 1, 2, . . . , n1.

Proof: Let n0 be the least n for which r(n) > r∗(n1). The numbers r∗(1), r∗(2), . . . , r∗(n1)
are then uniquely determined by the numbers r(0), r(1), . . . , r(n0), as the former simply oc-
cupy in increasing order the positions not occupied by the latter in the list 1, 2, 3, . . . , r(n0)
of consecutive integers. ¤

Lemma 4.2 Suppose r ∈ R and n′ ∈ N. Then there exists n0 in N such that if s in R
satisfies s(n) = r(n) for n = 0, 1, . . . , n0, then ts(n) = tr(n) for n = 0, 1, . . . , n′.

14



Proof: Let n1 be the number such that tr(n′) = r∗(n1). The numbers tr(n) for
n = 0, 1, . . . , n′ are among, and are uniquely determined by, the numbers r∗(n) for n =
1, 2, . . . , n1. Let n0 be as in Lemma 10, so that the numbers tr(n) for n = 0, 1, . . . , n′ are
uniquely determined by the numbers r(n) for n = 0, 1 . . . , n0. ¤

Corollary 4.2 Suppose θ = c/d, where c and d in N are relatively prime. Then

ttrθ = rθ. (31)

Proof: Suppose n0 and n1 are positive integers. By Corollary 9, there exist c′ and d′,
relatively prime in N, such that d′/c′ < d/c and

trc/d(n) = rd′/c′(n) for n = 0, 1, . . . , n0. (32)

It might be tempting to say that we apply t to (32) to get

ttrc/d(n) = trd′/c′(n) for n = 0, 1, . . . , n0,

but this mistake overlooks the meaning of the notation tr(n) as (tr)(n), not t(r(n)). Instead,
we can, in accord with Lemma 11, and do, take n0 large enough that (32) implies

ttrc/d(n) = trd′/c′(n) for n = 0, 1, . . . , n1. (33)

Let γ and δ, relatively prime in N, satisfy γ/δ > c/d and

rγ/δ(n) = rc/d(n) for n = 0, 1, . . . , n1. (34)

By Corollary 9, there exist c′′ and d′′, relatively prime in N, such that c′′/d′′ < c′/d′ and

trd′/c′(n) = rc′′/d′′(n) for n = 0, 1, . . . , n1. (35)

As c′/d′ > c/d, we can and do choose c′′ and d′′ so that c′′/d′′ > c/d and c′′/d′′ > γ/δ. Then
by (33)-(35),

ttrc/d(n) = rc′′/d′′(n)

= rc/d(n) for n = 0, 1, . . . , n1.

As n1 is arbitrary, (31) follows. ¤

Corollaries 9 and 12 extend Corollary 3 from the case that θ is irrational to the case that
θ is any positive real number. In other words, rθ is in the family F of fixed points under the
operator tt, or, in yet other words, the 1st partial complement of the 1st partial complement
of any rθ is rθ itself. The next corollary identifies additional members of F, and in section
5, we conjecture that there are no others.

15



Corollary 4.3 Suppose θ = c/d, where c and d in N are relatively prime. Then

ttr(θ−) = r(θ−). (36)

Proof: Suppose n0, n1, and n2 are positive integers. Let c′ and d′, relatively prime in
N, satisfy

rc′/d′(n) = r(θ−)(n) for n = 0, 1, . . . , n0 and

ttrc′/d′(n) = ttr(θ−)(n) for n = 0, 1, . . . , n1.

By Corollary 12, we can, and do, choose n0 and n1 large enough that

ttr(θ−)(n) = rc′/d′(n) for n = 0, 1, . . . ,max{n0, n1, n2}.

As n0, n1, n2 are arbitrarily large, (36) follows. ¤

For any array A = {a(i, j)}, let TA denote the transpose, {a(j, i)}, of A. Let A(θ−)

denote the interspersion whose column 0 is the sequence r(θ−). Membership in the family F
can now be stated in terms of transposable interspersions:

Corollary 4.4 Suppose θ is a positive real number. Then TA(θ−) = A, TTAθ = Aθ, and
TTA(θ−) = A(θ−).

Proof: If θ is a positive integer, the three asserted equations follow from Theorem 4, as
in this case, rθ and r(θ−) are Pθ and P̂θ, (and r1/θ and r(1/θ−) are Qθ and Q̂θ). For irrational,
θ, we have A(θ−) = A1/θ, and the proposition follows from Corollary 12. For all other positive
θ, the asserted equations follow immediately from Corollaries 9, 12, and 13.

Example 2: The interspersions A3/2 and A(3/2−)

1 2 4 6 9 . . . 1 3 7 12 19 . . .
3 5 8 11 15 . . . 2 5 10 16 24 . . .
7 10 14 18 23 . . . 4 8 14 21 30 . . .
12 16 21 26 32 . . . 6 11 18 26 36 . . .
19 24 30 36 43 . . . 9 15 23 32 43 . . .
...

...
...

...
...

. . .
...

...
...

...
...

. . .

Example 3: The interspersions A2/3 and A(2/3−)

1 3 6 11 17 . . . 1 2 4 7 10 . . .
2 5 9 15 22 . . . 3 5 8 12 16 . . .
4 8 13 20 28 . . . 6 9 13 18 23 . . .
7 12 18 26 35 . . . 11 15 20 26 32 . . .
10 16 23 32 42 . . . 17 22 28 35 42 . . .
...

...
...

...
...

. . .
...

...
...

...
...

. . .
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Theorem 4.2 Suppose θ is a positive real number. Neighboring terms in column j of the
rank array Aθ satisfy the equation

a(i, j)− a(i− 1, j) = biθc+ j + 1 (37)

for i ≥ 1, j ≥ 0.

Proof: Suppose i ≥ 1. By (13),

a(i, 0)− a(i− 1, 0) = rθ(i)− rθ(i− 1) = biθc+ 1.

Thus, equation (37) is equivalent to

<(j, i)−<(j, i− 1) = <(0, i)−<(0, i− 1) + j, (38)

where <(h, k) denotes the rank of (h, k) under ≺ . Let v = biθc . The v ordered pairs (h, k)
counted by <(0, i)−<(0, i− 1) we represent as

(0, i− 1) ≺ (h1, k1) ≺ (h2, k2) ≺ · · · ≺ (hv, kv) = (0, i). (39)

Clearly, (39) implies

(1, i− 1) ≺ (h1 + 1, k1) ≺ (h2 + 1, k2) ≺ · · · ≺ (hv + 1, kv) = (1, i). (40)

It is easy to check that there is exactly one integer q satisfying

(1, i− 1) ≺ (0, i+ q) ≺ (1, i), (41)

namely

q =

{
0 if θ = 1;

b1/θc otherwise.

Thus, by (40) and (41), there are v + 1 ordered pairs (h, k), satisfying

(1, i− 1) ≺ (h, k) ≺ (1, i). (42)

Now if (h, k) is an ordered pair satisfying (42), then either h = 0, so that k = q, or else
(h − 1, k) is one of the ordered pairs in (39); thus every (h, k) satisfying (40) is one of the
v + 1, so that (37) holds for j = 1.

The method used to get from (39) to (42), namely, adding 1 to all first coordinates and
then inserting the sole ordered pair having first coordinate 0, applies inductively, so that
(38) and (37) hold for all j ≥ 0. ¤

Corollary 4.5 Suppose θ is a positive real number. Neighboring terms in column j of the
array A(θ−) = {b(i, j)} satisfy the equation

b(i, j)− b(i− 1, j) = di/θe+ j, (43)

where d e denotes the ceiling function, for i ≥ 1, j ≥ 0.
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Proof: Suppose n0 ∈ N. Let c′ and d′, relatively prime in N, satisfy

rc′/d′(n) = r(θ−)(n)

for n = 0, 1, . . . , n0. In the rank array Ac′/d′ = {a′(i, j)}, each a′(i, j) that is ≤ rc′/d′(n0)
has the same position (i, j) that the same number has in A(θ−); that is, b(i, j) = a′(i, j) for
a′(i, j) ranging from 1 up to rc′/d′(n0). By (37),

a′(i, j) = a′(i− 1, j) = bic′/d′c+ j + 1,

so that b(i, j)− b(i− 1, j)− j = bic′/d′c+ 1, showing that

b(i, j)− b(i− 1, j)− j

is invariant of j. Now b(i, 0) = rd/c − bi/cc, by (26), so that

b(i, 0)− b(i− 1, 0) = rd/c(i)− rd/c(i− 1)− (bi/cc − b(i− 1)/cc
= bid/cc+ 1− bi/cc+ b(i− 1)/cc.

Consequently,

b(i, j)− b(i− 1, j) = bid/cc − bi/cc+ b(i− 1)/cc+ j + 1,

and it is easy to verify that the right-hand side simplifies as in (43). ¤

Corollary 4.6 Suppose θ is a positive real number. The terms of the dispersion Aθ satisfy
the equation

a(i, j) = a(i, 0) + a(0, j) + ij − 1

for i ≥ 0, j ≥ 0.

Proof: By (37),
a(h, j)− a(h− 1, j) = bhθc+ j + 1

for h = 1, 2, . . . , i. Summing over those values of h gives

a(i, j) = a(0, j) + bθc+ b2θc+ · · ·+ biθc+ i(j + 1)

= a(0, j) + rθ(i)− i− 1 + i(j + 1), by (13)

= a(i, 0) + a(0, j) + ij − 1. ¤

Corollary 4.7 Suppose θ = c/d, where c and c are relatively prime in N . The terms of the
dispersion A(θ−) = {b(i, j)} satisfy the equation

b(i, j) = b(i, 0) + b(0, j) + ij + bi/cc
for i ≥ 0, j ≥ 0.

Proof: By (43),
b(h, j)− b(h− 1, j) = dh/θe+ j

for h = 1, 2, . . . , i. Summing over those values of h as in the proof of Corollary 7.2 and
simplfying via the identify

dxe =
{

x if x is an integer;
bxc+ 1 otherwise

yield the asserted equation. ¤
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5 Convergence

It appears likely that if r ∈ R, then the sequence of sequences,

r, ttr, tt(ttr), . . . ,

whose general term we abbreviate as t(2n)r, converges, and that the limiting sequence is
one of the sequences rθ or r(θ−) for some positive real number θ. If so, then the family F of
sequences satisfying ttr = r clearly contains no sequences other than those already accounted
for.

Proof that (t(2n)r) converges seems elusive. This section offers lemmas which may some-
day be found useful in a proof but are of independent interest in any case. The items for
which proof is sought are then presented as Conjectures 22-26.

Suppose that u and v are sequences in R and that their initial segments of some length
are identical Then some initial segments of the complements, u∗ and v∗, must be identical.
The following lemma provides some insight.

Lemma 5.1 Suppose u and v are sequences in R such that u(i) = v(i) for i = 0, 1, . . . , n,
and u(n+ 1) ≥ v(n+ 1). Then

u∗(j) = v∗(j) for j = 1, 2, . . . , v(n+ 1)− n− 2.

Proof: For h = 0, 1, . . . , n, the v(h + 1) − v(h) − 1 numbers v(h) + 1 to v(h + 1) − 1,
taken in order, comprise an initial segment of both v∗ and u∗. The length of this common
segment is

n∑

h=0

[v(h+ 1)− v(h)− 1] = v(n+ 1)− n− 2. ¤ (44)

Lemma 5.2 Suppose c and d in N are relatively prime. Suppose r ∈ R and that there
exists n ≥ 2 such that r(i) = rc/d(i) and r(n + 1) ≥ rc/d(n + 1). Then r∗(j) = r∗c/d(j) for
j = 1, 2, . . . , J, where

J = rc/d(n) + b(n+ 1)c/dc − n− 1. (45)

Proof: In Lemma 19, take u = r and v = rc/d. Then v(n + 1) = rc/d(n + 1) in (44),
and (13) implies (45). ¤

Lemma 5.3 Suppose c and d in N are relatively prime and c > d. Then

r∗c/d(i) = i+ 1 for i = 1, 2, . . . , rc/d(1)− 2,

r∗c/d(rc/d(m)−m+ J) = rc/d(m) + J + 1 (46)

for J = 0, 1, . . . , b(m+ 1)c/dc − 1, m = 1, 2, 3, . . . . (47)
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Proof: Consider the sequence of numbers to which r∗c/d is applied: initially,

1, 2, . . . , rc/d(1)− 2, followed by

rc/d(m)−m+ J, for m = 1 and J = 0, 1, . . . , b2c/dc − 1,

rc/d(m)−m+ J, for m = 2 and J = 0, 1, . . . , b3c/dc − 1,

and so on. Thus, the sequence in question is the sequence of positive integers. Their images
under the function r∗c/d are determined by arranging all the numbers r∗c/d(i) in increasing

order. This listing is conveniently broken into segments, first from 1 to rc/d(1) − 1, then
from rc/d(1) + 1 to rc/d(2) − 1, and so on. Thus, counting the first segment as segment 1,
the (m+ 1)st segment, for m ≥ 1, is as given by (46) and (47). ¤

Conjecture 5.1 Suppose c and d in N are relatively prime. Suppose that r ∈ R and that
there exists n ≥ 1 such that r(i) = rc/d(i) for i = 0, 1, . . . , n, and

r(n+ 1) ≥ rc/d(n+ 1). (48)

Then
tr(i) = trc/d(i) for i = 0, 1, 2, . . . , b(n+ 1)c/dc. (49)

Conjecture 5.2 Continuing, suppose, instead of (48), that

r(n+ 1) ≤ rc/d(n+ 1)− 2. (50)

Then
tr(n+ 1) = trc/d(n+ 1)− 1. (51)

Conjecture 5.3 Continuing, suppose, instead of (50), that

r(n+ 1) = rc/d(n+ 1)− 1. (52)

Then
tr(n+ 1) = trc/d(n+ 1). (53)

Conjecture 5.4 Continuing, suppose

z(i) = trc/d(i) for i = 0, 1, . . . , b(n+ 1)c/dc
and

z(i+ 1)− z(i) ≥ z(i)− z(i− 1) (54)

for i ≥ b(n+ 1)c/dc. Then

tz(i) = rc/d(i) for i = 0, 1, 2, . . . , n+ 1. (55)
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Conjecture 5.5 Suppose r ∈ R. Then there exists a positive real number θ such that
lim
n→∞

t(2n)r is one of the sequences rθ and r(θ−).

Possible method of proof: If r is rθ or r(θ−) for some then θ, then ttr = r by
Corollaries 3, 12, and 13. Suppose then that r is not any such rθ or r(θ−). Let

(γ, δ) =

{
(1, 2) if r(1) = 2;

(r(1)− 2, 1) if r(1) ≥ 3.

Then r(0) = rγ/δ(0) = 1 and r(1) = rγ/δ(1), so that the set of rational numbers γ/δ satisfying

r(i) = rγ/δ(i) for i = 0, 1, . . . ,m, (56)

for some m ≥ 1, is not empty. The set of numbers m for which (56) holds for some γ/δ
is not unbounded, for if it were, there would be a sequence γm/δm having limit θ such that
r ∈ {rθ, rθ−}, a contradiction. Let n be the greatest m for which (56) holds, and let c/d,
where c and d are relatively prime, be a rational number such that

r(i) = rc/d(i) for 0, 1, 2, . . . , n.

As r(n+ 1) 6= rc/d(n+ 1), one of the inequalities (48), (50), and (52) holds, so that we have
cases:

Case 1: r(n+ 1) ≥ rc/d(n+ 1). If Conjecture 22 is valid, then (49) holds.

Case 2: r(n+1) ≤ rc/d(n+1)−2. If Conjecture 23 is valid, then by (51), the sequences
trc/d and tr satisfy the hypothesis of Conjecture 24 (with trc/d and tr substituted for rc/d
and r, respectively).

Case 3: r(n+1) = rc/d(n+1)−1. If Conjecture 24 is valid, then by (53), the sequences
trc/d and tr satisfy the hypothesis of Conjecture 22 (with trc/d and tr substituted for rc/d
and r, respectively).

Let

r′ =





tr if (48) holds;
tttr if (50) holds;
tr if (52) holds.

(57)

The discussion of the three cases shows that r′ satisfies (48), hence (49), if Conjecture 22 is
valid. Let z = r′. It is easy to check that (54) holds (for z = tρ, for every ρ in R). Thus,
if Conjecture 25 is valid, then, with reference to (56), the sequence ttttr satisfies

ttttr(i) = rc/d(i) for i = 0, 1, . . . n, n+ 1

(whereas r(n + 1) may not be equal to rc/d(n + 1)), and a proof of Conjecture 26 follows
by repeated applications of Conjectures 22-25. It is hoped that someone will prove those
conjectures!

The interested reader may wish to use the following website:

http://csserver.evansville.edu/˜brownie/cgi-bin/transpose.
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There, the reader can submit the first ten to thirty terms of a sequence r. The dispersion
of the complementary sequence will appear, of which the submitted sequence is the first
column. The reader can then request iterations and see, in the successive first columns,
initial terms of the sequences tr, ttr, tttr, . . .
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