Comment from Ralf Stephan, July 20 2003.

In the article "Integer Sequences Related to Compositions without 2's", Chinn and Heubach state in section 6 that the number of partitions without 2's is not yet listed in the OEIS. But there is

%I A027336
%S A027336 1,1,1,2,3,4,6,8,11,15,20,26,35,45,58,75,96,121,154,193,242,302,375,463,
%T A027336 573,703,861,1052,1282,1555,1886,2277,2745,3301,3961,4740,5667,6754,
%U A027336 8038,9548,11323,13398,15836,18678,22001,25873,30383,35620,41715,48771
%N A027336 Number of partitions of n that do not contain 2 as a part.
%o A027336 (PARI) a(n)=if(n<0,0,polcoeff((1-x^2)/eta(x+x*O(x^n)),n))
%Y A027336 Cf. A027337.
%Y A027336 a(n)=A000041(n+2)-A000041(n).
%K A027336 nonn
%O A027336 2,4
%A A027336 Clark Kimberling, ck6@evansville.edu
%E A027336 More terms from Benoit Cloitre (abcloitre@wanadoo.fr), Dec 10 2002
The numbers the authors gave also match the pairwise sums of sequence A002865 (partitions in which the least part is at least 2).