Abstract:
Let n;SPMgt;2 be a positive integer and let #tex2html_wrap_inline9# denote Euler's totient function. Define #math1##tex2html_wrap_inline11# and
#math2##tex2html_wrap_inline13# for all integers #tex2html_wrap_inline15#.
Define the arithmetic function S by
#math3##tex2html_wrap_inline19#, where #math4##tex2html_wrap_inline21#.
We say n is a perfect totient number if S(n)=n.
We give a list of known perfect totient numbers,
and we give sufficient conditions for the existence of
further perfect totient numbers.