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Abstract

We study the minimal density of letters in infinite square-free words. First, we give some

definitions of minimal density in infinite words and prove their equivalence. Further, we pro-

pose a method that allows to strongly reduce an exhaustive search for obtaining lower bounds

for minimal density. Next, we develop a technique for constructing square-free morphisms

with extremely small density for one letter that gives upper bounds on the minimal density.

As an application of our technique we prove that the minimal density of any letter in infinite

ternary square-free words is 0.2746 · · ·.

A word is called square-free if it cannot be written in the form axxb for two words a, b and
a nonempty word x. It is easy to see that the maximal length of a binary square-free word
is 3. A. Thue proved [8] that there exist ternary square-free words. The number of ternary
square-free words of length n is given by the sequence A006156 in The Encyclopedia of
Integer Sequences [7]. Ekhad and Zeilberger [2] proved that the number of ternary square-
free words of length n is at least 2n/17. Grimm [3] gave a better bound; he proved that this
number is at least 65n/40. Note that not every finite square-free word can be extended to an
infinite square-free word. In this paper we prove that the minimal density of any letter in
an infinite ternary square-free word is 0.2746 · · ·.
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1 Preliminary concepts and notions

Let M be a finite alphabet, and let M ∗ be the free monoid over M . Let Mω be the set of
one-sided infinite words over M (or mappings from N → M). A word v ∈ M ∗ is called a
factor of the word w ∈ M ∗ if w can be written as w = v1vv2 for some v1, v2 ∈ M∗. If v1 is
the empty word, then v is called also a prefix of w. Let F ⊆M ∗. Denote by l(F ) the length
of the longest word in F ; if the set F is infinite we define l(F ) :=∞. The set F for F ⊆M ∗

is called a factorial language if for any word w ∈ F the set F contains every factor of w.
The length of the word w is denoted by |w|.

Any set G of forbidden factors in M ∗ generates a factorial language F = F (G) where

F (G) = {w ∈M ∗ | ∀v ∈ G v is not a factor of w}.

Indeed, if the word w ∈ F (G) does not contain any word v ∈ G then no factor u of w
contains such a word, either.

We denote by F ω ⊆Mω the set of all infinite words with every finite factor belonging to
F .

Proposition 1.1 The set F ω is not empty iff the language F is infinite.

Proof. If the language F is finite then obviously the set F ω is empty. If the language F
is infinite then we can construct an infinite word with every finite prefix belonging to F by
König’s Infinity Lemma. It is easy to see that this word belongs to F ω.

Denote by a(w) the number of occurrences of a letter a ∈ M in the word w ∈ F . The

proportion ρa(w) =
a(w)
|w|

is called the density of the letter a in the finite word w. To define
the density of a letter in the infinite word w is a more complicated problem. We can consider
the sequence (ρa(wn)), n = 1, 2, . . ., where wn is the prefix of w of length n but it is possible
that this sequence does not converge to a limit. An example of such a situation is given by
the infinite word

w = a b . . . b
︸ ︷︷ ︸

10

a . . . a
︸ ︷︷ ︸

102

b . . . b
︸ ︷︷ ︸

104

a . . . a
︸ ︷︷ ︸

108

b . . . b
︸ ︷︷ ︸

1016

· · ·

It is not hard to see that for any positive integer N , positive real ε and real ξ, 0 ≤ ξ ≤ 1,
there exists n > N such that |ρa(wn)− ξ| < ε.

Thus, it is possible that the limit of the densities for the sequence of prefixes in an infinite
word does not exist. Nevertheless, we can define the lower limit of this sequence.

Definition 1.1 Let F be an infinite factorial language. We define

F (l) := {w ∈ F | |w| = l};

ρa(F, l) := min
w∈F (l)

ρa(w); and

ρa(F ) := lim
l→∞

ρa(F, l).

The next two lemmas are proved in Kolpakov, Kucherov, and Tarannikov [4].
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Lemma 1.1 For every l ∈ N, the inequality ρa(F, l) ≤ ρa(F ) holds.

Lemma 1.2 ρa(F ) = lim
l→∞

ρa(F, l) = sup
l≥1

ρa(F, l).

Thus, we can write
ρa(F ) = lim

l→∞
ρa(F, l).

Definition 1.2 We denote

A−a (ξ) = {w ∈ F | ∀ prefixes u of w : ρa(u) ≤ ξ},

A−a (ξ−) = {w ∈ F | ∀ prefixes u of w : ρa(u) < ξ}.

Theorem 1.1 If ρa(F ) ≤ ξ then the set A−a (ξ) is infinite.

Proof. Assume the converse. Then we can decompose an arbitrary infinite word w in
F ω into w = v1v2 . . . where |vi| ≤ l(A−a (ξ)) + 1 and ρa(vi) ≥ ρa(F ) + ε for some ε > 0.
Therefore,

lim
l→∞

ρa(F, l) ≥ ρa(F ) + ε.

This contradiction proves the theorem.

Corollary 1.1

(a) The set A−a (ξ) is infinite iff ξ ≥ ρa(F ).

(b) The set A−a (ξ−) is infinite iff ξ > ρa(F ).

Corollary 1.2 There exists a word w ∈ F ω such that any prefix u of w belongs to A−a (ρa(F )).

Proof. We can construct easily this word w by König’s Lemma on an infinite tree.

The above facts allow us to obtain lower bounds ξ for the minimal density of a letter a
in a factorial language F proving by an exhaustive search that the set A−a (ξ) (A−a (ξ−)) is
finite. As it will be shown below in many cases for sufficiently small ξ this exhaustive search
can be produced in a very short time.
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2 Minimal letter density for some special factorial lan-

guages

For some special factorial languages the problem of finding the minimal letter density is
(almost) trivial.

Example 2.1 The factorial language F = F (G) is generated by a finite set G of prohibited
factors. Then the minimal letter density ρa(F ) is rational and equal to the minimal density
of the letter a over all cycles (accessible from the starting vertex) in the transition graph of
language F (G). (For transition graphs of factorial languages see Rosaz [6].)

Example 2.2 Let M = {0, 1}, and let ξ be a real number with ξ ∈ (0; 1). Let F be the
set of all finite factors of a standard Sturmian word (a1a2 · · ·) where ai = b(i + 1)ξc − biξc,
i = 1, 2, . . .. Then any infinite word in F ω has density ξ. So, ρ1(F ) = ξ.

Example 2.3 Let M = {a, b} and let F be the set of all overlap-free binary words (i. e., words
that do not contain a factor w that has the form w = v1v2c where c is the first letter of
the word v1). Restivo and Salemi [5] proved that any infinite overlap-free binary word is a
concatenation of factors (ab) and (ba) with a preperiod of one or two symbols. It follows
that ρa(F ) = ρb(F ) = 1/2.

Example 2.4 Infinite square-free words on the alphabet M (i. e., words that do not contain
a factor w that has the form w = vv). It is obvious that if |M | = 2 then there are no
infinite square-free words over alphabet M . There exist infinite square-free words on the
ternary alphabet. A. Thue was the first to construct an example of such a word [8]. There-
fore, if |M | ≥ 4 we can construct an infinite square-free word over the alphabet M \ {a}.
Consequently, ρa(F ) = 0. Thus, the only interesting case in this respect is |M | = 3.

3 Lower bounds for the minimal letter density in ternary

square-free words

In what follows F denotes the set of all ternary square-free words. The technique used to
obtain the results given in this section was developed in Section 1. In the following table
we give calculated values of numbers l(A−a (ξ−)) and l(A−a (ξ)) for “critical” ξ (i. e., for ξ
such that these numbers differ). In our computer search we used the standard backtracking
technique. For ξ > 39/142 we did not calculate all “critical” values of ξ because of the
increasing of the required computer time.

Theorem 3.1 l(A−a (1780/6481−)) = 17312.
The last result took near 40 hours on a Pentium, 166 MHz.

Corollary 3.1 Let F be the set of ternary square-free words. Then ρa(F ) ≥ 1780/6481 =
0.274648 · · · for all letters a.
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ξ (Proportion) ξ (Decimal) l(A−a (ξ−)) l(A−a (ξ))

0 0 0 3
1/4 0.25 3 15
4/15 0.266666 15 59
16/59 0.271186 59 63
3/11 0.272727 63 74
20/73 0.273973 74 136
37/135 0.274074 136 198
54/197 0.274112 198 252
17/62 0.274194 252 307
14/51 0.274510 307 324
81/295 0.274576 324 771
67/244 0.274590 771 801
53/193 0.274611 801 1034
145/528 0.274621 1034 1318
92/335 0.274627 1318 1481
407/1482 0.274629 1481 1500
354/1289 0.274631 1500 1765
485/1766 0.274632 1765 1784
170/619 0.274637 1784 2028
549/1999 0.274637 2028 2494
209/761 0.274639 2494 2778
613/2232 0.274642 2778 3488
691/2516 0.274642 3488 3772
443/1613 0.274644 3772 4168
950/3459 0.274646 4168 4715
1028/3743 0.274646 4715 4999
1223/4453 0.274646 4999 5709
1301/4737 0.274646 5709 5993
1496/5447 0.274647 5993 6703
1574/5731 0.274647 6703 6987
1769/6441 0.274647 6987 7383
1847/6725 0.274647 7383 7667
39/142 0.274647 7667 10882

1780/6481 0.274648 17312

Table 1. Numbers l(A−a (ξ−)) and l(A−a (ξ)) for some “critical” ξ.

4 Upper bound

The most natural way to prove an upper bound for the minimal letter density is to construct
a concrete word. As a result the letter density in this word will be a desired upper bound.

5



One of the main ways for constructing concrete infinite words is to use expansive morphisms.
We consider morphisms of the form h : M ∗ → M∗. In our case M = {a, b, c}. For d ∈ M
the infinite word h∗(d) is generated by the infinite sequence of its prefixes

d, h(d), h(h(d)), h(h(h(d))), . . . .

A morphism h is called square-free if h(w) is square-free whenever w is square-free. If h is a
square-free morphism then, obviously, for any letter d ∈ M the word h∗(d) will be square-
free. If for any letter m ∈ M we have ρa(h(m)) = ξ then, obviously, ρa(h

∗(d)) = ξ too.
The words h(m) are finite, therefore here ξ = p

q
is rational. Thus, the simplest way is to try

to construct a morphism where images of all letters consist of fragments of lengths q that
contain the letter a exactly p times for some positive integers p and q. The problem is how
to choose p and q? Here we give an empirical method of selecting good parameters p and q.

Let ξ = p
q
be a rational number. Define

A−a (ξ∗) = {w ∈ F | ∀ prefixes u of w : ρa(u) < ξ and if |u| = nq, n ∈ N, then ρa(u) = ξ}.

For a given rational ξ we search an (infinite) word in the set A−a (ξ∗) by the usual back-
tracking technique. In many cases we obtain in a short time that the set A−a (ξ∗) is finite.
Thus, we cannot apply the proposed method for the construction of a morphism. If the
length of the maximal found prefix increases with stable high speed then we do an empirical
conclusion that a morphism with proportion p to q can exist. If the length of the maximal
found prefix increases very slowly we conclude that probably such a morphism does not exist.

This empirical method can be applied to the problem of minimal letter density in any
factorial language. At first, we tried it for ternary square-free words. We obtained very
strong empirical confirmation for the ratio 64/233. The set A−a (64/233∗) contains only 10
words of length 233 (5 up to replacing b↔ c). Combining these words we tried to construct
a square-free morphism. We used the following test of Bean, Ehrenfeucht, and McNulty [1]
that guarantees that a morphism is square-free:

If

(0) h(w) is square-free whenever w is a word on M which is square-free and of
length not greater than three,

and

(1) a = b whenever a, b ∈M with h(a) a subword of h(b)

then

h(u) is square-free whenever u is a square-free word on M .

In our case it is sufficient to check that
(1) h(a), h(b) and h(c) are not factors of one another,
(0) the words

h(a)h(b)h(a) h(b)h(a)h(b) h(c)h(a)h(b)
h(a)h(b)h(c) h(b)h(a)h(c) h(c)h(a)h(c)
h(a)h(c)h(a) h(b)h(c)h(a) h(c)h(b)h(a)
h(a)h(c)h(b) h(b)h(c)h(b) h(c)h(b)h(c)
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are square-free.
The desired morphism was constructed. We give it here. Denote

A = bcbacbcabcbabcacbcabcbacbcacbabcbacbcabcbabcacbabcbacbcacbabcacbcabcbacbcacb
abcbacbcabcbabcacbcabcbacbcacbabcacbcabcbabcacbabcbacbcabcbabcacbcabcbacbcacbabc
bacbcabcbabcacbabcbacbcacbabcacbcabcbacbcacbabcbacbcabcbabcacbcabcbacbcabacba

B = bcbacbcabcbabcacbcabcbacbcacbabcbacbcabcbabcacbabcbacbcacbabcacbcabcbacbcacb
abcbacbcabcbabcacbcabcbacbcacbabcacbcabcbabcacbabcbacbcabcbabcacbcabcbacbcacbabc
bacbcabcbabcacbabcbacbcacbabcacbcabcbacbcacbabcbacbcabcbabcacbcabcbacbcacbaca

B′ = cbcabcbacbcacbabcbacbcabcbabcacbcabcbacbcacbabcacbcabcbabcacbabcbacbcabcbabc
acbcabcbacbcacbabcbacbcabcbabcacbabcbacbcacbabcacbcabcbacbcacbabcbacbcabcbabcacb
cabcbacbcacbabcacbcabcbabcacbabcbacbcabcbabcacbcabcbacbcacbabcbacbcabcbabcaba

C = bcbacbcabcbabcacbcabcbacbcacbabcbacbcabcbabcacbcabcbacbcabacbabcbacbcabcbabc
acbcabcbacbcacbabcbacbcabcbabcacbabcbacbcacbabcacbcabcbacbcacbabcbacbcabcbabcacb
cabcbacbcacbabcacbcabcbabcacbabcbacbcabcbabcacbcabcbacbcacbabcbacbcabcbabcaba

D = bcbacbcabcbabcacbcabcbacbcacbabcbacbcabcbabcacbcabcbacbcabacbabcbacbcabcbabc
acbcabcbacbcacbabcbacbcabcbabcacbabcbacbcacbabcacbcabcbacbcacbabcbacbcabcbabcacb
cabcbacbcacbabcacbcabcbabcacbabcbacbcabcbabcacbcabcbacbcacbabcbacbcabcbacabca

D′ = cbcabcbacbcacbabcbacbcabcbabcacbcabcbacbcacbabcbacbcabcbacabcacbcabcbacbcacb
abcbacbcabcbabcacbcabcbacbcacbabcacbcabcbabcacbabcbacbcabcbabcacbcabcbacbcacbabc
bacbcabcbabcacbabcbacbcacbabcacbcabcbacbcacbabcbacbcabcbabcacbcabcbacbcabacba

(the words B′ and D′ can be derived from B and D respectively by replacing b↔ c).
The constructed morphism h is

h(a) = BA
h(b) = BDB′D′

h(c) = BCB′D′

As a result of this construction we conclude that

Theorem 4.1 Let F be the set of ternary square-free words. Then ρa(F ) ≤ 64/233 =
0.274678 · · · for all letters a.

In combination with the lower bound given in Corollary 4.1 we have

Theorem 4.2 Let F be the set of ternary square-free words. Then 0.274648 · · · = 1780/6481 ≤
ρa(F ) ≤ 64/233 = 0.274678 · · · for all letters a.

Thus, ρa(F ) = 0.2746 · · ·.
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