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Abstract

We prove that the Hankel transformation of a sequence whose elements are the

sums of two adjacent Catalan numbers is a subsequence of the Fibonacci numbers.

This is done by finding the explicit form for the coefficients in the three-term recur-

rence relation that the corresponding orthogonal polynomials satisfy.

1. Introduction

Let A = {a0, a1, a2, ...} be a sequence of real numbers. The Hankel matrix gener-
ated by A is the infinite matrix H = [hi,j ], where hi,j = ai+j−2, i.e.,
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2

H =

















a0 a1 a2 a3 ...
a1 a2 a3 a4 ...
a2 a3 a4 a5 ...
a3 a4 a5 a6 ...
a4 a5 a6 a7 ...
...

...
...

...
. . .

















The Hankel matrix Hn of order n is the upper-left n × n submatrix of H and
the Hankel determinant of order n of A, denoted by hn, is the determinant of the
corresponding Hankel matrix.

For a given sequence A = {a0, a1, a2, ...}, the Hankel transform of A is the corre-
sponding sequence of Hankel determinants {h0, h1, h2, . . . } (see Layman [5]).

The elements of the sequence in which we are interested (A005807 of the On-Line
Encyclopedia of Integer Sequences (EIS) [10], also INRIA [3]) are the sums of two
adjacent Catalan numbers:

an = c(n) + c(n+ 1) =
1

n+ 1

(

2n

n

)

+
1

n+ 2

(

2n+ 2

n+ 1

)

=
(2n)!(5n+ 4)

n!(n+ 2)!
(n = 0, 1, 2, . . .).

This sequence starts as follows:

2, 3, 7, 19, 56, 174 . . .

In a comment stored with sequence A001906 Layman conjectured that the Han-
kel transformation of {an}n≥0 equals the sequence A001906, i.e., the bisection of
Fibonacci sequence. In this paper we shall prove a slight generalization of Layman’s
conjecture.

The generating function G(x) for the sequence {an}n≥0 is given by

G(x) =
∞
∑

n=0

anx
n =

1

x

(

(1−
√
1− 4x)(1 + x)

2x
− 1

)

(1)

It is known (for example, see Krattenthaler [4]) that the Hankel determinant hn
of order n of the sequence {an}n≥0 equals

hn = an0β
n−1
1 βn−2

2 · · · β2
n−2βn−1, (2)

where {βn}n≥1 is the sequence given by:

G(x) =
∞
∑

n=0

anx
n =

a0

1 + α0x−
β1x

2

1 + α1x− β2x
2

1 + α2x− · · ·

(3)

http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A005807
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001906
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001906
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The sequences {αn}n≥0 and {βn}n≥1 are the coefficients in the recurrence relation

Pn+1(x) = (x− αn)Pn(x)− βnPn−1(x)

where {Pn(x)}n≥0 is the monic polynomial sequence orthogonal with respect to the
functional L determined by

L[xn] = an (n = 0, 1, 2, . . .). (4)

In the next section this functional is constructed and a theorem concerning the
polynomials {Pn(x)}n≥0 and the sequences {αn}n≥0 and {βn}n≥1 is proved.

2. Main Theorem

We would like to express L[f ] in the form:

L[f(x)] =

∫

R

f(x)dψ(x),

where ψ(x) is a distribution, or, even more, to find the weight function w(x) such
that w(x) = ψ′(x).

Denote by F (z) the function

F (z) =
∞
∑

k=0

akz
−k−1,

From the generating function (1), we have:

F (z) = z−1 G
(

z−1) =
1

2

{

z − 1− (z + 1)

√

1− 4

z

}

. (5)

From the theory of distribution functions (see Chihara [1]), we have Stieltjes inver-
sion function

ψ(t)− ψ(s) = − 1

π

∫ t

s

ℑF (x+ iy)dx. (6)

Since F (z̄) = F (z), it can be written in the form

ψ(t)− ψ(0) = − 1

2πi
lim
y→0+

∫ t

0

[

F (x+ iy)− F (x− iy)
]

dx. (7)

Knowing that
∫ t

0

F (x+ a)dx =
1

4

{

a2
√

1− 4

a
− 2t+ 2at+ t2 − (a+ t)2

√

1− 4

a+ t

}

−2 log
(

−2 + a+ a

√

1− 4

a

)

+ 2 log
(

−2 + a+ t+ (a+ t)

√

1− 4

a+ t

)

,
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we find the distribution function

ψ(t) =















1
4π

{

t
√

t(4− t)− 8
(

π − arctan

√
(4−t)t

2−t

)

}

, 0 ≤ t < 2;

1
4π

{

t
√

t(4− t)− 8 arctan

√
(4−t)t

t−2

}

; 2 ≤ t ≤ 4.

After differentiation of ψ(t) and simplification of the resulting expression, we
finally have:

w(x) =
1

2
(x+ 1)

√

4

x
− 1, x ∈ (0, 4). (8)

In this way, we obtained the positive-definite L that satisfies (4) and proved that
the corresponding orthogonal polynomial sequence exists. We have

Theorem 1. The monic polynomial sequence {Pn(x)} orthogonal with respect to the

linear functional

L(f) :=
1

2π

∫ 4

0

f(x)(x+ 1)

√

4

x
− 1dx, (9)

satisfies the three-term recurrence relation

Pn+1(x) = (x− αn)Pn(x)− βnPn−1(x), (10)

with

αn = 2− 1

F2n+1F2n+3

, βn = 1 +
1

F 2
2n+1

, k ≥ 0 (11)

where Fi is the i-th Fibonacci number.

Example 1. The first members of this sequence are:

P0(x) = 1;

P1(x) = x− 3

2
;

P2(x) = x2 − 17

5
x+

8

5
;

P3(x) = x3 − 70

13
x2 +

95

13
x− 21

13
;

P4(x) = x4 − 251

34
x3 +

290

17
x2 − 435

34
x+

55

34
.

Notice that Pn(0) = (−1)nF2n+2/F2n+1.

Proof of Theorem 1. Denoting by Wn(x) = P
(1/2,−1/2)
n (x) (n ≥ 0) a special

Jacobi polynomial, which is also known as the Chebyshev polynomial of the fourth

kind.

The sequence of these polynomials is orthogonal with respect to p(1/2,−1/2)(x) =
(1 − x)1/2(1 + x)−1/2 on the interval (−1, 1). These polynomials can be expressed
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(Szegö [9]) by

Wn(cos θ) =
sin(n+ 1

2
)θ

2n sin 1
2
θ
.

and satisfy the three-term recurrence relation (Chihara [1]):

Wn+1(x) = (x− α∗
n) Wn(x)− β∗

nWn−1(x) (n = 0, 1, . . .),

W−1(x) = 0, W0(x) = 1,

where

α∗
0 = −1

2
, α∗

n = 0, β∗
0 = π, β∗

n =
1

4
(n ≥ 1).

If we use the weight function p̂(t) = (t − c)p(1/2,−1/2)(t), then the corresponding

coefficients α̂n and β̂n can be evaluated as follows (see, for example, Gautschi [2])

α̂n = c− Wn+1(c)

Wn(c)
− β∗

n+1

Wn(c)

Wn+1(c)
, (12)

β̂n = β∗
n

Wn−1(c)Wn+1(c)

W 2
n(c)

, n ∈ N. (13)

Here, we use c = −3/2 and p̂(x) = (x+ 3/2)(1− x)1/2(1 + x)−1/2.

If we write λn = Wn(−3/2) then, using the three-term recurrence relation for
Wn(x), we have

4λn+1 + 6λn + λn−1 = 0,

with initial values λ0 = 1, λ1 = −1.

So, we find

λn = Wn(−3/2) =
(−1)n

2
√
5 4n

{

(
√
5 + 1)(3 +

√
5)n + (

√
5− 1)(3−

√
5)n

}

.

Denoting by

φ =
1 +

√
5

2
, φ =

1−
√
5

2
(14)

the golden section numbers, we can write:

λn = Wn(−3/2) =
(−1)n√
5 2n

(φ2n+1 − φ
2n+1

) =
(−1)n

2n
F2n+1. (15)

In order to simplify further algebraic manipulations we shall use

F2n−1F2n+3 = F 2
2n+1 + 1 (16)

This formula is a special case of the identity (Vajda [12]):

G(n+ i)H(n+ k)−G(n)H(n+ i− k) = (−1)n(G(i)H(k)−G(0)H(i+ k)) (17)

where G and H are sequences that satisfy the same recurrence relation as the Fi-
bonacci numbers with possibly different initial conditions. However, we take both
G and H to be the Fibonacci numbers and n→ 2n+ 1, i = 2, k = −2.
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Now

β̂n =
1

4

λn−1λn+1

λ2n
=

1

4

F2n−1F2n+3

F 2
2n+1

=
1

4

{

1 +
1

F 2
2n+1

}

(18)

and

α̂n = −3

2
− λn+1

λn
− 1

4

λn
λn+1

=
−3F2n+1F2n+3 + F 2

2n+3 + F 2
2n+1

2F2n+1F2n+3

=
F 2
2n+2 − F2n+1F2n+3

2F2n+1F2n+3

= − 1

2F2n+1F2n+3

.

If a new weight function p(x) is introduced by

p(x) = p̂(ax+ b)

then we have

αn =
α̂n − b

a
, βn =

β̂n
a2

(n ≥ 0).

Now, by using x 7→ x/2 − 1, i.e., a = 1/2 and b = −1, we have the wanted weight
function

w(x) = p̂(
x

2
− 1) =

1

2
(x+ 1)

√

4− x

x
.

Thus

αn = 2− 5

(φ2n+1 − φ
2n+1

)(φ2n+3 − φ
2n+3

)
= 2− 1

F2n+1F2n+3

(19)

and

βn = 1 +
5

(φ2n+1 − φ
2n+1

)2
= 1 +

1

F 2
2n+1

(20)

finishing the proof of (1) .�

3. Layman’s conjecture

By making use of (2) we have that:

hn = an0

(

1 +
1

F 2
3

)n−1 (

1 +
1

F 2
5

)n−2

· · ·
(

1 +
1

F 2
2n−1

)

(21)
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Using (16) we can write (21) as:

hn = an0

(

F1F5

F 2
3

)n−1(
F3F7

F 2
5

)n−2(
F5F9

F 2
7

)n−3

· · · F2n−3F2n+1

F 2
2n−1

(22)

Since a0 = 2 = F3 the corresponding factors cancel, therefore:

hn = F2n+1 (n ≥ 0),

thus proving that Hankel transform of A005807 equals A001519 -sequence of Fi-
bonacci numbers with odd indices.

As we have mentioned in the introduction, Layman observed that the Hankel
transform of A005807 equals A001906 -sequence of Fibonacci numbers with even
indices. This sequence is obtained if we start the Hankel matrix from a1 = 3, i.e.,
determinants will have a1 on the position (1, 1).

The proof of this fact is almost identical with the proof presented here, and
so we do not include it. Notice that now we construct L[xn] = an+1 and that
a1 = 3 = F4; in (17) we take n → 2n. We also use the easily provable fact
Pn(0) = (−1)nF2n+2/F2n+1 (see Example 1).

Finally we mention that, following Layman [5], it is known that the Hankel trans-
form is invariant with the respect to the Binomial and Invert transform, so all the
sequences obtained from A005807 using these two transformations have the Hankel
transform shown here.
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