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Abstract

The gcd-sum is an arithmetic function defined as the sum of the gcd’s of the first n integers
with n : g(n) =

∑n
i=1(i, n). The function arises in deriving asymptotic estimates for a

lattice point counting problem. The function is multiplicative, and has polynomial growth.
Its Dirichlet series has a compact representation in terms of the Riemann zeta function.
Asymptotic forms for values of partial sums of the Dirichlet series at real values are derived,
including estimates for error terms.
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1 Introduction

This article is a study of the gcd-sum function: g(n) =
∑n

i=1(i, n). The function arose in the
context of a lattice point counting problem, for integer coordinate points under the square
root curve. The function is multiplicative and has a derivative-like expression for its values
at prime powers. The growth function is O(n1+ǫ) and the corresponding Dirichlet series
G(s) converges at all points of the complex plane, except at the zeros of the Riemann zeta
function and the point s = 2, where it has a double pole. Asymptotic expressions are derived
for the partial sums of the Dirichlet series at all real values of s.

These results may be compared with those of [3, 4, 5] where a different arithmetic class
of sums of the gcd are studied, namely those based on g(n) =

∑n
i,j=1(i, j) and its general-

izations. Note that the functions fail to be multiplicative.
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The original lattice point problem which motivated this work is solved using a method
based on that of Vinogradov. The result is then compared with an expression found using
the gcd-sum.

2 GCD-Sum Function

The gcd-sum is defined to be

g(n) =
n

∑

j=1

(j, n) (1)

The function that is needed in the application to counting lattice points, described below,
is the function S defined by

S(n) =
n

∑

j=1

(2j − 1, n) (2)

Theorem 2.1. The function S and gcd-sum g are related by

S(n) =

{

g(n) n odd

2g(n)− 4g(n
2
) n even

(3)

Proof. For all n ≥ 1

n
∑

j=1

(2j, n) +
n

∑

j=1

(2j − 1, n) =
2n
∑

j=1

(j, n) = 2g(n) (4)

If n is odd,
n

∑

j=1

(2j, n) =
n

∑

j=1

(j, n) = g(n)

From this and (4) we obtain the equation S(n) = g(n).
If n is even,

n
∑

j=1

(2j, n) = 2
n

∑

j=1

(j,
n

2
) = 4g(

n

2
)

and again the result follows by (4).

The following theorem gives the value of g at prime powers. Even though a direct proof
is possible, we give a proof by induction since it reveals more of the structure of the function.

Theorem 2.2. For every prime number p and positive integer α ≥ 1:

g(pα) = (α + 1)pα − αpα−1 (5)
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Proof. When α = 1:

g(p) = (1, p) + (2, p) + · · ·+ (p, p) = (p− 1) + p = 2p− 1

Similarly when α = 2:

g(p2) = (1, p2) + (2, p2) + · · ·+ (p, p2) + (p+ 1, p2) + · · ·+ (2p, p2) + · · ·+ (p2, p2)

= 1 + 1 · · ·+ p+ 1 + · · ·+ p+ · · ·+ p2

= (p2 − p) + p(p− 1) + p2

= 3p2 − 2p

Hence the result is true for α = 1 and for α = 2. Now for any α ≥ 2:

g(pα) =

pα−1

∑

j=1

(j, pα) +

pα−1
∑

j=pα−1+1

(j, pα) + pα

= g(pα−1) + pα +

pα−1
∑

j=pα−1+1

(j, pα − 1)

But

pα−1
∑

j=pα−1+1

(j, pα − 1) =

pα−pα−1−1
∑

j=1

(j, pα−1)

=

pα−pα−1

∑

j=1

(j, pα−1)− pα−1

= (p− 1)g(pα−1)− pα−1

Hence
g(pα) = pα − pα−1 + pg(pα−1)

Thus, if we assume for some β that

g(pβ) = (β + 1)pβ − βpβ−1 ,

then

g(pβ+1) = pβ+1 − pβ + pg(pβ)

= pβ+1 − pβ + p
[

(β + 1)pβ + βpβ−1
]

= (β + 2)pβ+1 − (β + 1)pβ

and the result follows by induction.

Theorem 2.3. The following expression gives the function g in terms of Euler’s totient

function φ :

g(n) =
n

∑

j=1

(j, n) = n
∑

d|n

φ(d)

d
(6)
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Proof. The integer e is equal to the greatest common divisor (j, n) if and only if e|n and
e|j and ( j

e
, n
e
) = 1 for 1 ≤ j ≤ n. Therefore the terms with (j, n) = e are φ(n

e
) in number.

Grouping terms in the sum for g(n) with value e together, it follows that

g(n) =
∑

e|n
eφ(

n

e
) =

∑

d|n

φ(d)

d/n
= n

∑

d|n

φ(d)

d

Corollary 2.4. The function g is multiplicative, being the divisor sum of a multiplicative

function.

Note that g is not completely multiplicative, nor does it satisfy any modular style of
identity of the form

g(n)g(m) =
∑

d|(m,n)

h(d)g(
mn

d2
)

3 Bounds

Theorem 3.1. The function g is bounded above and below by the expressions

max(2− 1

n
,
(3

2

)ω(n)

) ≤ g(n)

n
≤ 27

( log n

ω(n)

)ω(n)

where n is any positive integer and ω(n) is the number of distinct prime numbers dividing n.

Proof. The bound

g(n) =
n

∑

j=1

(j, n) ≥ 1(n− 1) + n = 2n− 1

gives the lower bound

2− 1

n
≤ g(n)

n

Now consider

g(n)

n
=

∏

p|n

g(pα)

pα
(by 2.1)

=
∏

p|n

(

(α + 1)− α

p

)

(Theorem 2.2)

≥
∏

p|n
(2− 1

p
) ≥

(3

2

)ω(n)

since α ≥ 1 and p ≥ 2.

This completes the derivation of the second part of the lower bound.
By equation (5),

g(pα)

pα
= α(1− 1

p
) + 1 ≤ wα log p
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where w = 3 if p = 2, 3, 5 or w = 1 if p ≥ 7. Hence, if pi ≥ 7 for every i and n =
∏m

i=1 p
αi

i ,
then

g(n)

n
≤

m
∏

i=1

αi log pi =
m
∏

i=1

log(pαi

i )

Now

log n =
m
∑

i=1

αi log pi

If f is the monomial function f(x) =
∏m

i=1 xi of real variables subject to the constraints
xi ≥ 1 and

∑

xi = α, for some fixed positive real number α, then (using Lagrange multipliers)
the maximum value of f is ( α

m
)m and occurs where each xi =

α
m
. Hence

g(n)

n
≤

( log n

m

)m
=

( log n

ω(n)

)ω(n)

In general, using α1 = 1 if 2 ∤ n, etc.,

g(n)

n
≤ 27(α1 log p1)(α2 log p2)(α3 log p3)

∏

pi≥7

αi log pi

= 27
m
∏

i=1

αi log pi

≤ 27
( log n

ω(n)

)ω(n)

The upper bound in the expression given by the previous theorem is not very useful,
given the extreme variability of ω(n). A plot of the first 200 values of g(n)/n given in Figure
1 illustrates this variability. The following estimates are more useful in practice.

Theorem 3.2. The functions g and S satisfy for all ǫ > 0

g(n) = O(n1+ǫ) (7)

S(n) = O(n1+ǫ). (8)

Proof. This follows immediately from Theorem 2.3, since φ(d) ≤ d and the divisor function
d(n) = O(nǫ).

4 Dirichlet Series

Define a Dirichlet series based on the function g:

G(s) =
∞
∑

n=1

g(n)

ns
, for σ = ℜ(s) > 2
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Figure 1: The functions g(n)/n and nǫ

Theorem 4.1. The Dirichlet series for G(s) converges absolutely for σ > 2 and has an

analytic continuation to a meromorphic function defined on the whole of the complex plane

with value

G(s) =
ζ(s− 1)2

ζ(s)

where ζ(s) is the Riemann zeta function.

Proof. First write g as a Dirichlet product:

g(n) =
∑

d|n
φ(d)

n

d
= (φ ∗ g)(n)

Hence, if σ > 2,

G(s) =
(

∞
∑

n=1

φ(n)

ns

)(

∞
∑

n=1

n

ns

)

= ζ(s− 1)
(

∞
∑

n=1

φ(n)

ns

)

But [1]

φ(n) =
∑

d|n
µ(d)

n

d

Therefore

G(s) = ζ(s− 1)2
(

∞
∑

n=1

µ(n)

ns

)

=
ζ(s− 1)2

ζ(s)
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Since the right hand side is valid on the whole of the complex plane, G(s) has the claimed
analytic continuation with a double pole at s = 2 and a pole at every zero of ζ(s).

We now derive asymptotic expressions for the partial sums of this Dirichlet series of g by
a method which employs good expressions for Dirichlet series based on Euler’s function φ,
leading to an improvement in the error terms.

If α ∈ R, define the partial sum function Gα by

Gα(x) =
∑

n≤x

g(n)

nα

Lemma 4.2. If f(x) = O(log x) then
∑

n≤x f(
x
n
) = O(x).

Proof. This follows easily from the estimate

log(⌊x⌋!) = x log x− x+O(log x)

In what follows we define the constant function hα(x) = α for each real number α.

Theorem 4.3. As x → ∞

G1(x) =
x log x

ζ(2)
+O(x)

Proof. By Theorem 2.3, if f(n) = φ(n)/n,

g(n)

n
=

∑

d|n

φ(d)

d

= (h1 ∗ f)(n)
If we define F (x) =

∑

n≤x f(n) then, by [1],

F (x) =
x

ζ(2)
+O(log x)

Therefore (using Lemma 5.1 to derive the error estimate)

G1(x) =
∑

n≤x

h1(n)F (
x

n
)

=
∑

n≤x

F (
x

n
)

=
x

ζ(2)
[1 +

1

2
+

1

3
+ · · ·+ 1

⌊x⌋ ] +O(x)

=
x

ζ(2)
[log x+ γ +O(

1

x
)] +O(x)

=
x log x

ζ(2)
+O(x)
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Theorem 4.4. As x → ∞,

G0(x) =
x2 log x

2ζ(2)
+O(x2)

Proof. By Theorem 2.3 with f(n) = n:

g(n) =
∑

d|n

n

d
φ(d)

= (f ∗ φ)(n)
= (φ ∗ f)(n)

If we define F (x) =
∑

n≤x n then

F (x) =
⌊x⌋(⌊x⌋+ 1)

2
=

x2

2
+O(x)

Therefore

G0(x) =
∑

n≤x

φ(n)F (
x

n
)

=
x2

2

∑

n≤x

φ(n)

n2
+O(x2)

=
x2 log x

2ζ(2)
+O(x2)

Lemma 4.5. For all α ∈ R
Gα(x) =

∑

n≤x

n1−αΦα(
x

n
)

where

Φα(x) =
∑

n≤x

φ(n)

nα

Proof. Define the monomial function mβ(x) = x−β for all real β and positive x. By Theorem
2.3,

g(n)

nα
=

∑

d|n

φ(d)

dα
(
n

d
)1−α

= (φα ∗mα−1)(n)

The lemma follows directly from this expression.
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Below we derive an asymptotic expression forGα for all real values of α. This is interesting
because of the uniform applicability of the same expression. First we set out some standard
estimates [1] which are collected together below for easy reference. Let

Sα(x) =
∑

n≤x

1

nα

for all positive x and real α. Then

(a) Φ0(x) =
x2

2ζ(2)
+O(x log x)

(b) Φ1(x) =
x

ζ(2)
+O(log x)

(c) Φ2(x) =
log x

ζ(2)
+

γ

ζ(2)
− A+O(

log x

x
)

(d) Φα(x) =
x2−α

(2− α)ζ(2)
+

ζ(α− 1)

ζ(α)
+O(x1−α log x), α > 1, α 6= 2

(e) Φα(x) =
x2−α

(2− α)ζ(2)
+O(x1−α log x), α ≤ 1

(A) S1(x) = log x+ γ +O(
1

x
)

(B) Sα(x) =
x1−α

1− α
+ ζ(α) +O(

1

xα
), α > 0, α 6= 1

(C) Sα(x) =
x1−α

1− α
+O(

1

xα
), α ≤ 0

where in (c)

A =
∞
∑

n=1

µ(n) log n

n2
≅ −0.35

Note that there are better estimates for the error terms, for

(a) O(x log
2

3 x(log log x)1+ǫ) [8] and for (b) O(log
2

3 x(log log x)
4

3 ) [9] but, since these are only
available for α = 0 and α = 1 we do not use them.

Even though there is a wide diversity of expressions in this set, a very similar expression
holds for Gα(x), for all real values of α, except α = 2 which corresponds to the pole of G(s):

Theorem 4.6. If α < 2:

Gα(x) =
x2−α log x

(2− α)ζ(2)
+O(x2−α),

if α = 2:

G2(x) =
log2 x

2ζ(2)
+O(log x)
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and if α > 2:

Gα(x) =
x2−α log x

(2− α)ζ(2)
+

ζ(α− 1)2

ζ(α)
+O(x2−α).

Proof. Case 0: Let α = 0. The stated result is given by Theorem 4.4 above.
Case 1: Let α = 1. The result is given by Theorem 4.3.
Case 2: Let α = 2.

G2(x) =
∑

n≤x

n−1Φ2(
x

n
)

=
∑

n≤x

log(x
n
)

nζ(2)
+ (

γ

ζ(2)
− A)

∑

n≤x

n−1 +
∑

n≤x

O
(

n−1 log(
x
n
)

x/n

)

=
log x

ζ(2)
(
∑

n≤x

1

n
)− 1

ζ(2)

∑

n≤x

log n

n
+ (

γ

ζ(2)
− A)(

∑

n≤x

1

n
) +O(1)

= [
log x

ζ(2)
+

γ

ζ(2)
− A][log x+ γ +O(

1

x
)]− 1

ζ(2)
[
log2 x

2
+ A1 +O(

log x

x
)] +O(1)

=
log2 x

2ζ(2)
+ log x[

2γ

ζ(2)
− A] +O(1)

Case 3: If α < 1 we have

Gα(x) =
∑

n≤x

1

nα−1
Φα(

x

n
)

=
∑

n≤x

1

nα−1

x2−α

n2−α(2− α)ζ(2)
+
∑

n≤x

O
(

x1−α log(
x

n
)
)

=
x2−α

(2− α)ζ(2)
(
∑

n≤x

1

n
) +O(x2−α)

=
x2−α

(2− α)ζ(2)
[log x+ γ +O(

1

x
)] +O(x2−α)

=
x2−α log x

(2− α)ζ(2)
+O(x2−α)
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Case 4: Finally, if α > 1 and α 6= 2:

Gα(x) =
∑

n≤x

1

nα−1
Φα(

x

n
)

=
∑

n≤x

1

nα−1

[ x2−α

n2−α(2− α)ζ(2)
+

ζ(α− 1)

ζ(α)
+O(

x1−α

n1−α
log(

x

n
))
]

=
x2−α

(2− α)ζ(2)
(
∑

n≤x

1

n
) +

ζ(α− 1)

ζ(α)
(
∑

n≤x

1

nα−1
) +O(x2−α)

=
x2−α

(2− α)ζ(2)
[log x+ γ +O(

1

x
)]

+
ζ(α− 1)

ζ(α)
[
x2−α

2− α
+ ζ(α− 1) +O(x1−α)] +O(x2−α)

=
x2−α log x

(2− α)ζ(2)
+

ζ(α− 1)2

ζ(α)
+O(x2−α)

For α ∈ {0, 1, 2} we can improve these asymptotic expressions by deriving an additional
term and a smaller error. This has already been done for α = 2. In both of the remaining
cases we use the following useful, and again elementary, device [1]: If ab = x, F (x) =
∑

n≤x f(n) and H(x) =
∑

n≤x h(n) then
∑

e,d≤x

f(e)h(d) =
∑

n≤a

f(n)H(
x

n
) +

∑

n≤b

h(n)F (
x

n
)− F (a)H(b)

in the special case a = b =
√
x.

Theorem 4.7.

G1(x) =
x log x

ζ(2)
+ x[

2γ

ζ(2)
− A− 1

ζ(2)
] +O(

√
x log x)

Proof. First rewrite G1(x):

G1(x) =
∑

n≤x

Φ1(
x

n
) (by Lemma 4.2)

=
∑

n≤x

∑

m≤x/n

φ(n)

n

=
∑

e,d≤x

φ(d)

d
1.

Now let F and H be defined by

F (x) =
∑

n≤x

φ(n)

n
=

x

ζ(2)
+O(log x)

H(x) =
∑

n≤x

1 = ⌊x⌋
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Using the device described above, rewrite G1 in terms of F and H:

G1(x) =
∑

n≤√
x

φ(n)

n
H(

x

n
) +

∑

n≤√
x

F (
x

n
)− F (

√
x)H(

√
x)

=
∑

n≤√
x

φ(n)

n
[
x

n
+O(1)] +

∑

n≤√
x

[
x

nζ(2)
+O(log(

x

n
))]

−(

√
x

ζ(2)
+O(log(x)))(

√
x+O(1))

= x
∑

n≤√
x

φ(n)

n2
+O(

∑

n≤√
x

φ(n)

n
) +

x

ζ(2)

∑

n≤√
x

1

n

+O(
√
x log x) +O(

∑

n≤√
x

log n)− x

ζ(2)
+O(

√
x log x)

= x[
log x

2ζ(2)
+

γ

ζ(2)
− A+O(

log(x)√
x

] +O(
√
x)

+
x

ζ(2)
[log ⌊

√
x⌋+ γ +O(

1√
x
)]

+O(
√
x log x) +O(log[

√
x]!)− x

ζ(2)

=
x log x

ζ(2)
+ x[

2γ

ζ(2)
− A− 1

ζ(2)
] +O(

√
x log x).

Theorem 4.8.

G2(x) =
log2 x

2ζ(2)
+ log x[

2γ

ζ(2)
− A] +O(1)

Proof. See the proof of Theorem 5.4, case 2 above.

Theorem 4.9.

G0(x) =
x2 log x

2ζ(2)
+

x2ζ(2)2

2ζ(3)
+O(x3/2 log x)

Proof. First we state four estimates:

(1) G1(x) =
∑

n≤x

g(n)

n
=

x log x

ζ(2)
+O(x) (Theorem 4.2)

(2) F (x) =
∑

n≤x

n =
x2

2
+O(x)

(3)
∑

n≤x

log n = x log x+O(x)

(4) G3(x) =
ζ(2)2

ζ(3)
+O(

log x

x
) (by Theorem 4.4)
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Expand G0 using f(n) = n and h(n) = g(n)/n so H = G1:

G0(x) =
∑

n≤x

g(n) =
∑

n≤x

g(n)

n
n

=
∑

n≤√
x

g(n)

n
F (

x

n
) +

∑

n≤√
x

nG1(
x

n
)− F (

√
x)G1(

√
x)

=
∑

n≤√
x

g(n)

n
[
x2

2n2
+O(

x

n
)] +

∑

n≤√
x

n[
x
n
log x

n

ζ(2)
+O(

x

n
)]

−(
x

2
+O(

√
x))(

√
x log x

2ζ(2)
+O(

√
x)) (by (1) and (2))

=
x2

2

∑

n≤√
x

g(n)

n3
+O

(

∑

n≤√
x

g(n)

n2

)

+
x log x

ζ(2)

∑

n≤√
x

1

− x

ζ(2)

∑

n≤√
x

log n+O(x
∑

n≤√
x

1)− x3/2 log x

4ζ(2)
+O(x3/2)

=
x2

2
G3(

√
x) +O(log2 x) +

x2 log x

2ζ(2)
+O(x3/2 log x)

− x

ζ(2)
[

√
x log x

2
+O(

√
x)] +O(x3/2)− x3/2 log x

4ζ(2)
+O(x3/2) (by (3))

Therefore

G0(x) =
x2

2
[
ζ(2)2

ζ(3)
+O(

log x√
x
)] +

x2 log x

2ζ(2)

− x

ζ(2)
[

√
x log x

2
+O(

√
x)]

−x3/2 log x

4ζ(2)
+O(x3/2 log x) (using (4))

=
x2 log x

2ζ(2)
+

x2ζ(2)2

2ζ(3)
+O(x3/2 log x)

5 Application

Consider the problem of counting the integer lattice points in the first quadrant in the square
[0, R]× [0, R] and under the curve y =

√
Rx as R → ∞.

Let R = n2 and count lattice points by adding those in trapezia under the curve. If T
is a trapezium with integral coordinates for each vertex (0, 0), (b, 0), (0, α), and (b, β), then
by Pick’s theorem [6] the area is equal to the number of interior points plus one half the
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number of interior points on the edges plus one. From this it follows that the total number
of interior lattice points is given by the expression

1

2
[(b− 1)(α + β)− b− (b, β − α) + 2]

where (u, v) is the greatest common divisor.
We approximate the region under the curve y = n

√
x and above the interval [0, n2] by n

trapezia with the j-th having the base [(j − 1)2, j2]. Divide the lattice points inside and on
the boundary of these trapezia into five sets:

L1 = #{interior points of trapezia}
L2 = #{interior points of vertical sides}
L3 = #{interior points of the top sides}
L4 = #{interior points of the bottom sides}
L5 = #{vertices of all trapezia}

Then

L1 =
n

∑

j=1

1

2
[(2j − 1)(nj + n(j − 1))− (2j − 1)− n(j − 1)− nj − (2j − 1, n) + 2]

L2 =
n−1
∑

j=1

nj − 1 =
n3

2
− n2

2
− n+ 1

L3 =
n

∑

j=1

[(n, 2j − 1)− 1] = S(n)− n where S is defined in (2)

L4 =
n

∑

j=1

2j − 2 = n2 − n

L5 = 2n+ 1

Hence if N1(R) represents the total number of lattice points,

N1(R) = L1 + L2 + L3 + L4 + L5

=
2

3
n4 − 1

6
n2 +

1

2
S(n)

N1(n
2) =

2

3
n4 − 1

6
n2 +O(n

1

2
+ǫ)

by Theorem 3.2.
It is interesting to note that the area of the gap between the curve and the trapezia is

exactly 1
6
n2.

The total number of points in the trapezia is of course less than the number under the
curve. There are n trapezia, the j-th having width 2j − 1. The maximum distance from the

14



top of the j-th trapezia to the curve is n/4(2j − 1), so the number of additional points is
O(n2). This leads to the estimate

N2(n
2) =

2

3
n4 +O(n2)

for the number N2 of lattice points under the curve.
Now a more accurate estimate for N2 is derived. First the method of Vinogradov [7] is

used to count the fractional parts of the inverse function x = y2/R:
Let b − a ≪ A where A ≫ 1. Let f be a function defined on the positive real numbers

with f ′′ continuous, 0 < f ′(x) ≪ 1 and having f ′′(x) ≫ 1
A
. Then

∑

a<u≤b

{f(u)} =
b− a

2
+O(A

2

3 )

If A = n, f(u) = u2/n, and f ′′(u) = 2/n ≫ A−1 then it follows that

∑

0<u≤n

{f(u)} =
n

2
+O(n

2

3 )

Hence the number of lattice points M(n) under or on the inverse function curve is

M(n) =
n

∑

j=1

⌊j2

n

⌋

+ n+ 1

=
n

∑

j=1

j2

n
−

n
∑

j=1

{j2

n

}

+ n+ 1

=
1

6
(n+ 1)(2n+ 1) +

n

2
+O(n

2

3 )

So if N2(n) represents the number of lattice points strictly under the curve y =
√
Rx

when R = n, then

N2(n) = (n+ 1)2 − 1

6
(n+ 1)(2n+ 1)− n

2
+O(n

2

3 )

=
2

3
n2 + n+O(n

2

3 )

The number of lattice points on the curve is O(n
1

2 ), so does not change this estimate.
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