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Abstract

Let A(n) denote the number of n × n alternating sign matrices and Jm the m
th Jacobsthal number. It is

known that

A(n) =

n−1
∏

`=0

(3`+ 1)!

(n+ `)!
.

The values of A(n) are in general highly composite. The goal of this paper is to prove that A(n) is odd if and

only if n is a Jacobsthal number, thus showing that A(n) is odd infinitely often.
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1 Introduction

In this paper we relate two seemingly unrelated areas of mathematics: alternating sign matrices and Jacob-

sthal numbers. We begin with a brief discussion of alternating sign matrices.

An n× n alternating sign matrix is an n× n matrix of 1s, 0s and −1s such that

• the sum of the entries in each row and column is 1, and

• the signs of the nonzero entries in every row and column alternate.

Alternating sign matrices include permutation matrices, in which each row and column contains only one

nonzero entry, a 1.

For example, the seven 3× 3 alternating sign matrices are
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(

1 0 0
0 1 0
0 0 1

)

,

(

1 0 0
0 0 1
0 1 0

)

,

(

0 0 1
1 0 0
0 1 0

)

,

(

0 0 1
0 1 0
1 0 0

)

,

(

0 1 0
1 0 0
0 0 1

)

,

(

0 1 0
0 0 1
1 0 0

)

,

(

0 1 0
1 −1 1
0 1 0

)

.

The determination of a closed formula for A(n) was undertaken by a variety of mathematicians over

the last 25 years or so. David Bressoud’s text [1] chronicles these endeavors and discusses the underlying

mathematics in a very readable way. See also the survey article [2] by Bressoud and Propp.

As noted in [1], a formula for A(n) is given by

A(n) =

n−1
∏

`=0

(3`+ 1)!

(n+ `)!
. (1)

It is clear from this that, for most values of n, A(n) will be highly composite. The following table shows

the first few values of A(n) (sequence A005130 in [8]). Other sequences related to alternating sign matrices

can also be found in [8].

n A(n) Prime Factorization of A(n)
1 1 1
2 2 2
3 7 7
4 42 2 · 3 · 7
5 429 3 · 11 · 13
6 7436 22 · 11 · 132

7 218348 22 · 132 · 17 · 19
8 10850216 23 · 13 · 172 · 192

9 911835460 22 · 5 · 172 · 193 · 23
10 129534272700 22 · 3 · 52 · 7 · 17 · 193 · 232

11 31095744852375 32 · 53 · 7 · 192 · 233 · 29 · 31
12 12611311859677500 22 · 33 · 54 · 19 · 233 · 292 · 312

13 8639383518297652500 22 · 35 · 54 · 232 · 293 · 313 · 37
14 9995541355448167482000 24 · 35 · 53 · 23 · 294 · 314 · 372

15 19529076234661277104897200 24 · 33 · 52 · 294 · 315 · 373 · 41 · 43
16 64427185703425689356896743840 25 · 32 · 5 · 11 · 293 · 315 · 374 · 412 · 432

17 358869201916137601447486156417296 24 · 3 · 72 · 11 · 292 · 314 · 375 · 413 · 433 · 47
18 3374860639258750562269514491522925456 24 · 73 · 13 · 29 · 313 · 376 · 414 · 434 · 472

19 53580350833984348888878646149709092313244 22 · 73 · 132 · 312 · 376 · 415 · 435 · 473 · 53
20 1436038934715538200913155682637051204376827212 22 · 74 · 132 · 31 · 375 · 416 · 436 · 474 · 532

21 64971294999808427895847904380524143538858551437757 75 · 13 · 374 · 416 · 437 · 475 · 533 · 59 · 61
22 4962007838317808727469503296608693231827094217799731304 23 · 3 · 76 · 373 · 415 · 437 · 476 · 534 · 592 · 612

Table 1: Values of A(n)

Examination of this table and further computer calculations reveals that the first few values of n for

which A(n) is odd are

1, 3, 5, 11, 21, 43, 85, 171.

These appear to be the well–known Jacobsthal numbers {Jn} (sequence A001045 in [8]). They are defined

by the recurrence

Jn+2 = Jn+1 + 2Jn , (2)
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with initial values J0 = 1 and J1 = 1.

This sequence has a rich history, especially in view of its relationship to the Fibonacci numbers. For

examples of recent work involving the Jacobsthal numbers, see [3], [4], [5] and [6].

The goal of this paper is to prove that this is no coincidence: for a positive integer n, A(n) is odd if and

only if n is a Jacobsthal number.

2 The Necessary Machinery

To show that A(Jm) is odd for each positive integer m, we will show that the number of factors of 2 in the

prime decomposition of A(Jm) is zero. To accomplish this, we develop formulas for the number of factors of

2 in

N(n) =

n−1
∏

`=0

(3`+ 1)! and D(n) =

n−1
∏

`=0

(n+ `)! .

Once we prove that the number of factors of 2 is the same for N(Jm) and D(Jm), but not the same for N(n)

and D(n) if n is not a Jacobsthal number, we will have our result.

We will make frequent use of the following lemma. For a proof, see for example [7, Theorem 2.29].

Lemma 2.1. The number of factors of a prime p in N ! is equal to

∑

k≥1

⌊

N

pk

⌋

.

It follows that the number of factors of 2 in N(n) is

N#(n) =
n−1
∑

`=0

∑

k≥1

⌊

3`+ 1

2k

⌋

=
∑

k≥1

N
#
k (n)

where

N
#
k (n) =

n−1
∑

`=0

⌊

3`+ 1

2k

⌋

. (3)

Similarly, the number of factors of 2 in D(n) is given by

D#(n) =
n−1
∑

`=0

∑

k≥1

⌊

n+ `

2k

⌋

=
∑

k≥1

D
#
k (n)

where

D
#
k (n) =

n−1
∑

`=0

⌊

n+ `

2k

⌋

. (4)

For use below we note that the recurrence for the Jacobsthal numbers implies the following explicit

formula (cf. [9]).

Theorem 2.2. The mth Jacobsthal number Jm is given by

Jm =
2m+1 + (−1)m

3
. (5)
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3 Formulas for N
#
k (n) and D

#
k (n)

Lemma 3.1. The smallest value of ` for which

⌊

3`+ 1

2k

⌋

= m,

where m and k are positive integers and k ≥ 2, is







m
3 2
k if m ≡ 0 (mod 3)

m−1
3 2

k + Jk−1 if m ≡ 1 (mod 3)
m−2
3 2

k + Jk if m ≡ 2 (mod 3).

Proof. Suppose m ≡ 0 (mod 3) and ` =
m

3
2k. Then

⌊

3`+ 1

2k

⌋

=

⌊

3
(

m
3 2
k
)

+ 1

2k

⌋

=

⌊

m2k

2k
+
1

2k

⌋

= m,

and no smaller value of ` yields m since the numerators differ by multiples of three.

If m ≡ 1 (mod 3) and ` =
m− 1

3
2k + Jk−1, then

⌊

3`+ 1

2k

⌋

=

⌊

3
(

m−1
3 2

k + Jk−1
)

+ 1

2k

⌋

=









(m− 1)2k + 3
(

2k+(−1)k−1

3

)

+ 1

2k









=

⌊

(m− 1)2k + 2k + (−1)k−1 + 1

2k

⌋

= m, if k ≥ 2,

and no smaller value of ` yields m.

If m ≡ 2 (mod 3) and ` =
m− 2

3
2k + Jk, then

⌊

3`+ 1

2k

⌋

=

⌊

3
(

m−2
3 2

k + Jk
)

+ 1

2k

⌋

=









(m− 2)2k + 3
(

2k+1+(−1)k

3

)

+ 1

2k









=

⌊

(m− 2)2k + 2k+1 + (−1)k + 1

2k

⌋

= m,

and no smaller value of ` yields m.

Lemma 3.2. For any positive integer k, Jk−1 + Jk = 2
k.

Proof. Immediate from (5).
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Lemma 3.3. For any positive integer k,

2k−1
∑

v=0

⌊

3v + 1

2k

⌋

= 2k.

Proof. The result is immediate if k = 1. If k ≥ 2, then by Lemma 3.1, Jk−1 is the smallest value of v for

which

⌊

3v + 1

2k

⌋

= 1 and Jk is the smallest value of v for which

⌊

3v + 1

2k

⌋

= 2. Thus

2k−1
∑

v=0

⌊

3v + 1

2k

⌋

= 0× Jk−1 + 1× [(Jk − 1)− (Jk−1 − 1)] + 2× [(2
k − 1)− (Jk − 1)]

= Jk − Jk−1 + 2(2
k − Jk)

= 2k+1 − 2k by Lemma 3.2

= 2k .

Theorem 3.4. Let n = 2kq + r, where q is a nonnegative integer and 0 ≤ r < 2k. Then

N
#
k (n) =

(

n− r

2k+1

)

(3(n− r)− 2k) + tail(n) (6)

where

tail(n) =

{

3qr if 0 ≤ r ≤ Jk−1
3qr + (r − Jk−1) if Jk−1 < r ≤ Jk
(3q + 2)r − 2k if Jk < r < 2

k.
(7)

Proof. To analyze the sum

N
#
k (n) =

n−1
∑

`=0

⌊

3`+ 1

2k

⌋

we let ` = 2ku+ v, where 0 ≤ v < 2k. Then

⌊

3`+ 1

2k

⌋

=

⌊

3(2ku+ v) + 1

2k

⌋

=

⌊

2k(3u)

2k
+
3v + 1

2k

⌋

= 3u+

⌊

3v + 1

2k

⌋

.

Thus

2kq−1
∑

`=0

⌊

3`+ 1

2k

⌋

=

q−1
∑

u=0

2k−1
∑

v=0

(

3u+

⌊

3v + 1

2k

⌋)

=

q−1
∑

u=0



(3u)2k +

2k−1
∑

v=0

⌊

3v + 1

2k

⌋





=

q−1
∑

u=0

((3u)2k + 2k) by Lemma 3.3

= 2k
q−1
∑

u=0

(3u+ 1)

= 2k
(

3

(

(q − 1)q

2

)

+ q

)
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= 2kq

(

3

(

n− r − 2k

2k+1

)

+ 1

)

=
(q

2

)

(3(n− r − 2k) + 2k+1)

=

(

n− r

2k+1

)

(3(n− r)− 2k).

If r = 0, we have our result. If r > 0 and k = 1, then r = 1 and we have one extra term in our sum,

namely,
⌊

3(2q) + 1

2

⌋

= 3q

and again we have our result since r = 1. If r > 0 and k ≥ 2, then by Lemma 3.1, 2kq is the smallest value

of ` for which

⌊

3`+ 1

2k

⌋

= 3q, 2kq + Jk−1 is the smallest value of ` for which

⌊

3`+ 1

2k

⌋

= 3q + 1,

and 2kq + Jk is the smallest value of ` for which

⌊

3`+ 1

2k

⌋

= 3q + 2.

Hence

2kq+r−1
∑

`=2kq

⌊

3`+ 1

2k

⌋

=

{

3qr if r ≤ Jk−1
3qJk−1 + (3q + 1)(r − Jk−1) if Jk−1 < r ≤ Jk
3qJk−1 + (3q + 1)(Jk − Jk−1) + (3q + 2)(r − Jk) if Jk < r < 2

k.

So, if n = 2kq + r where 0 ≤ r < 2k,

N
#
k (n) =

n−1
∑

`=0

⌊

3`+ 1

2k

⌋

=

2kq−1
∑

`=0

⌊

3`+ 1

2k

⌋

+

2kq+r−1
∑

`=2kq

⌊

3`+ 1

2k

⌋

=

(

n− r

2k+1

)

(3(n− r) − 2k) + tail(n),

where

tail(n) =

{

3qr if r ≤ Jk−1
3qJk−1 + (3q + 1)(r − Jk−1) if Jk−1 < r ≤ Jk
3qJk−1 + (3q + 1)(Jk − Jk−1) + (3q + 2)(r − Jk) if Jk < r < 2

k.

The second expression in tail(n) is clearly equal to 3qr + r − Jk−1. For the third expression, we have

3qJk−1 + (3q + 1)(Jk − Jk−1) + (3q + 2)(r − Jk) = 3qr + Jk − Jk−1 + 2r − 2Jk

= (3q + 2)r − 2k by Lemma 3.2.
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Theorem 3.5. Let n = 2kq + r where q is a nonnegative integer and 0 ≤ r < 2k. Then we have

D
#
k (n) =















(

n− r

2k+1

)

(3(n+ r)− 2k) if 0 ≤ r ≤ 2k−1

(

n− (2k − r)

2k+1

)

(3(n− r) + 2k+1) if 2k−1 < r < 2k.
(8)

Proof. We may write

D
#
k (n) =

2n−1
∑

`=0

⌊

`

2k

⌋

−

n−1
∑

`=0

⌊

`

2k

⌋

.

In both sums,
⌊

`

2k

⌋

= s ,

if 2ks ≤ ` < 2k(s+ 1), so if n = 2kq + r, where 0 < r ≤ 2k, we have

n−1
∑

`=0

⌊

`

2k

⌋

= 2k[1 + 2 + · · ·+ q − 1] + qr

= q

(

n+ r − 2k

2

)

.

If 0 < r ≤ 2k−1, then 2n− 1 = 2k(2q) + (2r − 1), which means

2n−1
∑

`=0

⌊

`

2k

⌋

= 2k[1 + 2 + · · ·+ (2q − 1)] + (2r − 1 + 1)(2q)

= q(2n+ 2r − 2k).

Hence in this case

D
#
k (n) =

n−1
∑

`=0

⌊

n+ `

2k

⌋

=

2n−1
∑

`=0

⌊

`

2k

⌋

−

n−1
∑

`=0

⌊

`

2k

⌋

= q(2n+ 2r − 2k)− q

(

n+ r − 2k

2

)

=

(

n− r

2k+1

)

(3(n+ r) − 2k).

If 2k−1 < r ≤ 2k, say, r = 2k−1 + s where 0 < s ≤ 2k−1, then

2n− 1 = 2(2kq + r)− 1

= 2k(2q) + 2(2k−1 + s)− 1

= 2k(2q + 1) + 2s− 1.

Thus
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2n−1
∑

`=0

⌊

`

2k

⌋

= 2k[1 + 2 + · · ·+ 2q] + (2s− 1 + 1)(2q + 1)

= (2q + 1)(n+ r − 2k).

So in this case

D
#
k (n) =

n−1
∑

`=0

⌊

n+ `

2k

⌋

=

2n−1
∑

`=0

⌊

`

2k

⌋

−

n−1
∑

`=0

⌊

`

2k

⌋

= (2q + 1)(n+ r − 2k)− q

(

n+ r − 2k

2

)

=

(

n+ r − 2k

2k+1

)

(3(n− r) + 2k+1).

The reader will note that in the statement of the theorem we have separated the cases according as

0 ≤ r ≤ 2k−1 and 2k−1 < r < 2k, whereas in the proof the cases are 0 < r ≤ 2k−1 and 2k−1 < r ≤ 2k.

However, these are equivalent since
n− 0

2k+1
(3(n+ 0)− 2k) =

n− (2k − 2k)

2k+1
(3(n− 2k) + 2k+1).

4 A(Jm) is odd

Now that we have closed formulas for N#k (n) and D
#
k (n) we can proceed to prove that A(Jm) is odd for all

Jacobsthal numbers Jm.

Theorem 4.1. For all positive integers m, A(Jm) is odd.

Proof. The proof simply involves substituting Jm into (6) and (8) and showing that N
#
k (Jm) = D

#
k (Jm)

for all k. This implies that N#(Jm) = D
#(Jm), and so the number of factors of 2 in A(Jm) is zero. Our

theorem is then proved.

We break the proof into two cases, based on whether the parity of k is equal to the parity of m.

• Case 1: The parity of m equals the parity of k. Then

2k(Jm−k − 1) + Jk = 2k
(

2m−k+1 + (−1)m−k

3
− 1

)

+
2k+1 + (−1)k

3

=
2m+1 + 2k − 3 · 2k + 2k+1 + (−1)k

3
since (−1)m−k = 1

=
2m+1 + (−1)m

3
since (−1)k = (−1)m

= Jm

Thus, in the notation of Theorems 3.4 and 3.5, q = Jm−k − 1 and r = Jk. We now calculate N
#
k (Jm)

and D#k (Jm) using Theorems 3.4 and 3.5.
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N
#
k (Jm) =

(

Jm − Jk
2k+1

)

(

3(Jm − Jk)− 2
k
)

+ 3(Jm−k − 1)Jk + (Jk − Jk−1)

=
1

2k+1

(

2m+1 + (−1)m

3
−
2k+1 + (−1)k

3

)(

3

(

2m+1 + (−1)m

3
−
2k+1 + (−1)k

3

)

− 2k
)

+ (3Jm−k − 1)Jk − 2
k by Lemma 3.2

=
1

3 · 2k+1
(

2m+1 − 2k+1
) (

2m+1 − 2k+1 − 2k
)

+

(

3

(

2m−k+1 + (−1)m−k

3

)

− 1

)(

2k+1 + (−1)k

3

)

− 2k since (−1)m = (−1)k

=
1

3

(

22m−k+1 − 2m+2 + 2k+1 − 2m + 2k
)

+
1

3
(2m−k+1(2k+1 + (−1)k)− 3 · 2k) since (−1)m−k = 1

=
1

3

(

22m−k+1 − 2m + (−1)k2m−k+1
)

after much simplification. Next, we calculate D#k (Jm), recalling that 2
k−1 < r = Jk < 2

k.

D
#
k (Jm) =

(

Jm − 2
k + Jk

)

2k+1
(

3(Jm − Jk) + 2
k+1
)

=
1

2k+1

(

2m+1 + (−1)m

3
+
2k+1 + (−1)k

3
− 2k

)(

3

(

2m+1 + (−1)m

3
−
2k+1 + (−1)k

3

)

+ 2k+1
)

=
1

3 · 2k+1
(

2m+1 + 2k+1 + 2(−1)k − 3 · 2k
) (

2m+1 − 2k+1 + 2k+1
)

since (−1)m = (−1)k

=
1

3

(

22m−k+1 + 2m+1 + 2m−k+1(−1)k − 3 · 2m
)

=
1

3

(

22m−k+1 − 2m + (−1)k2m−k+1
)

after simplification. We see that N#k (Jm) = D
#
k (Jm).

• Case 2: The parity of m is not equal to the parity of k. Then

2k(Jm−k) + Jk−1 = 2k
(

2m−k+1 + (−1)m−k

3

)

+
2k + (−1)k−1

3

=
2m+1 − 2k + 2k + (−1)k−1

3
= Jm.

Thus, in the notation of Theorems 3.4 and 3.5, q = Jm−k and r = Jk−1. We now calculate N
#
k (Jm)

and D#k (Jm) using Theorems 3.4 and 3.5.

N
#
k (Jm) =

(

Jm − Jk−1
2k+1

)

(

3(Jm − Jk−1)− 2
k
)

+ 3Jm−kJk−1
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=
1

2k+1

(

2m+1 + (−1)m

3
−
2k + (−1)k−1

3

)(

3

(

2m+1 + (−1)m

3
−
2k + (−1)k−1

3

)

− 2k
)

+ 3

(

2m−k+1 + (−1)m−k

3

)(

2k + (−1)k−1

3

)

=
1

3 · 2k+1
(

2m+1 − 2k
) (

2m+1 − 2 · 2k
)

+
1

3
((2m−k+1 − 1)(2k + (−1)k−1)) since (−1)m = (−1)k−1 and (−1)m−k = −1

=
1

3
(22m−k+1 − 2m+1 − 2m + 2k + 2m+1 − 2k + 2m−k+1(−1)k−1 + (−1)k)

=
1

3
(22m−k+1 − 2m + 2m−k+1(−1)k−1 + (−1)k)

after much simplification. Again we find that N#k (Jm) = D
#
k (Jm).

Now we calculate D#k (Jm), recalling that 0 < r < 2
k−1.

D
#
k (Jm) =

(Jm − Jk−1)

2k+1
(3(Jm + Jk−1)− 2

k)

=
1

2k+1

(

2m+1 + (−1)m

3
−
2k + (−1)k−1

3

)(

3

(

2m+1 + (−1)m

3
+
2k + (−1)k−1

3

)

− 2k
)

=
1

3 · 2k+1
(2m+1 − 2k)(2m+1 + 2(−1)k−1) since (−1)m = (−1)k−1

=
1

3
(22m−k+1 − 2m + 2m−k+1(−1)k−1 + (−1)k)

after simplification. Again we find that N#k (Jm) = D
#
k (Jm).

This completes the proof that A(Jm) is odd for all Jacobsthal numbers Jm.

5 The Converse

We now prove the converse to Theorem 4.1. That is, we will prove that A(n) is even if n is not a Jacobsthal

number. As a guide in how to proceed, we include a table of values for N#k (n) and D
#
k (n) for small values

of n and k. This table suggests that N#k (n) ≥ D
#
k (n) for all positive integers n and k. It also suggests that

for each value of n, there is at least one value of k for which N#k (n) is strictly greater than D
#
k (n) except

when n is a Jacobsthal number. (The rows that begin with a Jacobsthal number are indicated in bold-face.)
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n N
#
1 (n) D

#
1 (n) N

#
2 (n) D

#
2 (n) N

#
3 (n) D

#
3 (n) N

#
4 (n) D

#
4 (n) N

#
5 (n) D

#
5 (n) N

#
6 (n) D

#
6 (n)

1 0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 1 0 0 0 0 0 0 0 0 0
3 5 5 2 2 0 0 0 0 0 0 0 0

4 10 10 4 4 1 0 0 0 0 0 0 0
5 16 16 7 7 2 2 0 0 0 0 0 0

6 24 24 11 10 4 4 1 0 0 0 0 0
7 33 33 15 15 6 6 2 0 0 0 0 0
8 44 44 20 20 8 8 3 0 0 0 0 0
9 56 56 26 26 11 11 4 2 0 0 0 0
10 70 70 33 32 14 14 5 4 0 0 0 0
11 85 85 40 40 17 17 6 6 0 0 0 0

12 102 102 48 48 21 20 8 8 1 0 0 0
13 120 120 57 57 25 25 10 10 2 0 0 0
14 140 140 67 66 30 30 12 12 3 0 0 0
15 161 161 77 77 35 35 14 14 4 0 0 0
16 184 184 88 88 40 40 16 16 5 0 0 0
17 208 208 100 100 46 46 19 19 6 2 0 0
18 234 234 113 112 52 52 22 22 7 4 0 0
19 261 261 126 126 58 58 25 25 8 6 0 0
20 290 290 140 140 65 64 28 28 9 8 0 0
21 320 320 155 155 72 72 31 31 10 10 0 0

22 352 352 171 170 80 80 35 34 12 12 1 0
23 385 385 187 187 88 88 39 37 14 14 2 0
24 420 420 204 204 96 96 43 40 16 16 3 0
25 456 456 222 222 105 105 47 45 18 18 4 0

Table 2: Values for N#
k
(n) and D#

k
(n)

(We note in passing that the values of N#1 (n) form sequence A001859 in [8].)

In order to prove the first assertion (that N#k (n) ≥ D
#
k (n)), we separate the functions defined by the

cases in equations (6) and (8) into individual functions denoted by N
#(1)
k (n), N

#(2)
k (n), . . . , D

#(2)
k (n). That

is,

N
#(1)
k (n) :=

(

n− r

2k+1

)

(3(n− r)− 2k) + 3qr

N
#(2)
k (n) :=

(

n− r

2k+1

)

(3(n− r)− 2k) + 3qr + (r − Jk−1)

N
#(3)
k (n) :=

(

n− r

2k+1

)

(3(n− r)− 2k) + (3q + 2)r − 2k

D
#(1)
k (n) :=

(

n− r

2k+1

)

(3(n+ r)− 2k)

D
#(2)
k (n) :=

(

n− (2k − r)

2k+1

)

(3(n− r) + 2k+1)

For a given value of n, N#k (n) will equal N
#(i)
k (n) for some i ∈ {1, 2, 3} and D#k (n) will be D

#(j)
k (n)

for some j ∈ {1, 2} depending on the value of r. Note that not all combinations of i and j are possible

(for example, there is no value of n such that i = 1 and j = 2). In Lemmas 5.1 through 5.4 we show that

N
#(i)
k (n) ≥ D

#(j)
k (n) for all possible combinations of i and j (that correspond to some integer n) which

implies that N#k (n) ≥ D
#
k (n) for all positive integers n.

Lemma 5.1. For all integers n and k, N
#(1)
k (n) = D

#(1)
k (n).

Proof. We first note that, in the notation of Theorem 3.4,
n− r

2k+1
=
2kq

2k+1
=
q

2
. Then

N
#(1)
k (n) =

(

n− r

2k+1

)

(3(n− r)− 2k) + 3qr

11
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=

(

n− r

2k+1

)(

3(n− r) − 2k + 3qr

(

2

q

))

since
n− r

2k+1
=
q

2

=

(

n− r

2k+1

)

(3n+ 3r − 2k)

= D
#(1)
k (n).

Lemma 5.2. For all integers k and all integers n such that r > Jk−1 (in the notation of Theorem 3.4),

N
#(2)
k (n) > D

#(1)
k (n).

Proof.

N
#(2)
k (n) =

(

n− r

2k+1

)

(3(n− r) − 2k) + 3qr + (r − Jk−1)

>

(

n− r

2k+1

)

(3(n− r) − 2k) + 3qr since r > Jk−1

= N
#(1)
k (n)

= D
#(1)
k (n) by Lemma 5.1.

This proves our result.

Lemma 5.3. For all integers k and all integers n such that r ≤ Jk (in the notation of Theorem 3.4),

N
#(2)
k (n) ≥ D

#(2)
k (n).

Proof. We see that r ≤ Jk = 2
k − Jk−1 by Lemma 3.2. Thus, 2

kq + r ≤ 2k(q + 1) − Jk−1. This implies

n ≤ 2k(q + 1)− Jk−1, so 2n− 2
k(q + 1) ≤ n− Jk−1. Hence,

N
#(2)
k (n) =

(

n− r

2k+1

)

(3(n− r)− 2k) + 3qr + (r − Jk−1)

=
q

2
(3(2kq)− 2k) + 3q(n− 2kq) + n− 2kq − Jk−1

= q2(−3(2k−1)) + q(−3(2k−1) + 3n) + n− Jk−1

≥ q2(−3(2k−1)) + q(−3(2k−1) + 3n) + 2n− 2k(q + 1) by the above argument

=
2n− 2k − 2kq

2k+1
(3(2kq) + 2k+1)

= D
#(2)
k (n).

Lemma 5.4. For all positive integers n and k, N
#(3)
k (n) = D

#(2)
k (n).

12



Proof.

N
#(3)
k (n) =

(

n− r

2k+1

)

(3(n− r)− 2k) + (3q + 2)r − 2k

=
(q

2

)

(3(2kq)− 2k) + 3q(n− 2kq) + 2(n− 2kq)− 2k

=
n− 2k + n− 2kq

2k + 1
(3(2kq) + 2k+1)

= D
#(2)
k (n).

Remark 5.5. To summarize, Lemmas 5.1 through 5.4 tell us that for any positive integer n,

N
#
k (n) ≥ D

#
k (n).

For Propositions 5.6 through 5.9 we make the assumption that J` < n < J`+1 for some positive integer `.

Proposition 5.6. For ` and n, as given above, N#`+1(n) = n− J`.

Proof. By Lemma 3.1,

n−1
∑

i=0

⌊

3i+ 1

2`+1

⌋

= 0× (J`) + 1× ((n− 1)− (J` − 1))

= n− J`.

Proposition 5.7. D
#
k (n) = 0 if n < 2

k−1. In particular, D#`+1(n) = 0 if n < 2
`.

Proof. If n < 2k then, in the notation of Theorem 3.5, n = r and q = 0, so by Theorem 3.5, D#k (n) = 0.

Proposition 5.8. D
#
`+1(n) = 2(n− 2

`) if 2` ≤ n < J`+1.

Proof. If 2` ≤ n < J`+1 then, in the notation of Theorem 3.5, q = 0 and r = n. Since n ≥ 2
`, we are in the

second case of Theorem 3.5 so

D
#
`+1(n) =

n− 2`+1 + n

2`+2
(0 + 2`+2) = 2(n− 2`).

Proposition 5.9. For n and ` as given above, 2(n− 2`) < n− J`.

Proof. We begin by showing that J`+1 − 2
` = 2` − J`. We have

J`+1 − 2
` =

2`+2 + (−1)`+1

3
− 2`

= 2` −
2`+1 + (−1)`

3

= 2` − J`,
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and hence

2(n− 2`) = n− 2` + n− 2`

< n− 2` + J`+1 − 2
`

= n− 2` + 2` − J` from the above argument

= n− J`

so we have our result.

We are now ready to prove our theorem.

Theorem 5.10. A(n) is even if n is not a Jacobsthal number.

Proof. Our goal is to show that there is some k such that N#k (n) is strictly greater than D
#
k (n) since, by

Remark 5.5, we have shown that N#k (n) ≥ D
#
k (n) for all positive integers k and n.

Given n, not a Jacobsthal number, there exists a positive integer ` such that J` < n < J`+1. Then

N
#
`+1(n) = n−J` by Proposition 5.6, and since n > J`, N

#
`+1(n) > 0. On the other hand, by Proposition 5.7,

if n < 2`, then D#`+1(n) = 0. If 2
` ≤ n < J`+1, then by Proposition 5.8, D

#
`+1(n) = 2(n − 2

`) which is

strictly less than n−J` = N
#
`+1(n) by Proposition 5.9. Hence, in every case, N

#
`+1(n) is strictly greater than

D
#
`+1(n) so there is at least one factor of two in A(n) and we have our result.

6 A Closing Remark

We close by noting that we can prove a stronger result than Theorem 5.10. If J` < n < J`+1, then

N
#
`+1(n)−D

#
`+1(n) =

{

n− J` if J` < n ≤ 2
`

J`+1 − n if 2` ≤ n < J`+1

by Propositions 5.6, 5.7, 5.8 and Lemma 3.2.

Let ord2(n) be the highest power of 2 that divides n. By Remark 5.5, N
#
k (n)−D

#
k (n) ≥ 0 for all n and

for all k, so that

ord2(A(n)) ≥

{

n− J` if J` < n ≤ 2
`

J`+1 − n if 2` ≤ n < J`+1
,

which strengthens Theorem 5.10.

Finally, we see that ord2(A(2
`)) = J`−1 since, for all k < ` + 1, N

#
k (2

`) = N
#(1)
k (2`) = D

#(1)
k (2`) =

D
#
k (2

`), and 2` − J` = J`+1 − 2
` = J`−1. So, for example, we know that A(2

10) is divisible by 2J9 , which

equals 2341, and that A(210) is not divisible by 2342.
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