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Abstract

When the Hankel matrix formed from the sequence 1, a1, a2, ... has an LDL
T

decomposition, we provide a constructive proof that the Stieltjes matrix SL
associated with L is tridiagonal. In the important case when L is a Riordan

matrix using ordinary or exponential generating functions, we determine the

specific form that SL must have, and we demonstrate, constructively, a one-

to-one correspondence between the generating function for the sequence and

SL. If L is Riordan when using ordinary generating functions, we show how

to derive a recurrence relation for the sequence.
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exponential generating function, Riordan matrix, LDU decomposition, tridi-
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1. Introduction

For each sequence in a large class of important combinatorial sequences, we
can derive a closed form expression for an ordinary or exponential generating
function starting with the associated Hankel matrix or Stieltjes matrix. In
this paper we give explicit relationships between the generating function, the
Hankel matrix and the Stieltjes matrix. We also provide several illustrative
examples. In [3], some work was done using the Hankel matrix approach, but
the conditions under which the method would work were not determined, or
were only implicitly conjectured. In the present paper we use the Stieltjes
matrix to obtain significant improvements in the analysis and application of
the method.
Our basic assumption is that the Hankel matrix generated by the sequence

has an LDU factorization, where L is a lower triangular matrix with all
diagonal elements equal to one, U = LT , and D is a diagonal matrix with all
diagonal elements nonzero. The Hankel matrix generated by the sequence
a0, a1, a2, ..., is given by the infinite matrix

H =




a0 a1 a2 a3 a4 .

a1 a2 a3 a4 a5 .

a2 a3 a4 a5 a6 .

a3 a4 a5 a6 a7 .

a4 a5 a6 a7 a8 .

. . . . . .



.

Without loss of generality we take a0 = 1. A necessary and sufficient
condition for H to have an LDU factorization is that H be positive definite.
When L is a Riordan matrix (see Section 2) using ordinary or exponential
generating functions, our method will find a closed form expression for the
generating function of the sequence 1, a1, a2, a3, ... In the the ordinary gener-
ating function case we can then use [4] to find a recurrence relation for the
sequence.

Example 1. Delannoy numbers: 1, 3, 13, 63, 321, 1683, ...
This is sequence A1850 in [5]. See also [1, p. 81]. We apply Gaussian elimi-
nation to the Hankel matrix to obtain
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H =




1 3 13 63 321 .

3 13 63 321 1683 .

13 63 321 1683 8989 .

63 321 1683 8989 48639 .

321 1683 8989 48639 265729 .
. . . . . .



=




1 .

3 1 .

13 6 1 .

63 33 9 1 .

321 180 62 12 1 .
. . . . . .







1 .

4 .

8 .

16 .

32 .
. . . . . .







1 3 13 63 321 .
1 6 33 180 .
1 9 62 .

1 12 .

1 .

. . . . . .



.

The Stieltjes matrix SL associated with L is the matrix SL = L
−1L, where

L is obtained from L by deleting the first row. (See Section 2 for more details
about the Stieltjes matrix.) In Example 1,

SL =




3 1 .

4 3 1 .

2 3 1 .

2 3 1 .
2 3 .

. . . . . .



.

From its definition SL gives the rule of formation of L. Specifically, it gives
a rule for obtaining the nth row of L from the previous row. In the example,
we have for n ≥ 1

ln0 = 3ln−1,0 + 4ln−1,1

lnk = ln−1,k−1 + 3ln−1,k + 2ln−1,k+1 , k ≥ 1 .
It is convenient to define the leftmost column of L to be the zeroth column,
and the first row to be the zeroth row. We say that the zeroth column of L
has a {3, 4} rule of formation and that the kth column, k ≥ 1, has a {1, 3, 2}
rule of formation. Notice that the zeroth column of L contains the Delannoy
numbers and that SL is tridiagonal. In Section 2 we prove that whenever
H = LDU , then SL is tridiagonal. From Theorem 2 in Section 2 we see that
the Delannoy numbers have a closed-form ordinary generating function given
by

g(x) =
1

1− 3x− 4xf =
1√

1− 6x+ x2
,
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where

f(x) = x(1 + 3f + 2f 2) =
1− 3x−

√
1− 6x+ x2
4x

.

Since SL is tridiagonal and L is a Riordan matrix, we can use [4] to obtain
for the Delannoy numbers the recurrence

nan = 3(4n− 3)an−1 − 19(2n− 3)an−2 + 3(4n− 9)an−3 − (n− 3)an−4;
for n ≥ 4, with a0 = 1, a1 = 3, a2 = 13, a3 = 63 .

Example 2. Bell numbers: 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, ...
This sequence illustrates the exponential generating function case. It is se-
quence A110 in [5]. Here

L =




1 .

1 1 .

2 3 1 .

5 10 6 1 .

15 37 31 10 1 .
. . . . . .



and SL =




1 1 .

1 2 1 .

2 3 1 .

3 4 1 .
4 5 .

. . . . . .



.

From Theorem 3 in Section 2, the form of SL indicates that the exponential
generating function g(x) of the Bell numbers is given by

ln(g) =

∫
(1 + f)dx, g(0) = 1,

where
f ′(x) = 1 + f(x), f(0) = 0.

So we obtain
f(x) = ex − 1 and g(x) = ee

x−1.

We have found that the method works for many other important combi-
natorial sequences. These include

• the Catalan numbers: 1, 1, 2, 5, 14, 42, 132, 429, . . . (sequence A108)

• the shortened Catalan sequence: 1, 2, 5, 14, 42, 132, 429, . . .

• the Catalan numbers interspersed with zeros: 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, . . .

• central binomial coefficients: 1, 2, 6, 20, 70, 252, , 924, 3432, . . . (A984)
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• central trinomial coefficients: 1, 1, 3, 7, 19, 51, 141, . . . (A2426),

• Schröder’s numbers: 1, 2, 6, 22, 90, 394, 1806, . . . (A6318)

• Schröder’s second problem: 1, 1, 3, 11, 45, 197, 903, 4279, . . . (A1003)

• gamma numbers or Motzkin sums: 1, 0, 1, 1, 3, 6, 15, 36, 91, 232, . . . (A5043)

• Fine numbers: 1, 0, 1, 2, 6, 18, 57, 186, 622, . . . (A957)

• directed animals: 1, 2, 5, 13, 35, 96, 267, 750, 2123, . . . (A5773)

• telephone numbers, or self-inverse permutations: 1, 1, 2, 4, 10, 26, 76, 232, 764, . . .
(A85)

• derangement numbers: 1, 0, 1, 2, 9, 44, 265, 1854, 14833, . . . (A166).

In Section 2 we show that whenever H = LDU then SL is always tridiag-
onal, and we give the specific form of SL. Theorem 2 in that section indicates
the specific form that SL must have for L to be a Riordan matrix with or-
dinary generating functions. Theorem 3 indicates the specific form that SL
must have for L to be Riordan with exponential generating functions. In
Section 3 we give some further examples.

2. Definitions and Theorems

Definition. The Hankel matrix H = (hnk)n,k≥0 generated by the se-
quence 1, a1, a2, a3, ... is given by

h00 = 1, hnk = an+k for n ≥ 0, k ≥ 0.

Definition. Let L = (lnk)n,k≥0 be a lower triangular matrix with lii = 1
for all i ≥ 0 . The Stieltjes matrix SL associated with L is given by
SL = L

−1L, where L is obtained from L by deleting the first row of L. That
is, the element in the nth row and kth column of L is given by

lnk = ln+1,k .

Remark. We note that SL is unique, and so

SL = SL̃ ⇔ L = L̃ .
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Remark. If SL = (sik)i,k≥0 then

lnk =
∑

i≥o

sikln−1,i for n ≥ 1 .

That is, from SL , we obtain a rule for computing the n
th row of L from the

(n− 1)th row.

Remark. SL is tridiagonal if and only if there exist sequences {λk}k≥0 ,
and {µk}k≥0 such that

ln0 = λ0ln−1,0 + µ0ln−1,1 for n ≥ 1,

lnk = ln−1,k−1 + λkln−1,k + µkln−1,k+1 for k ≥ 1 and n ≥ 1,
and

s00 = λ0, s10 = µ0 , and for k ≥ 1 , skk = λk , sk+1,k = µk .

Definition. A Riordan matrix with ordinary generating functions
is a lower triangular matrix for which the generating function for the kth

column, k ≥ 0, is given by g(x)[f(x)]k , where

g(x) = 1 + g1x+ g2x
2 + · · · and f(x) = x+ f2x

2 + f3x
3 + · · ·

Definition. A Riordan matrix with exponential generating func-
tions is a lower triangular matrix for which the generating function for the
kth column, k ≥ 0, is given by 1

k!
g(x)[f(x)]k , where

g(x) = 1 + g1x + g2
x2

2!
+ g3
x3

3!
+ · · · and f(x) = x + f2

x2

2!
+ f3
x3

3!
+ · · · .

See [2] for a detailed description of Riordan matrices. In [6] Woodson explores
other kinds of Riordan matrices.
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Theorem 1. Let H = (hnk)n,k≥0 be the Hankel matrix generated by the se-
quence 1, a1, a2, a3, ... Assume that H = LDU where

L = (lnk)n,k≥0 =




1 .

l10 1 .

l20 l21 1 .

l30 l31 l32 1 .

l40 l41 l42 l43 1 .
. . . . . .



,

D =




d0 .

d1 .

d2 .

d3 .

d4 .

. . . . . .




di 6= 0 for all i, U = LT .

That is,

hnk =
k∑

i=0

dilkilni .

Then the Stieltjes matrix SL is tridiagonal with the form

SL =




λ0 1 .

µ0 λ1 1 .

µ1 λ2 1 .

µ2 λ3 1 .

µ3 λ4 .

. . . . . .



,

where

λ0 = a1 , µ0 = d1 , λk = lk+1,k − lk,k−1 , µk =
dk+1

dk
, k ≥ 1 .

Proof. We will prove that

ln0 = a1ln−1,0 + d1ln−1,1

and
lnk = ln−1,k−1 + λkln−1,k + µkln−1,k+1 for all k ≥ 1.
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We use induction on k. From the definition of the Hankel matrix,

hnk = hn−1,k+1 for all k ≥ 0 and n ≥ 1

hn0 = hn−1,1 ⇔ d0ln0 = d0ln−1,0l10 + d1ln−1,1l11 ⇔ ln0 = a1ln−1,0 + d1ln−1,1 .
hn1 = hn−1,2 ⇔ d0l10ln0 + d1l11ln1 = d0l20ln−1,0 + d1l21ln−1,1 + d2l22ln−1,2

⇔ d1ln1 = l20ln−1,0 − l10ln0 + d1l21ln−1,1 + d2ln−1,2
⇔ d1ln1 = d1ln−1,0 + d1(l21 − l10)ln−1,1 + d2ln−1,2
⇔ ln1 = ln−1,0 + λ1ln−1,1 + µ1ln−1,2

Now assume that

lni = ln−1,i−1 + λiln−1,i + µiln−1,i+1 for 1 ≤ i ≤ k − 1 .

Then

hnk = hn−1,k+1 ⇔
k∑

i=0

dilkilni =
k+1∑

i=0

dilk+1,iln−1,i

⇔
k−1∑

i=0

dilkilni −
k−1∑

i=0

dilk+1,iln−1,i + dklnk = dklk+1,kln−1,k + dk+1ln−1,k+1

⇔ d0lk0ln0 +
k−1∑

i=1

dilkilni −
[
d0lk+1,0ln−1,0 +

k−1∑

i=1

dilk+1,iln−1,i

]
+ dklnk

= dklk+1,kln−1,k + dk+1ln−1,k+1

⇔ d0lk0 [a1ln−1,0 + d1ln−1,1] +

k−1∑

i=1

dilkilni

−
[
d0(a1lk0 + d1lk1)ln−1,0 +

k−1∑

i=1

dilk+1,iln−1,i

]
+ dklnk

= dklk+1,kln−1,k + dk+1ln−1,k+1

⇔ d1lk0ln−1,1 +
k−1∑

i=1

dilkilni −
[
d1lk1ln−1,0 +

k−1∑

i=1

dilk+1,iln−1,i

]
+ dklnk

= dklk+1,kln−1,k + dk+1ln−1,k+1

⇔ d1lk0ln−1,1 +

k−1∑

i=1

dilki

[
ln−1,i−1 + λiln−1,i +

di+1

di
ln−1,i+1

]

8



−
[
d1lk1ln−1,0 +

k−1∑

i=1

diln−1,i

[
lk,i−1 + λilki +

di+1

di
lk,i+1

]]
+ dklnk

= dklk+1,kln−1,k + dk+1ln−1,k+1

⇔ d1lk0ln−1,1 +
k−1∑

i=1

dilkiln−1,i−1 +
k−1∑

i=1

di+1lkiln−1,i+1

−
[
d1lk1ln−1,0 +

k−1∑

i=1

dilk,i−1ln−1,i +
k−1∑

i=1

di+1lk,i+1ln−1,i

]
+ dklnk

= dklk+1,kln−1,k + dk+1ln−1,k+1

⇔ d1 [lk0ln−1,1 + lk1ln−1,0 − lk1ln−1,0 − lk0ln−1,1]
+d2 [lk2ln−1,1 + lk1ln−1,2 − lk1ln−1,2 − lk2ln−1,1]
+d3 [lk3ln−1,2 + lk2ln−1,3 − lk2ln−1,3 − lk3ln−1,2]
......

......

+dk−1 [lk,k−1ln−1,k−2 + lk,k−2ln−1,k−1 − lk,k−2ln−1,k−1 − lk,k−1ln−1,k−2]
+dk [lk,k−1ln−1,k − lkkln−1,k−1] + dklnk

= dklk+1,kln−1,k + dk+1ln−1,k+1

⇔ dklnk = dkln−1,k−1 + dk [lk+1,k − lk,k−1] ln−1,k + dk+1ln−1,k+1
⇔ lnk = ln−1,k−1 + λkln−1,k + µkln−1,k+1

When SL has λi = λ and µi = µ for all i ≥ 1 we can obtain an ordinary
generating function for the sequence 1, a1, a2, ...

Theorem 2. Let H be the Hankel matrix generated by the sequence 1, a1, a2, ...,
and let H = LDLT . Then SL has the form

SL =




a1 1 .

d1 λ 1 .

µ λ 1 .

µ λ 1 .
µ λ .

. . . . . .



,
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if and only if the ordinary generating function g(x) of the sequence 1, a1, a2, ...
is given by

g(x) =
1

1− a1x− d1xf
,

where

f = x(1 + λf + µf 2) , f(0) = 0.

Proof. We note that µ 6= 0 and

f =
1− λx−

√
(1− λx)2 − 4µx
2µx

.

Consider the lower triangular matrix L̃ such that the generating function for
the kth column is g(x)[f(x)]k, k ≥ 0.

g(x) =
1

1− a1x− d1xf
⇔ g(x) = 1 + a1xg(x) + d1xgf

⇔ l̃00 = 1 and [xn] g = a1 [x
n] xg + d1 [x

n] xgf

⇔ l̃00 = 1 and l̃n0 = a1 l̃n−1,0 + d1l̃n−1,1 for n ≥ 1.
Also, for k ≥ 1 ,

f = x(1 + λf + µf 2)⇔ gf k = xgf k−1 + λxgf k + µxgf k+1
⇔ [xn] gf k = [xn] xgf k−1 + λ [xn]xgf k + µ [xn] xgf k+1

⇔ l̃nk = l̃n−1,k−1 + λl̃n−1,k + µl̃n−1,k+1 .

Therefore SL has the given form if and only if SL = SL̃ ⇔ L = L̃.
We now turn to the exponential generating function case. We get an ex-

ponential generating function for the sequence 1, a1, a2, ... when the sequences
{λi}i≥0 and { µii+1}i≥0 are arithmetic sequences.

Theorem 3. Let H be the Hankel matrix generated by the sequence 1, a1, a2, ...,
and let H = LDLT . Then SL has the form given in Theorem 1. If {λi}i≥0, is
an arithmetic sequence with common difference λ and { µi

i+1
}i≥0 an arithmetic

sequence with common difference µ , then the exponential generating function

g(x) for the sequence 1, a1, a2, ... is given by

ln(g) =

∫
(a1 + d1f)dx , g(0) = 1,

where f is given by

f ′ = 1 + λf + µf 2 , f(0) = 0 .
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Proof. Consider the lower triangular matrix L̂ with 1

k!
g(x)[f(x)]k for the

exponential generating function of the kth column, k ≥ 0. We note that L̂ is
a Riordan matrix with exponential generating functions.

ln(g) =

∫
(a1 + d1f)dx⇒ g′ = a1g + d1fg ⇒

[
xn

n!

]
g′ = a1

[
xn

n!

]
g + d1

[
xn

n!

]
fg

⇒ l̂n+1,0 = a1 l̂n0 + d1l̂n1 ⇒ l̂n0 = λ0 l̂n−1,0 + µ0l̂n−1,1
For k ≥ 1 ,
(
gf k

k!

)′
=
g′fk

k!
+
gf k−1f ′

(k − 1)! =
a1gf

k

k!
+
d1gf

k+1

k!
+
gf k−1 + λgf k + µgf k+1

(k − 1)!

= (a1 + λk)
gf k

k!
+ (d1 + µk)

gf k+1

k!
+
gf k−1

(k − 1)!

=
gf k−1

(k − 1)! + λk
gf k

k!
+
µk

k + 1

gf k+1

k!
.

Therefore
[
xn

n!

](
gf k

k!

)′
=

[
xn

n!

](
gf k−1

(k − 1)! + λk
gf k

k!
+ µk

gf k+1

(k + 1)!

)
.

That is,
l̂n+1,k = l̂n,k−1 + λk l̂nk + µk l̂n,k+1 ,

l̂nk = l̂n−1,k−1 + λk l̂n−1,k + µk l̂n−1,k+1 .

Therefore SL has the given form if and only if L = L̂.

3. Further Examples

Example 3. Derangements: 1, 0, 1, 2, 9, 44, 265, 1854, 14833, ...
This is sequence A166 in [5]. H = LDLT and

SL =




0 1 .

1 2 1 .

4 4 1 .

9 6 1 .
16 8 .

. . . . . .



.
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This is the exponential case with λk = 2k and µk = (k+1)
2. Therefore λ = 2

and µ = 1. So f ′ = 1 + 2f + f 2 with f(0) = 0. That gives f = x
1−x
and

ln(g) =
∫
fdx , g(0) = 1. So

g(x) =
e−x

1− x .

Example 4. Here we start with a Stieltjes matrix having the form in The-
orem 3. The associated sequence is 1,3,10,39,187,1128,8455, ... (sequence
A54912 in [5]).

SL =




3 1 .

1 6 1 .

6 9 1 .

15 12 1 .

28 15 .
. . . . . .



.

Here SL has the form in Theorem 3 with λ = 3 and µ = 2. Therefore the
exponential generating function for the sequence in the leftmost column of L
is given by ln(g) =

∫
(3+f)dx, g(0) = 1 where f ′ = 1+3f+2f 2, f(0) = 0.

We get f = ex−1
2−ex

and

g(x) =

√
e5x

2− ex = 1+3x+10
x2

2!
+39
x3

3!
+187

x4

4!
+1128

x5

5!
+8455

x6

6!
+O(x7)

We can also use Theorem 1 to construct L and D. Recall that di+1 = µidi,
and that d0 = 1.
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