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Abstract

A direct proof is given for Akiyama and Tanigawa’s algorithm for computing

Bernoulli numbers. The proof uses a closed formula for Bernoulli numbers

expressed in terms of Stirling numbers. The outcome of the same algorithm

with different initial values is also briefly discussed.

1 The Algorithm

In their study of values at non-positive integer arguments of multiple zeta
functions, S. Akiyama and Y. Tanigawa [1] found as a special case an amusing
algorithm for computing Bernoulli numbers in a manner similar to “Pascal’s
triangle” for binomial coefficients.

Their algorithm reads as follows: Start with the 0-th row 1, 1
2
, 1

3
, 1

4
, 1

5
, . . .

and define the first row by 1 ·(1− 1
2
), 2 ·(1

2
− 1

3
), 3 ·(1

3
− 1

4
), . . . which produces

the sequence 1
2
, 1
3
, 1
4
, . . . . Then define the next row by 1 · (1

2
− 1

3
), 2 · (1

3
− 1

4
), 3 ·

1
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(1
4
− 1

5
), . . . , thus giving 1

6
, 1
6
, 3
20
, . . . as the second row. In general, denoting

the m-th ( m = 0, 1, 2, . . . ) number in the n-th (n = 0, 1, 2, . . . ) row by an,m,
the m-th number in the (n+ 1)-st row an+1,m is determined recursively by

an+1,m = (m+ 1) · (an,m − an,m+1).

Then the claim is that the 0-th component an,0 of each row (the “leading
diagonal”) is just the n-th Bernoulli numbers Bn, where

∞
∑

n=0

Bn

xn

n!
=

xex

ex − 1

(

=
x

ex − 1
+ x

)

.

Note that we are using the definition of the Bernoulli numbers in which
B1 = 1

2
. This is the definition used by Bernoulli (and independently Seki,

published one year prior to Bernoulli). Incidentally, this is more appropriate
for the Euler formula ζ(1 − k) = −Bk/k (k = 1, 2, 3, . . . ) for the values of
the Riemann zeta function.

2 Proof

The proof is based on the following identity for Bernoulli numbers, a variant
of which goes as far back as Kronecker (see [4]). Here we denote by

{

n

m

}

the
Stirling number of the second kind:

xn =
n
∑

m=0

{

n

m

}

xm,

where xm = x(x− 1) · · · (x−m+1) for m ≥ 1 and x0 = 1. (We use Knuth’s
notation [7]. For the Stirling number identities that we shall need, the reader
is referred for example to [5].)

Theorem 1

Bn =
n
∑

m=0

(−1)mm!
{

n+1
m+1

}

m+ 1
, ∀n ≥ 0.

We shall give later a proof of this identity for the sake of completeness. Once
we have this, the next proposition ensures the validity of our algorithm.
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Figure 1: Akiyama-Tanigawa triangle

Proposition 2 Given an initial sequence a0,m (m = 0, 1, 2, . . . ), define the

sequences an,m (n ≥ 1) recursively by

an,m = (m+ 1) · (an−1,m − an−1,m+1) (n ≥ 1,m ≥ 0). (1)

Then

an,0 =
n
∑

m=0

(−1)mm!

{

n+ 1

m+ 1

}

a0,m. (2)

Proof. Put

gn(t) =
∞
∑

m=0

an,mt
m.
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By the recursion (1) we have for n ≥ 1

gn(t) =
∞
∑

m=0

(m+ 1)(an−1,m − an−1,m+1)t
m

=
d

dt
(

∞
∑

m=0

an−1,mt
m+1)−

d

dt
(

∞
∑

m=0

an−1,m+1t
m+1)

=
d

dt
(tgn−1(t))−

d

dt
(gn−1(t)− an−1,0)

= gn−1(t) + (t− 1)
d

dt
(gn−1(t))

=
d

dt
((t− 1)gn−1(t)).

Hence, by putting (t− 1)gn(t) = hn(t) we obtain

hn(t) = (t− 1)
d

dt
(hn−1(t)) (n ≥ 1),

and thus

hn(t) =

(

(t− 1)
d

dt

)n

(h0(t)).

Applying the formula (cf. [5, Ch. 6.7 Exer. 13])

(

x
d

dx

)n

=
n
∑

m=0

{

n

m

}

xm

(

d

dx

)m

for x = t− 1, we have

hn(t) =
n
∑

m=0

{

n

m

}

(t− 1)m
(

d

dt

)m

h0(t).
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Putting t = 0 we obtain

−an,0 =
n
∑

m=0

{

n

m

}

(−1)mm!(a0,m−1 − a0,m)

=
n−1
∑

m=0

{

n

m+ 1

}

(−1)m+1(m+ 1)!a0,m −

n
∑

m=0

{

n

m

}

(−1)mm!a0,m

= −

n
∑

m=0

(−1)mm!a0,m

(

(m+ 1)

{

n

m+ 1

}

+

{

n

m

})

= −

n
∑

m=0

(−1)mm!

{

n+ 1

m+ 1

}

a0,m.

(We have used the recursion
{

n+1
m+1

}

= (m+1)
{

n

m+1

}

+
{

n

m

}

.) This proves the
proposition.

Proof of Theorem 1. We show the generating series of the right hand side
coincide with that of Bn. To do this, we use the identity

ex(ex − 1)m

m!
=

∞
∑

n=m

{

n+ 1

m+ 1

}

xn

n!
(3)

which results from the well-known generating series for the Stirling numbers
(cf. [5, (7.49)])

(ex − 1)m

m!
=

∞
∑

n=m

{

n

m

}

xn

n!

by replacing m with m+ 1 and differentiating with respect to x. With this,
we have

∞
∑

n=0

(

n
∑

m=0

(−1)mm!
{

n+1
m+1

}

m+ 1

)

xn

n!

=
∞
∑

m=0

(−1)mm!

m+ 1

∞
∑

n=m

{

n+ 1

m+ 1

}

xn

n!
=

∞
∑

m=0

(−1)mm!

m+ 1

ex(ex − 1)m

m!

= ex
∞
∑

m=0

(1− ex)m

m+ 1
=

ex

1− ex

∞
∑

m=1

(1− ex)m

m

=
ex

1− ex
(− log (1− (1− ex))) =

xex

ex − 1
.

This proves Theorem 1.
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Remark. A referee suggested the following interpretation of the algorithm
using generating function:

Suppose the first row is a0, a1, a2, . . . , with ordinary generating function

A(x) =
∞
∑

n=0

anx
n.

Let the leading diagonal be b0 = a0, b1, b2, . . . , with exponential generating
function

B(x) =
∞
∑

n=0

bn
xn

n!
.

Then we have
B(x) = exA(1− ex).

This follows from (2) and (3), the calculation being parallel to that of the
proof of Theorem 1. To get the Bernoulli numbers we take a0 = 1, a1 =
1
2
, a2 =

1
3
, . . . with A(x) = − log(1− x)/x, and find B(x) = xex/(ex − 1).

3 Poly-Bernoulli numbers

If we replace the initial sequence 1, 1
2
, 1
3
, 1
4
, . . . by 1, 1

2k
, 1
3k
, 1
4k
, . . . and apply

the same algorithm, the resulting sequence is (−1)nD
(k)
n (n = 0, 1, 2, . . . ),

where D
(k)
n is a variant of “poly-Bernoulli numbers” ([6], [2], [3]): For any

integer k, we define a sequence of numbers D
(k)
n by

Lik(1− e−x)

ex − 1
=

∞
∑

n=0

D(k)
n

xn

n!
,

where Lik(t) =
∑

∞

m=1
tm

mk (k-th polylogarithm when k ≥ 1). The above
assertion is then a consequence of the following (or, is just a special case of
the preceding remark)

Proposition 3 For any k ∈ Z and n ≥ 0, we have

D(k)
n = (−1)n

n
∑

m=0

(−1)mm!
{

n+1
m+1

}

(m+ 1)k
.

Proof. The proof can be given completely in the same way as the proof of
Theorem 1 using generating series, and hence will be omitted.
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