

The Akiyama-Tanigawa algorithm for Bernoulli numbers

Masanobu Kaneko
Graduate School of Mathematics
Kyushu University
Fukuoka 812-8581, Japan
Email address: mkaneko@math.kyushu-u.ac.jp

Abstract

A direct proof is given for Akiyama and Tanigawa's algorithm for computing Bernoulli numbers. The proof uses a closed formula for Bernoulli numbers expressed in terms of Stirling numbers. The outcome of the same algorithm with different initial values is also briefly discussed.

1 The Algorithm

In their study of values at non-positive integer arguments of multiple zeta functions, S. Akiyama and Y. Tanigawa [1] found as a special case an amusing algorithm for computing Bernoulli numbers in a manner similar to "Pascal's triangle" for binomial coefficients.

Their algorithm reads as follows: Start with the 0-th row $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots$ and define the first row by $1 \cdot\left(1-\frac{1}{2}\right), 2 \cdot\left(\frac{1}{2}-\frac{1}{3}\right), 3 \cdot\left(\frac{1}{3}-\frac{1}{4}\right), \ldots$ which produces the sequence $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$. Then define the next row by $1 \cdot\left(\frac{1}{2}-\frac{1}{3}\right), 2 \cdot\left(\frac{1}{3}-\frac{1}{4}\right), 3$.
$\left(\frac{1}{4}-\frac{1}{5}\right), \ldots$, thus giving $\frac{1}{6}, \frac{1}{6}, \frac{3}{20}, \ldots$ as the second row. In general, denoting the m-th $(m=0,1,2, \ldots)$ number in the n-th $(n=0,1,2, \ldots)$ row by $a_{n, m}$, the m-th number in the $(n+1)$-st row $a_{n+1, m}$ is determined recursively by

$$
a_{n+1, m}=(m+1) \cdot\left(a_{n, m}-a_{n, m+1}\right)
$$

Then the claim is that the 0 -th component $a_{n, 0}$ of each row (the "leading diagonal") is just the n-th Bernoulli numbers B_{n}, where

$$
\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!}=\frac{x e^{x}}{e^{x}-1}\left(=\frac{x}{e^{x}-1}+x\right)
$$

Note that we are using the definition of the Bernoulli numbers in which $B_{1}=\frac{1}{2}$. This is the definition used by Bernoulli (and independently Seki, published one year prior to Bernoulli). Incidentally, this is more appropriate for the Euler formula $\zeta(1-k)=-B_{k} / k(k=1,2,3, \ldots)$ for the values of the Riemann zeta function.

2 Proof

The proof is based on the following identity for Bernoulli numbers, a variant of which goes as far back as Kronecker (see [4]). Here we denote by $\left\{\begin{array}{l}n \\ m\end{array}\right\}$ the Stirling number of the second kind:

$$
x^{n}=\sum_{m=0}^{n}\left\{\begin{array}{l}
n \\
m
\end{array}\right\} x^{\underline{m}},
$$

where $x^{\underline{m}}=x(x-1) \cdots(x-m+1)$ for $m \geq 1$ and $x^{0}=1$. (We use Knuth's notation [7]. For the Stirling number identities that we shall need, the reader is referred for example to [5].)

Theorem 1

$$
B_{n}=\sum_{m=0}^{n} \frac{(-1)^{m} m!\left\{\begin{array}{c}
n+1 \\
m+1
\end{array}\right\}}{m+1}, \quad \forall n \geq 0
$$

We shall give later a proof of this identity for the sake of completeness. Once we have this, the next proposition ensures the validity of our algorithm.

Figure 1: Akiyama-Tanigawa triangle

Proposition 2 Given an initial sequence $a_{0, m}(m=0,1,2, \ldots)$, define the sequences $a_{n, m}(n \geq 1)$ recursively by

$$
\begin{equation*}
a_{n, m}=(m+1) \cdot\left(a_{n-1, m}-a_{n-1, m+1}\right) \quad(n \geq 1, m \geq 0) \tag{1}
\end{equation*}
$$

Then

$$
a_{n, 0}=\sum_{m=0}^{n}(-1)^{m} m!\left\{\begin{array}{l}
n+1 \tag{2}\\
m+1
\end{array}\right\} a_{0, m}
$$

Proof. Put

$$
g_{n}(t)=\sum_{m=0}^{\infty} a_{n, m} t^{m} .
$$

By the recursion (1) we have for $n \geq 1$

$$
\begin{aligned}
g_{n}(t) & =\sum_{m=0}^{\infty}(m+1)\left(a_{n-1, m}-a_{n-1, m+1}\right) t^{m} \\
& =\frac{d}{d t}\left(\sum_{m=0}^{\infty} a_{n-1, m} t^{m+1}\right)-\frac{d}{d t}\left(\sum_{m=0}^{\infty} a_{n-1, m+1} t^{m+1}\right) \\
& =\frac{d}{d t}\left(t g_{n-1}(t)\right)-\frac{d}{d t}\left(g_{n-1}(t)-a_{n-1,0}\right) \\
& =g_{n-1}(t)+(t-1) \frac{d}{d t}\left(g_{n-1}(t)\right) \\
& =\frac{d}{d t}\left((t-1) g_{n-1}(t)\right)
\end{aligned}
$$

Hence, by putting $(t-1) g_{n}(t)=h_{n}(t)$ we obtain

$$
h_{n}(t)=(t-1) \frac{d}{d t}\left(h_{n-1}(t)\right) \quad(n \geq 1)
$$

and thus

$$
h_{n}(t)=\left((t-1) \frac{d}{d t}\right)^{n}\left(h_{0}(t)\right) .
$$

Applying the formula (cf. [5, Ch. 6.7 Exer. 13])

$$
\left(x \frac{d}{d x}\right)^{n}=\sum_{m=0}^{n}\left\{\begin{array}{c}
n \\
m
\end{array}\right\} x^{m}\left(\frac{d}{d x}\right)^{m}
$$

for $x=t-1$, we have

$$
h_{n}(t)=\sum_{m=0}^{n}\left\{\begin{array}{c}
n \\
m
\end{array}\right\}(t-1)^{m}\left(\frac{d}{d t}\right)^{m} h_{0}(t)
$$

Putting $t=0$ we obtain

$$
\begin{aligned}
-a_{n, 0} & =\sum_{m=0}^{n}\left\{\begin{array}{c}
n \\
m
\end{array}\right\}(-1)^{m} m!\left(a_{0, m-1}-a_{0, m}\right) \\
& =\sum_{m=0}^{n-1}\left\{\begin{array}{c}
n \\
m+1
\end{array}\right\}(-1)^{m+1}(m+1)!a_{0, m}-\sum_{m=0}^{n}\left\{\begin{array}{c}
n \\
m
\end{array}\right\}(-1)^{m} m!a_{0, m} \\
& =-\sum_{m=0}^{n}(-1)^{m} m!a_{0, m}\left((m+1)\left\{\begin{array}{c}
n \\
m+1
\end{array}\right\}+\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\right) \\
& =-\sum_{m=0}^{n}(-1)^{m} m!\left\{\begin{array}{c}
n+1 \\
m+1
\end{array}\right\} a_{0, m} .
\end{aligned}
$$

(We have used the recursion $\left\{\begin{array}{c}n+1 \\ m+1\end{array}\right\}=(m+1)\left\{\begin{array}{c}n \\ m+1\end{array}\right\}+\left\{\begin{array}{c}n \\ m\end{array}\right\}$.) This proves the proposition.

Proof of Theorem 1. We show the generating series of the right hand side coincide with that of B_{n}. To do this, we use the identity

$$
\frac{e^{x}\left(e^{x}-1\right)^{m}}{m!}=\sum_{n=m}^{\infty}\left\{\begin{array}{l}
n+1 \tag{3}\\
m+1
\end{array}\right\} \frac{x^{n}}{n!}
$$

which results from the well-known generating series for the Stirling numbers (cf. [5, (7.49)])

$$
\frac{\left(e^{x}-1\right)^{m}}{m!}=\sum_{n=m}^{\infty}\left\{\begin{array}{l}
n \\
m
\end{array}\right\} \frac{x^{n}}{n!}
$$

by replacing m with $m+1$ and differentiating with respect to x. With this, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(\sum_{m=0}^{n} \frac{(-1)^{m} m!\left\{\begin{array}{c}
n+1 \\
m+1
\end{array}\right\}}{m+1}\right) \frac{x^{n}}{n!} \\
= & \sum_{m=0}^{\infty} \frac{(-1)^{m} m!}{m+1} \sum_{n=m}^{\infty}\left\{\begin{array}{c}
n+1 \\
m+1
\end{array}\right\} \frac{x^{n}}{n!}=\sum_{m=0}^{\infty} \frac{(-1)^{m} m!}{m+1} \frac{e^{x}\left(e^{x}-1\right)^{m}}{m!} \\
= & e^{x} \sum_{m=0}^{\infty} \frac{\left(1-e^{x}\right)^{m}}{m+1}=\frac{e^{x}}{1-e^{x}} \sum_{m=1}^{\infty} \frac{\left(1-e^{x}\right)^{m}}{m} \\
= & \frac{e^{x}}{1-e^{x}}\left(-\log \left(1-\left(1-e^{x}\right)\right)\right)=\frac{x e^{x}}{e^{x}-1} .
\end{aligned}
$$

This proves Theorem 1.

Remark. A referee suggested the following interpretation of the algorithm using generating function:

Suppose the first row is $a_{0}, a_{1}, a_{2}, \ldots$, with ordinary generating function

$$
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Let the leading diagonal be $b_{0}=a_{0}, b_{1}, b_{2}, \ldots$, with exponential generating function

$$
\mathbb{B}(x)=\sum_{n=0}^{\infty} b_{n} \frac{x^{n}}{n!} .
$$

Then we have

$$
\mathbb{B}(x)=e^{x} A\left(1-e^{x}\right)
$$

This follows from (2) and (3), the calculation being parallel to that of the proof of Theorem 1. To get the Bernoulli numbers we take $a_{0}=1, a_{1}=$ $\frac{1}{2}, a_{2}=\frac{1}{3}, \ldots$ with $A(x)=-\log (1-x) / x$, and find $\mathbb{B}(x)=x e^{x} /\left(e^{x}-1\right)$.

3 Poly-Bernoulli numbers

If we replace the initial sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ by $1, \frac{1}{2^{k}}, \frac{1}{3^{k}}, \frac{1}{4^{k}}, \ldots$ and apply the same algorithm, the resulting sequence is $(-1)^{n} D_{n}^{(k)}(n=0,1,2, \ldots)$, where $D_{n}^{(k)}$ is a variant of "poly-Bernoulli numbers" ([6], [2], [3]): For any integer k, we define a sequence of numbers $D_{n}^{(k)}$ by

$$
\frac{L i_{k}\left(1-e^{-x}\right)}{e^{x}-1}=\sum_{n=0}^{\infty} D_{n}^{(k)} \frac{x^{n}}{n!},
$$

where $L i_{k}(t)=\sum_{m=1}^{\infty} \frac{t^{m}}{m^{k}}$ (k-th polylogarithm when $k \geq 1$). The above assertion is then a consequence of the following (or, is just a special case of the preceding remark)

Proposition 3 For any $k \in \mathbf{Z}$ and $n \geq 0$, we have

$$
D_{n}^{(k)}=(-1)^{n} \sum_{m=0}^{n} \frac{(-1)^{m} m!\left\{\begin{array}{c}
n+1 \\
m+1
\end{array}\right\}}{(m+1)^{k}} .
$$

Proof. The proof can be given completely in the same way as the proof of Theorem 1 using generating series, and hence will be omitted.

Acknowledgements

I should like to thank the referee for several comments and suggestions.

References

[1] Akiyama, S. and Tanigawa, Y. : Multiple zeta values at non-positive integers, preprint (1999).
[2] Arakawa, T. and Kaneko, M. : Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J. 153 (1999), 189209.
[3] Arakawa, T. and Kaneko, M. : On poly-Bernoulli numbers, Comment. Math. Univ. Sanct. Pauli 48-2 (1999), 159-167.
[4] Gould, H. G. : Explicit formulas for Bernoulli numbers, Amer. Math. Monthly 79 (1972), 44-51.
[5] Graham, R., Knuth, D. and Patashnik, O.: Concrete Mathematics, Addison-Wesley, (1989).
[6] Kaneko, M. : Poly-Bernoulli numbers, Jour. Th. Nombre Bordeaux 9 (1997), 199-206.
[7] Knuth, D. : Two notes on notation, Amer. Math. Monthly 99 (1992), 403-422.
(The Bernoulli numbers are $\underline{A 027641}$ and $\underline{\text { A027642. The table in Figure } 1 \text { yields }}$ sequences $\underline{\text { A051714 }}$ and A051715. Other sequences which mention this paper are $\underline{A 000367}, \underline{A 002445}, \underline{A 026741}, \underline{A 045896}, \underline{A 051712}, \underline{A 051713}, \underline{A 051716}, \underline{A 051717}$, $\underline{A 051718}, \underline{A 051719}, \underline{A 051720}, \underline{A 051721}, \underline{A 051722}$, and A051723.

Received August 7, 2000; published in Journal of Integer Sequences December 12, 2000.

Return to Journal of Integer Sequences home page.

