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Abstract

We show that formulae of Gessel for the generating functions for Young standard

tableaux of height bounded by k satisfy linear differential equations, with polynomial

coefficients, equivalent to P -recurrences conjectured by Favreau, Krob and the first au-

thor for the number of bounded height tableaux and pairs of bounded height tableaux.

1 Results

Let us first fix some notation. A partition λ of a positive integer n is a sequence of integers

λ1 ≥ λ2 ≥ . . . ≥ λk > 0

such that
∑

i λi = n. We denote this by writing λ ⊢ n, and say that k is the height h(λ)
of λ. The height of the empty partition (of 0) is 0. The (Ferrer’s) diagram of a partition
λ is the set of points (i, j) ∈ Z

2 such that 1 ≤ j ≤ λi. It is also denoted by λ. Clearly a
partition is characterized by its diagram. The conjugate λ′ of a partition λ is the partition
with diagram {(j, i) | (i, j) ∈ λ}.

A standard Young tableau T is an injective labeling of a Ferrer’s diagram by the elements
of {1, 2, . . . , n} such that T (i, j) < T (i + 1, j) for 1 ≤ i < k and T (i, j) < T (i, j + 1) for
1 ≤ j < λi. We further say that λ is the shape of the tableau T . For a given λ, the number
fλ of tableaux of shape λ is given by the hook length formula

fλ =
n!

∏

c hc

,
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where c = (i, j) runs over the set of points in the diagram of λ, and

hc = λi − i+ λ′
j − j + 1.

Other classical results in this context are
∑

λ⊢n

f 2
λ = n!,

and
∑

λ⊢n

fλ = coeff of
xn

n!
in ex+x2/2.

We are interested in the enumeration of tableaux of height bounded by some integer k;
that is to say we wish to compute the numbers

τk(n) =
∑

h(λ)≤k

fλ, (1)

as well as
Tk(n) =

∑

h(λ)≤k

f 2
λ . (2)

For example, the first few sequences τk(n) for n ≥ 1 are
τ2(n) → 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462, 924, 1716, 3432, 6435, 12870, 24310, 48620, . . .
τ3(n) → 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634, 310572, 853467, . . .
τ4(n) → 1, 2, 4, 10, 25, 70, 196, 588, 1764, 5544, 17424, 56628, 184041, 613470, 2044900, . . .
τ5(n) → 1, 2, 4, 10, 26, 75, 225, 715, 2347, 7990, 27908, 99991, 365587, 1362310, 5159208, . . .
τ6(n) → 1, 2, 4, 10, 26, 76, 231, 756, 2556, 9096, 33231, 126060, 488488, 1948232, 7907185, . . .

(These are sequences A001405, A001006, A005817, A049401, and A007579 in [5].) For Tk(n),
we have

T2(n) → 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, . . .
T3(n) → 1, 2, 6, 23, 103, 513, 2761, 15767, 94359, 586590, 3763290, 24792705, 167078577, . . .
T4(n) → 1, 2, 6, 24, 119, 694, 4582, 33324, 261808, 2190688, 19318688, 178108704, 1705985883, . . .
T5(n) → 1, 2, 6, 24, 120, 719, 5003, 39429, 344837, 3291590, 33835114, 370531683, 4285711539, . . .
T6(n) → 1, 2, 6, 24, 120, 720, 5039, 40270, 361302, 3587916, 38957991, 457647966, 5763075506, . . .

(Sequences A000108, A005802, A052397, A052398, and A052399 in [5].)
In [2] Gessel deduces the following formulae from a result of Gordon:

yk(x) :=
∞
∑

n=0

τk(n)x
n

n!
=

{

det [Ji−j(x)− Ji+j−1(x)]1≤i,j≤k/2 , if k is even,

ex det [Ji−j(x)− Ji+j(x)]1≤i,j≤(k−1)/2 , if k is odd;

and

Yk(x) :=
∞
∑

n=0

Tk(n)x
n

(n!)2
= det [Ii−j(x)]1≤i,j≤k ,

where

Jk(x) =
∞
∑

n=0

x2n+k

n! (n+ k)!
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and

Ik(x) =
∞
∑

n=0

xn+k/2

n! (n+ k)!

If k is positive integer, we set J−k := Jk and I−k := Ik. The resulting expressions rapidly
become unwieldy. For example,

y2(x) = J0(x) + J1(x)
y3(x) = ex (J0(x)− J2(x))
y4(x) = J0(x)

2 + J0(x) J1(x) + J0(x) J3(x)− J1(x)
2 − 2 J1(x) J2(x) + J1(x) J3(x)− J2(x)

2

y5(x) = ex (J0(x)
2 − J0(x) J2(x)− J0(x) J4(x)− J1(x)

2 + 2 J1(x) J3(x) + J2(x) J4(x)− J3(x)
2)

y6(x) = J0(x)
3 + J0(x)

2 J1(x) + J0(x)
2 J3(x) + J0(x)

2 J5(x)− 2 J0(x) J1(x)
2 − 2 J0(x) J1(x) J2(x)

+J0(x) J1(x) J3(x)− 2 J0(x) J1(x) J4(x) + J0(x) J1(x) J5(x)− 2 J0(x) J2(x)
2

−2 J0(x) J2(x) J3(x)− J0(x) J3(x)
2 + J0(x) J3(x) J5(x)− J0(x) J4(x)

2 − J1(x)
3

+2 J1(x)
2 J2(x) + 2 J1(x)

2 J3(x)− 2 J1(x)
2 J4(x)− J1(x)

2 J5(x) + 2 J1(x) J2(x)
2

+2 J1(x) J2(x) J3(x) + 2 J1(x) J2(x) J4(x)− 2 J1(x) J2(x) J5(x) + 2 J1(x) J3(x) J4(x)

+J1(x) J3(x) J5(x)− J1(x) J4(x)
2 − J2(x)

2 J3(x) + 2 J2(x)
2 J4(x)− J2(x)

2 J5(x)

−2 J2(x) J3(x)
2 + 2 J2(x) J3(x) J4(x)− J3(x)

3.

We can simplify these using properties of Bessel functions. Recalling the easily deduced
relations

Jk(x) = Jk−2(x)−
1

x
(n− k − 1) Jk−1(x), k ≥ 2,

we get, after some computation, the much simpler expressions
y3(x) = x−1ex J1(x)
y4(x) = x−2 (−2x J0(x)

2 + 2 J0(x) J1(x) + (2x+ 1) J1(x)
2)

y5(x) = x−4ex (−4 x2 J0(x)
2 + 2x J0(x) J1(x) + 2 (2x2 + 1) J1(x)

2)

y6(x) = x−6
(

−4x2 (4x− 3) J0(x)
3 − 4x

(

4x2 − 3x+ 6
)

J0(x)
2 J1(x)

+ 4
(

4x3 − x2 + 3
)

J0(x) J1(x)
2 + 4

(

4x3 − x2 + 5x+ 1
)

J1(x)
3
)

Similarly
Y2(x) = I0(x)

2 − I1(x)
2

Y3(x) = x−1 (2
√
x I0(x)

2 I1(x)− I0(x) I1(x)
2 − 2

√
x I1(x)

3)

Y4(x) = x−3
(

− 4x2 I0(x)
4 + 8x

√
x I0(x)

3 I1(x) + 4x (2x− 1) I0(x)
2 I1(x)

2

−8x
√
x I0(x) I1(x)

3 − x (4x− 1) I1(x)
4
)

A theoretical argument (see [2]) shows that the generating functions yk(x) and Yk(x) are
D-finite. That is to say, they satisfy linear differential equations with polynomial coefficients.
In fact, it is well known and classical that one can translate such linear differential equations

3



into recurrences with polynomial coefficients. More precisely, a P -recurrence for a sequence
an is one of the form

p0(n) an + p1(x) an−1 + . . .+ pk(n) an−k = q(n),

where all pi(n), 1 ≤ i ≤ k, and q(n) are polynomials in n. We say that a sequence is
P -recursive if it satisfies a P -recurrence. The class of P -recursive sequences is closed under
point-wise products. Since 1/n! is easily seen to be P -recursive, it follows that, if an is
P -recursive, then so are an/n! and an/n!

2. The algorithmic translation from D-finite to P -
recursive (and back) has been implemented in the package GFUN in Maple (see [4]), which
also contains many other nice tools for handling recurrences and generating functions.

Computer experiments made by Krob, Favreau and the first author led to conjectures
(see [1]) for an explicit form for P -recurrences for τh(n) and Th(n). These conjectures can be
easily (and automatically) reformulated as linear differential equations for yk(x) and Yk(x).
We first observe that it is not hard to show the existence of a linear differential equation of
order bounded by

ℓ(k) :=

⌊

k

2

⌋

+ 1

with polynomial coefficients, admitting yk(x) as a solution. In fact, this follows readily from
the following proposition.
Proposition 1. Let Vk denote the vector space over the field C(x) of rational functions in
x spanned by yk(x) and all its derivatives. Then

dim Vk ≤ ℓ(k).

Proof. Setting n := ℓ(k)− 1, it is clear from our previous discussion that yk lies in the span
Wk of the set of ℓ(k) elements given by

{J0(x)m J1(x)
n−m | 0 ≤ m ≤ n }

if k is even, and by
{ex J0(x)m J1(x)

n−m | 0 ≤ m ≤ n }
if k is odd. Wk is clearly closed under differentiation, since we easily see that

d

dx
J0(x) = 2 J1(x),

d

dx
J1(x) = 2 J0(x)−

1

x
J1(x), (1)

from which we deduce that

d

dx
J0(x)

a J1(x)
b =

2 a

x
J0(x)

a−1 J1(x)
b+1 x+ 2 b J0(x)

a+1 J1(x)
b−1 − b

x
J0(x)

a J1(x)
b, (2)

as well as a similar expression for the derivative of ex J0(x)
a J1(x)

b. Thus Vk is contained in
Wk, and hence its dimension is bounded by ℓ(k).
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Setting for the moment n := ℓ(k) and y := yk(x), it clearly follows from the above
proposition that

y, y′, y′′, . . . , y(n)

are linearly dependent, hence yk(x) satisfies a homogeneous linear differential equation of
order (at most) ℓ(k) with polynomial coefficients (in x). However, it appears that a stronger
result holds.
Conjecture (Bergeron-Favreau-Krob, [1]). For each k, there are polynomials pm(x) of degree
at most ℓ− 1 such that yk(x) is a solution of

ℓ
∑

m=0

pm(x)y
(m) = 0,

where ℓ = ℓ(k). Moreover, for m ≥ 1, pm(x) = qm(x) x
m−1, and pℓ(x) = xℓ−1.

The first few cases for yk(x) are
2 Here → means “is a solution of”.

y2(x) → x y′′ + 2 y′ − 2 (2x+ 1) y = 0
y3(x) → x y′′ − (2x− 3) y′ − 3 (x+ 1) y = 0
y4(x) → x2 y′′′ + 10x y′′ − 4 (4x2 + 2x− 5) y′ − 4 (8x+ 5) y = 0
y5(x) → x2 y′′′ − (3x− 13) x y′′ − (13x2 + 26x− 35) y′ + 5 (3x2 − 7x− 7) y = 0
Equating coefficients of xn/n! on both hand sides of these differential equations, one finds
that they are equivalent to the recurrences
(n+ 1) τ2(n)− 2 τ2(n− 1)− 4 (n− 1) τ2(n− 2) = 0
(n+ 2) τ3(n)− (2n+ 1) τ3(n− 1)− 3 (n− 1) τ3(n− 2) = 0
(n+ 3) (n+ 4) τ4(n)−16 (n− 1) τ4(n− 2)n− (8n+ 12) τ4(n− 1) = 0
(n + 4) (n + 6) τ5(n) − (3n2 + 17n+ 15) τ5(n − 1) − (n − 1)(13n + 9) τ5(n − 2) + 15 (n −
1) (n− 2) τ5(n− 3) = 0

Up to now, only these recurrences (that is, for k ≤ 5), had been implicitly known (see
[3]). However, using the simplified expressions for yk(x) given here, and a reformulation in
term of linear differential equations (with the help of GFUN ([4]) we have been able to check
(in the form of a computer algebra proof) that the conjecture above is true for k ≤ 11,
from which it follows that the corresponding recurrences hold. This computer verification
simply uses the derivation rules (1) for J0(x) and J1(x) to simplify the expressions obtained
by substitution of Gessel’s formulae in the following differential equations.

y6(x) → x3 y(4) + 28x2 y′′′ − 10
(

4x2 + 2x− 23
)

x y′′

−4
(

108x2 + 61x− 135
)

y′ + 36 (2x+ 5)
(

2x2 − 3x− 3
)

y = 0;

y7(x) → x3 y(4) − 2 (2x− 17) x2 y′′′ −
(

34x2 + 102x− 343
)

x y′′

+
(

76x3 − 450x2 − 686x+ 1001
)

y′ + 7
(

15x3 + 74x2 − 143x− 143
)

y = 0.

2∗
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y8(x) → x4 y(5) + 60x3 y(4) − 2
(

40x2 + 20x− 619
)

x2 y′′′ − 4
(

608x2 + 331x− 2567
)

x y′′

+8
(

128x4 + 128x3 − 2480x2 − 1527x+ 3536
)

y′

+128
(

64x3 + 72x2 − 286x− 221
)

y = 0;

y9(x) → x4 y(5) − 5 (x− 14) x3 y(4) −
(

70x2 + 280x− 1693
)

x2 y′′′

+
(

230x3 − 2492x2 − 5079x+ 16535
)

x y′′

+
(

789x4 + 5544x3 − 24073x2 − 33070x+ 53865
)

y′

−27
(

35x4 − 274x3 − 1017x2 + 1995x+ 1995
)

y = 0;

y10(x) → x5 y(6) + 110x4 y(5) − 2
(

70x2 + 35x− 2269
)

x3 y(4)

−4
(

2268x2 + 1211x− 21752
)

x2 y′′′

+4
(

1036x4 + 1036x3 − 48033x2 − 27900x+ 191477
)

x y′′

+8
(

14300x4 + 15542x3 − 185404x2 − 121352x+ 303875
)

y′

−200
(

72x5 + 108x4 − 3262x3 − 3987x2 + 14960x+ 12155
)

y = 0;

y11(x) → x5 y(6) − (6x− 125) x4 y(5) −
(

125x2 + 625x− 5873
)

x3 y(4)

+2
(

270x3 − 4611x2 − 11746x+ 64252
)

x2 y′′′

+
(

3319x4 + 30166x3 − 223422x2 − 385512x+ 1293125
)

x y′′

−
(

7734x5 − 104329x4 − 493828x3 + 1987124x2 + 2586250x− 4697275
)

y′

−11
(

945x5 + 11343x4 − 62023x3 − 204012x2 + 427025x+ 427025
)

y = 0.

However, these verifications rapidly become (computer) time consuming. For example, with
k = 11, we have to substitute in this last differential equation the following expression

y11(x) =
138240 ex

x25

(

− 14
(

32x6 + 177x4 + 198x2 − 72
)

x5 J0(x)
5

+8
(

16x8 + 256x6 + 825x4 + 585x2 − 495
)

x4 J1(x) J0(x)
4

+4
(

192x8 + 833x6 + 495x4 + 135x2 + 1440
)

x3 J1(x)
2 J0(x)

3

−
(

256x10 + 3648x8 + 10799x6 + 9690x4 + 1980x2 + 3600
)

x2 J1(x)
3 J0(x)

2

−5
(

64x10 + 190x8 − 77x6 + 114x4 + 504x2 − 144
)

x J1(x)
4 J0(x)

+
(

128x12 + 1632x10 + 4557x8 + 5482x6 + 4158x4 + 2052x2 + 72
)

J1(x)
5
)

and simplify. Clearly we could go on to larger cases, but the point seems to be made that
the conjectures are reasonable.
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Similar considerations for the enumeration of pairs of tableaux, with the following differential
equations, settle the corresponding conjectures for the cases k ≤ 7:
Y2(x) → x2 y′′′ + 4x y′′ − 2 (2x− 1) y′ − 2 y = 0
Y3(x) → x3 y(4) + 10x2 y′′′ − (10x− 23) x y′′ − (32x− 9) y′ + 9 (x− 1) y = 0

Y4(x) → x4 y(5) + 20x3 y(4) − 2 (10x− 59) x2 y′′′ − 2 (91x− 110) x y′′

+4
(

16x2 − 87x+ 20
)

y′ + 16 (8x− 5) y = 0.

Y5(x) → x5 y(6) + 35x4 y(5) − 7 (5x− 59) x3 y(4) − 2 (336x− 979) x2 y′′′

+
(

259x2 − 3650x+ 3383
)

x y′′

+
(

1917x2 − 5708x+ 1225
)

y′ − 25
(

9x2 − 93x+ 49
)

y = 0.

Y6(x) → x6 y(7) + 56x5 y(6) − 28 (2x− 41) x4 y(5) − 4 (483x− 2684) x3 y(4)

+4
(

196x2 − 5480x+ 11543
)

x2 y′′′ + 8
(

1686x2 − 11941x+ 9830
)

x y′′

−4
(

576x3 − 14931x2 + 34438x− 7290
)

y′ − 72
(

144x2 − 821x+ 405
)

y = 0.

Y7(x) → x7 y(8) + 84x6 y(7) − 42 (2x− 65) x5 y(6) − 2 (2352x− 21881) x4 y(5)

+3
(

658x2 − 31606x+ 121455
)

x3 y(4)

+2
(

31986x2 − 424260x+ 754183
)

x2 y′′′

−
(

12916x3 − 648834x2 + 3329230x− 2610671
)

x y′′

−
(

175704x3 − 2292734x2 + 4684008x− 1002001
)

y′

+49
(

225x3 − 9630x2 + 42313x− 20449
)

y = 0.
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