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Abstract

We give a closed form, a generating function, and an asymptotic
estimate for the sequence (zn)n≥1 = 1, 0, 3, 8, 135, 1164, 21035, . . . that
gives the total multiplicity of the eigenvalue 0 in the set of nn−2 tree
incidence matrices of size n.

1. Introduction.

By a classical result in graph theory, the number of labeled trees1 on
n ≥ 1 vertices is nn−2. We endow the set Tn of labeled trees on n ≥ 1
vertices with uniform probability, giving weight n2−n to each tree.
Each tree in Tn comes with its incidence matrix, the n×n symmetric

matrix with entry ij equal to 1 if there is an edge between vertices i
and j and to 0 otherwise. Each such matrix has n (real) eigenvalues,
which by definition form the spectrum of the corresponding tree. This
leads in turn to nnn−2 = nn−1 eigenvalues counted with multiplicity
for Tn as a whole. In the sequel, we will concentrate on the multiplicity
of the eigenvalue 0. Let Z(T ) be the multiplicity of the eigenvalue 0 in
the spectrum of the incidence matrix of the tree T , i.e. the dimension
of the kernel. For each n ≥ 1, the restriction Zn of Z to Tn is a random

1Precise definitions for this and the following terms can be found in Section 2.
1
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variable. We set zn =
∑

T∈Tn
Zn(T ). The expectation of Zn(T ) is

E(Zn) = zn/n
n−2.

To illustrate these definitions, we give an explicit enumeration of
z1, · · · , z4 in Appendix A.

Our aim is to prove :

Theorem 1. Let zn be the total multiplicity of the eigenvalue 0 in the
spectra of the nn−2 labeled trees on n vertices. Then :
i) Closed form :

zn = nn−1 − 2
∑

2≤m≤n

(−1)mnn−mmm−2

(

n− 1

m− 1

)

zn
nn−2

≡ E(Zn) = n

(

1− 2
∑

2≤m≤n

(−1)m

m

(m

n

)m
(

n

m

)

)

.

ii) Formal power series identity :

x2 + 2x− xex =
∑

n≥1

zn
n!

(

xexe−xex
)n

.

Corollary 2. For large n, E(Zn) has an asymptotic expansion in pow-
ers of 1/n whose first two terms are

E(Zn) = (2x∗ − 1)n+
x2
∗(x∗ + 2)

(x∗ + 1)3
+O(1/n) ,

where x∗ = 0.5671432904097838729999 · · · is the unique real root of
x = e−x. In particular, the average fraction of the spectrum occupied
by the eigenvalue 0 in a large random tree is asymptotic to 2x∗ − 1 =
0.1342865808195677459999 · · · .
Remark 3. We do not try to show here that the fluctuations in random
trees become small when the number of vertices is large. However, it is
expected that E(Z2

n
)− E(Zn)

2 grows only linearly with the number of
vertices, so that in an appropriate sense the fraction of the spectrum
occupied by the eigenvalue 0 in an infinite random tree is 2x∗ − 1 with
probability 1.

Remark 4. With the explicit formula above, it is easy to list the first
terms in the sequence (zn)n≥1, which are

1, 0, 3, 8, 135, 1164, 21035, 322832, 7040943, 153153620, 4048737099, · · ·
To prove part i) of Theorem 1 we establish a few preparatory lemmas

of independent interest. Then we prove ii) using Lagrange inversion and
obtain Corollary 2 by the steepest descent method.
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There is an application of Zn to random graph theory — see Remark
22.

2. Definitions.

Even if ultimately we are interested only in trees, we shall need more
general graphs (for instance, forests) in the proofs.

Definition 5. A simple graph G is a pair (V,E) where V is a finite
set called the set of vertices and E is a subset of V (2) ≡ {{x, y}, x ∈
V, y ∈ V, x 6= y} called the set of edges.

Remark 6. The adjective simple refers to the fact that there is at
most one edge between two vertices and that edges are pairs of distinct
vertices. From now on we use graph for simple graph.

Definition 7. If V is empty, then we say that the graph G is empty.
The vertices adjacent to a given vertex x are called the neighbors of x.
The number of neighbors of a vertex x is called the degree of x. A leaf
of G is a vertex of degree 1. Two edges of G with a common vertex are
called adjacent edges

Definition 8. A labeled graph on n ≥ 1 vertices is a graph with vertex
set [n] = {1, · · · , n}.

Remark 9. If the graph G has |V | = n ≥ 1 vertices2, any bijection
between V and [n] defines a labeled graph. The incidence matrices
for different bijections differ only by a permutation of the rows and
columns. In particular the eigenvalues are independent of the bijection.

Definition 10. The spectrum of a graph is the set of eigenvalues
(counted with multiplicity) of any of the associated incidence matrices.
By convention, the spectrum of the empty graph is empty.

Definition 11. A subgraph of a graph G = (V,E) is a graph (W,F )
such that W ⊂ V and F ⊂ E. An induced subgraph of G is a graph
(W,F ) such that W ⊂ V and F = E ∩W (2).

Definition 12. We say that two vertices x and x′ ∈ V are in the same
component of G if there is a sequence x = x1, · · · , xn = x′ in V such
that adjacent terms in the sequence are adjacent in G (taking n = 1
shows that luckily x and x are in the same component). This gives

2For any finite set S , |S| is the number of elements in S.
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a partition of V . Each component defines an induced subgraph of G
which is called a connected component of G. Then G can be thought
of as the disjoint union of its connected components. We say that G is
connected if it has only one connected component.

Definition 13. A polygon in a graph G is a sequence x0, x1, · · · , xn,
n ≥ 3 of vertices such that adjacent terms in the sequence are adjacent
in G, x0 = xn and x1, · · · , xn are distinct.

Definition 14. A forest is a graph without polygons. A tree is a
non-empty connected forest.

Remark 15. Clearly a subgraph of a forest is a forest. The connected
components of a nonempty forest are trees. One shows easily that that
a tree with n ≥ 2 vertices has at least two leaves. Then a simple
induction shows that a tree is exactly a connected graph for which the
number of vertices is 1 plus the number of edges. A classical theorem
of Cayley states that there are nn−2 labeled trees on n vertices (see for
instance Proposition 5.3.2 in [3]).

3. Two preparatory lemmas.

The first lemma is a characterization of the dimension of the kernel
of incidence matrices viewed as a function on forests.

Lemma 16. The function Z which associates to any forest the mul-
tiplicity of the eigenvalue 0 in its spectrum is characterized by the fol-
lowing properties :
i) The function Z takes the value 0 on ∅, the empty forest.
ii) The function Z takes the value 1 on q , the forest with one vertex.
iii) The function Z is additive on disjoint components, i.e. if the

forest F is the union of two disjoint forests F1 and F2 then Z(F ) =
Z(F1) + Z(F2)
iv) The function Z is invariant under “leaf removal”, i.e. if x is a

leaf of F , y is its (unique) neighbor, V ′ = V \{x, y}, and F ′ is the
subforest of F induced by V ′ then Z(F ) = Z(F ′).

Remark 17. That the function Z satisfies properties i)–iv) was no
doubt known decades ago (see for instance Section 8.1, Hückels theory,
in [1]). We give a proof, because in the sequel we want to emphasize
and use the simple fact that these properties characterize the function
Z.

Proof of Lemma 16. First, we show that the function Z has prop-
erties i)–iv). In fact, this is true for general graphs (not only forests).
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Properties i) and ii) follow from the definition of Z, property iii) follows
from the fact that the incidence matrix can be put into block diagonal
form, each block corresponding to a connected component. Property
iv) is only slightly more complicated. With an appropriate labeling of
the vertices, the incidence matrix M of F can be decomposed as

M =





0 1 0

1 0 N

0 tN M′





where the first row and column are indexed by the leaf x, the second
row and column are indexed by its neighbor y, N describes the edges
between this neighbor and V ′, and M′ is the incidence matrix for V ′.
Then v = t(v1, v2,v

′) is in the kernel of M if and only if

v2 = 0

v1 = −Nv′

M′v′ = −tNv2.

So v2 = 0 which from the third equation gives M′v′ = 0, implying
that v′ is in the kernel of M′, and then the second equation just gives
v1 the appropriate value. So the kernels of M and M′ have the same
dimension. This proves iv).
Now, any tree with more than 1 vertex has leaves, so leaf removal as

defined in iv) allows one to reduce the forest F to a (possibly empty)
family of isolated vertices (all connected components have only one
vertex). Hence there is at most one function, namely Z, that can
satisfy properties i)–iv).

Remark 18. Leaf removal and additivity give an efficient algorithm
for computing the multiplicity of the eigenvalue 0 for a given forest,
especially when this forest is given as a drawing.

The next lemma gives an impractical but theoretically useful formula
for the function Z.

Lemma 19. Let L be the function on forests defined by:
i’) The function L takes the value 0 on ∅, the empty forest.
ii’) The function L takes the value 1 on q , the forest with one vertex.
iii’) The function L takes the value 0 on disconnected forests.
iv’) The function L takes the value 2(−1)n−1 on trees with n ≥ 2

vertices.
Then, for any forest F

Z(F ) =
∑

F ′⊂F

L(F ′) =
∑

T ′⊂F

L(T ′)
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where the first sum is over induced subforests of F , and the second over
induced subtrees of F .

Remark 20. For a given forest, there is a much nicer formula, directly
connected to the geometry of the forest (again, see for instance Section
8.1, Hückels theory, in [1]). In fact, let Q(F ) be the maximum among
the cardinalities of sets of pairwise non-adjacent edges in F , and N(F )
be the number of vertices in F . Then Z(F ) = N(F ) − 2Q(F ). It is
easy to show that N(F ) − 2Q(F ) satisfies properties i)–iv) of Lemma
16. In particular, a possible way to maximize the number of non-
adjacent edges in F in case iv) is to do so on F ′ and add the edge
{x, y}. This explicit formula allows us to restate our theorems in terms
of the random variable Qn, the restriction of Q to Tn. For instance, in
a large random tree on n vertices, one can find about (1−x∗)n pairwise
non-adjacent edges. Note that 1−x∗ = 0.4328567095902161270000 · · ·
is not much smaller than 0.5 (the upper bound for Q(T )/N(T ) for a
given tree because Z(T ) = N(T )− 2Q(T ) is always nonnegative).

Proof of Lemma 19. Our strategy is to use the characterization of
Z in Lemma 16. First, we observe that the second equality is a trivial
consequence of i’) and iii’). We define a new function Z ′ on the set of
forests by

Z ′(F ) ≡
∑

T ′⊂F

L(T ′)

(where the sum is over induced subtrees of F ) and show that Z ′ satisfies
properties i)–iv) of Lemma 16.
As the empty forest has no non-empty induced subtree i’) implies i).
In the same vein, the forest with one vertex has only one non-empty

induced subtree, namely itself, so ii’) implies ii).
If the forest F is the union of two disjoint forests F1 and F2, an

induced subtree of F is either an induced subtree of F1 or an induced
subtree of F2, and the sum defining Z ′(F ) splits as Z ′(F1) + Z ′(F2),
showing that Z ′ satisfies property iii).
Now, if x is a leaf of F and y its neighbor, we define V ′ = V \{x, y},

V ′′ = {x, y} and consider F ′ and F ′′, the subforests of F induced by
V ′ and V ′′ respectively. We split the sum defining Z ′(F ) into three
pieces. The first is over the induced subtrees of F ′. This is just the
sum defining Z ′(F ′). The second is over the induced subtrees of F ′′,
which is a tree on two vertices. Its subtrees are itself, with weight
L(F ′′) = 2(−1)2−1 = −2, and two trees with one vertex, each with
weight L( q) = 1, so this second sum gives 0. The third sum is over
induced subtrees that have vertices in both V ′ and V ′′. If this sum is not
empty, every tree that appears in it has y as a vertex (by connectivity)
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and has at least two vertices (because the tree consisting of y alone
has already been counted). Then we can group these trees in pairs, a
tree containing x being paired with the same tree but with x and the
edge {x, y} deleted. The function L takes opposite values on the two
members of a pair, so the third sum contributes 0. Hence Z ′ satisfies
property iv). So Z ′(F ) = Z ′(F ′).

Remark 21. These two lemmas have an obvious extension to bicolored
forests. If we use black and white as the colors, and count the zero
eigenvectors having value zero on white vertices, we only need to replace
ii) in Lemma 16 by
ii) The function Z takes the value 1 on •, the forest with one vertex

colored in black and 0 on ◦, the forest with one vertex colored in white,
and ii’) and iii’) in Lemma 19 by
ii’) The function L takes the value 1 on •, the forest with one vertex

colored in black and 0 on ◦, the forest with one vertex colored in white,
iii’) The function L takes the value (−1)n−1 on trees with n ≥ 2

vertices.
The proofs remain the same.

Remark 22. The formula

Z(F ) =
∑

F ′⊂F

L(F ′)

can be inverted using inclusion-exclusion to give

L(F ) =
∑

F ′⊂F

(−1)|V (F )|−|V (F ′)|Z(F ′).

This identity has an application in random graph theory [2], which led
to our interest in Lemma 19.

4. Main proofs.

Proof of Theorem 1. By Lemma 16

zn ≡
∑

T∈Tn

Zn(T ) =
n
∑

m=1

∑

T∈Tn

T ′⊂T
∑

T ′∈Tm

L(T ′).

As the function L depends only on the number of vertices, for fixed

m the double sum
∑

T∈Tn

∑

T ′⊂T

T ′∈Tm
is simply a multiplicity. We count

this multiplicity as follows : we remove from T the edges of T ′, so we
are left with m trees, each with a special vertex, the one belonging to
T ′. This is what is called a planted forest (or rooted forest) with n
vertices and m trees. The number of such objects is m

(

n

m

)

nn−m−1 (see
for instance Proposition 5.3.2 in [3]). Conversely, starting from such a
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planted forest with m trees (each with a special vertex) and n vertices,
we can build a tree on the special vertices in mm−2 ways. So

∑

T∈Tn

T ′⊂T
∑

T ′∈Tm

1 = mm−1

(

n

m

)

nn−m−1.

Hence summation over m gives

zn = nn−1 − 2
∑

2≤m≤n

(−1)mnn−m−1mm−1

(

n

m

)

.

Simple rearrangements lead to the two equivalent formulæ in i), the
first one making clear that zn is an integer.
To obtain the generating function in ii), we need a mild extension

of the Lagrange inversion formula (see for instance Section 5.4 in [3]),
which states that if f(x) is a formal power series in x beginning f(x) =
x+O(x2) and g(x) is an arbitrary formal power series in x, then

(

g ◦ f−1
)

(t) = g(0) +
∑

n≥1

1

n

[

xng′(x)

f(x)n

]

n−1

tn ,

where [h(v)]k is by definition the kth coefficient of the formal power
series h(v).
As an immediate application, we see that if t = xex then

x =
∑

m≥1

(−m)m−1 t
m

m!

and

−x− x2/2 =
∑

m≥1

(−m)m−2 t
m

m!
.

Now we introduce y = te−t and define a sequence z′
n
, n ≥ 1, by

x2 + 2x− xex =
∑

n≥1

z′
n

yn

n!
,

but instead of directly applying the Lagrange inversion formula to
y = xexe−xex , we first substitute the t-expansion (already obtained
by Lagrange inversion) on the left-hand side, which yields

−2
∑

m≥1

(−m)m−2 t
m

m!
− t,

and then apply Lagrange inversion with y = te−t. The result is

z′
n

n!
=

1

n

[

ent

(

1− 2
∑

m≥2

(−m)m−2

(m− 1)!
tm−1

)]

n−1

.
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Straightforward expansion of this formula shows that z′
n
= zn, and this

establishes the generating function representation in ii).

Remark 23. The derivation of ii) is quite artificial. It turns out that
random graph theory gives a natural proof [2] using the formula men-
tioned in Remark 22.

Proof of Corollary 2. This time we use Lagrange inversion with
y = xexe−xex , in a contour integral representation3. So

zn
n!

=
1

n

∮

dx

(xexe−xex)n
(1 + x)(2− ex),

where the contour is a small anticlockwise-oriented circle around the
origin. For large n we use the steepest descent method to obtain the
asymptotic expansion of zn. As

d

dx
xexe−xex = (1 + x)(1− xex)exe−xex ,

the saddle points of xexe−xex are x = −1 and the solutions to x = e−x.
This equation has a unique real root, x∗, which is positive. Numerically,
x∗ = 0.5671432904097838729999 · · · . On the other hand, x = e−x has
an infinite number of complex solutions, in complex conjugate pairs.
Asymptotically, the imaginary parts of these zeros are evenly spaced by
about 2π, while their real parts are negative and grow logarithmically
in absolute value. Consideration of the landscape produced by the
modulus of the function xexe−xex shows that the small circle around the
origin can be deformed to give the union of two steepest descent curves,
one passing through x = −1 and the other through x = x∗. These two
curves are asymptotic to the two lines y = ±π at x → +∞. Hence,
despite the fact that the value of xexe−xex is the same, namely 1/e, at all
the complex saddle points and at x∗, the complex saddle points do not
contribute to the asymptotic expansion of zn at large n. Moreover, the
point x = −1 only gives subdominant contributions because−e−1ee

−1

is
larger than 1/e in absolute value. So we concentrate on the asymptotic
expansion around x∗. As

log xexe−xex = −1− (x∗ + 1)

2x∗

(x− x∗)
2 +O((x− x∗)

3)

we infer that

e−n
√
2πn

∮

dx

(xexe−xex)n
(1 + x)(2− ex)

has an asymptotic expansion in powers of 1/n. By use of Stirling’s
formula for n! we conclude that E(Zn) = zn/n

n−2 has an asymptotic
expansion in powers of 1/n. The first two terms are obtained by brute
force.

3We include the factor 1

2iπ
in the symbol

∮

.
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Appendix A. Examples of direct multiplicity counting.

This appendix enumerates the multiplicities of 0 in the spectrum of
trees with n = 1, 2, 3 or 4 vertices.

Example 24. For n = 1 there is only one tree, q , and one way to
label it, giving 1 = 11−2 tree on one vertex. The incidence matrix is
(0), so the eigenvalue 0 occurs with multiplicity z1 = 1.

Example 25. For n = 2 there is only one tree, q q , and one way
to label it, again giving 1 = 22−2 tree on two vertices. The incidence
matrix is

(

0 1
1 0

)

,

so the eigenvalue 0 occurs with multiplicity z2 = 0.

Example 26. For n = 3 there is only one tree, q q q , and three
ways to label it, giving a total of 3 = 33−2 trees on three vertices. Up
to permutation of rows and columns, the incidence matrix for each of
these three labeled trees is





0 1 0
1 0 1
0 1 0



 ,

which has zero as an eigenvalue with multiplicity 1 (a corresponding
eigenvector is t(1, 0,−1)), so there is a total of 3 × 1 zero eigenvalues,
and z3 = 3

Example 27. For n = 4 there are two trees, q q q q (12 ways to label

it), and q q q

q

(4 ways to label it), giving a total of 12+ 4 = 16 = 44−2

trees on three vertices. Up to permutation of rows and columns, the
two incidence matrices are









0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0









and









0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0









.

The first does not have 0 as an eigenvalue, whereas the second has
zero as an eigenvalue with multiplicity 2 (corresponding eigenvectors
are for instance t(1, 0,−1, 0) and t(1, 0, 0,−1)), so there is a total of
12× 0 + 4× 2 zero eigenvalues, and z4 = 8.
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