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Let us fix an integer n. Then a natural question is the following: What are the remainders
r =mn mod k7 The sum of such remainders with 1 < k£ < n was already considered by Lucas
[5, p. 373] and more recently in [8, 10, 3]. In the present paper, we are simply interested in
the number of distinct remainders. Surprisingly, it seems that this question has been barely
studied.

If £ > n, then we get r = n for all k.
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Abstract

Let s(n) be the number of different remainders n mod k, where 1 < k < [n/2]. This
rather natural sequence is sequence A283190 in the OEIS, and although some basic
facts are known, surprisingly, it has been barely studied. First, we prove the asymptotic
formula s(n) = cn + O(n/(lognloglogn)), where ¢ is an explicit constant. Then we
focus on the difference between the consecutive terms s(n) and s(n + 1). It turns out
that the value can always increase by at most one, but there exist arbitrarily large
decreases. We show that the upper bound on the difference is O(loglogn). Finally, we
consider “iterated remainder sets”. These are related to a problem arising from Pierce
expansions, and we prove bounds for the size of these sets as well.
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If [n/2] +1 < k < mn, then r = n — k, so in this range we simply get all the integers
between 0 and [n/2] — 1.
Therefore, the interesting cases are where 1 < k < |n/2], and we define the set

S(n) :={nmod k: k€ {1,2,...,[n/2]}}.
Note that clearly S(n) C {0,1,...,|n/2] — 1}. Now, let us define
s(n) == |S(n)|.

In other words, s(n) is the number of different values n mod &k for 1 < k < |n/2]. This is
precisely sequence A283190 in the OEIS (On-Line Encyclopedia of Integer Sequences) [6].
We present the first few numbers of the sequence in Table 1.

23 45 6 78 9 10 11 12 13 14 15 16 17 18
1

1
s(n) | 0 1121222 3 4 2 3 3 3 4 5 3

Table 1: First 18 values of s(n).

Although it seems like a natural sequence, it was only entered into the OEIS in 2017 by
T. Kerscher. R. Israel then observed that s(n)/n seems to converge to approximately 0.2296.
He asked about the actual value of the constant on the StackExchange website [4]. This was
answered by the user Empy2 (and added as a comment to the OEIS entry by M. Peake):

lim # => % 11 (1 — 1) ~ 0.2296. (1)

S+l o q
a<p

The answer on the StackExchange website also contains an explanation for why this is
true. While the argument is relatively simple, we did not find a rigorous proof in print. In
this paper, in Section 3, we give a proof of (1), including a bound for the error term.

Then we investigate the differences between consecutive terms of s(n). Looking at the
first few values of the sequence s(n), one sees that the values of s(n + 1) compared to s(n)
usually either stay the same or increase or decrease by 1. They never seem to increase by
more than 1, but sometimes they decrease by 2 or, as it turns out, even more. In Section 4
we show that these differences can get arbitrarily large, while being double logarithmically
bounded in terms of n.

In Section 5, we generalize the set S(n) =: Sij(n) to “iterated remainder sets” via
Sjy1(n) = {nmod k: k € S;(n) \ {0}} for j > 1. These sets are related to an older
problem arising from Pierce expansions. In several papers [9, 2, 1] the following problem was
considered: If we fix a positive integer n, choose another integer 1 < a < n, and repeatedly
set a := n mod a, what is the largest number of steps performed before reaching a = 07
This problem remains open. More on this and the relation to our iterated remainder sets in
Section 5. In Section 6 we prove some bounds for these sets.

Finally, in Section 7 we pose some open problems.

However, we first present all the main results in the next section.
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2 Main results and some lemmas

Let us define the constant from (1), namely
C'—Z;-H (1—1) ~ 0.2296
- Splpt+l) I3 o
p<p

In Section 3 we will prove the following asymptotics for s(n).

Theorem 1. We have
n
= O ——— .
s(n) = en+ <lognloglogn)

In particular,
lim @

n—oo N

= C.

We believe that our bound for the error term is not sharp. Numerical experiments suggest
that O(n'/?) might be closer to the truth; see Section 7. In any case, we know that overall
s(n) grows linearly; however, due to the error term, this does not provide much information
on the differences s(n + 1) — s(n).

As mentioned in the introduction, looking at the first few values of s(n), it seems that
the values of s(n + 1) compared to s(n) usually either stay the same or increase or decrease
by 1. It turns out that they never increase by more than 1, but sometimes they do decrease
by 2 or even more. For example, s(131) = 33 and s(132) = 30. The first time that the
value decreases by 4 happens at n = 17291, where s(17291) = 3975 and s(17292) = 3971.
We have searched up to n = 107 and have not found a decrease by more than 4 in this
range. However, it turns out that arbitrarily large decreases do exist, and we will provide a
construction for such n. On the other hand, we can prove bounds on the decreases in terms
of n. In Section 4 we will, in particular, prove the following results.

Theorem 2. Forn > 1 we have
s(n) — O(loglogn) < s(n+1) < s(n) + 1.
Moreover,

liminf s(n + 1) — s(n) = —oc.
n— o0

Now, let us define the sets of iterated remainders of n inductively by

So(n) :={1,2,...,|n/2]} and
Sj(n) :={nmod k: k€ S;_1(n)\ {0}} forj>1.

Note that, in particular, S(n) = S1(n). Moreover, analogously to s(n), we define

si(n) == [5;(n)].

In Section 6, we will prove the following bounds.
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Theorem 3. For j > 0 we have

——— < liminf 53(n) < lim sup 53(n) < - !
(j+2)! n—oo N 00 n j+2
While the bounds are clearly not sharp (for example, set j = 1 and compare to Theo-
rem 1), it seems that for j > 2 there is indeed a gap between the limit inferior and limit
superior; see Section 7.
Before moving on, we state two simple lemmas. All results on s(n) will be based on the

following equivalence.

Lemma 4. Let r € {0,1,...,|n/2| —1}. Then r € S(n) if and only if n — r has a proper
divisor k > r + 1.

Proof. First, assume r € S(n). This means that there exist integers k € {1,2,...,[n/2]}

and ¢ such that
n=kq+r

and r < k — 1. In other words, k is a divisor of n — r with k& > r + 1. Moreover, k < |n/2]
implies ¢ > 2, and therefore k is indeed a proper divisor of n — r.
Now assume conversely that n — r has a proper divisor £ > r + 1. Then we have

n—r=kq
for some ¢ > 2. This means that r = n mod k. Moreover, ¢ > 2 implies k = (n —r)/q <
|n/2], and so by definition r € S(n). O
Finally, let us give a slightly more precise statement than S(n) C {0,1,...|n/2| — 1}.
Lemma 5. We have S(n) C {0,1,...,|(n—2)/3]}.

Proof. Let r € S(n). Then by Lemma 4, the number n — r has a proper divisor k > r + 1.
In other words, n — r = kq with ¢ > 2. This implies n — r > (r + 1) - 2, and rewriting the
inequality yields n > 3r + 2. O]

Note that throughout the paper, p will denote a prime. In particular, if we sum or take
the union over an index p, the numbers p are implied to be primes.

3 Asymptotics for s(n) (proof of Theorem 1)

In this section, we want to prove that s(n) asymptotically behaves like cn and compute a
bound for the error term. We do this with a straightforward sieving argument. In preparation
for this, let us define the set of integers that are divisible by p but not by any smaller prime
P <p:
D,:={m € Z:p|m, and p'{m for every prime p' < p}. (2)
As usual, let m(n) denote the number of primes p < n.
The next lemma is standard; we provide a proof for completeness. hii
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Lemma 6. Let a,t be positive integers and p a prime. Then

1 1
|me[a+17a+t]|:t5H<1_1?>+E(a’tap)u
p'<p

and the error term E(a,t,p) is bounded by
|E(a,t,p)| <2770

Proof. This follows from a simple inclusion—exclusion argument. Indeed, we have

oot teca= (|57 [0 - 2 (15 ) [))

p1<p

1o (mpjrptzJ B {pp?ng) -t
iq a+t/J_{ a /J)
plly<pp pIlyo,p

Each difference of the shape [(a +t)/q| — |a/q] is equal to t/q + ¢, with some error term §
with |6] < 1. There are exactly 27?~1 such differences. Therefore,

t t t t
|me[a+17&+t”:__z_+ Z _+"'i—,+E<a7t>p)
P Aopp S i pIly<pp
1 1
:t_H(l__,)+E(aat7p)7
P p
P <p

with |E(a,t,p)| < 27"~V as desired.
[

We will also use the next lemma, which is a classical upper bound for the prime counting
function [7, Corollary 1].

Lemma 7. For every n > 2 we have

n

w(n) < 1.3

logn’

Finally, we will use the following simple estimate.

1 1
> 35~ (7o)

p>n

Lemma 8. We have




Proof. By the prime number theorem, the k-th p, prime is asymptotically of the size py ~
klog k. The lemma follows from a density argument. To be rigorous, we can do the following
estimates for sufficiently large n, where C, Cy, C3 are some positive constants:

1 1 o0 1
— <0 - <0, - at
sz = Z (kloghk)? = 2 /n/logn (tlogt)?

p>n k>n/logn

1 o 1
<Gy Y
’ (log(n/ lOg TL))2 n/logn t2

1 1 1
<Oy : A
< Cs (logn)? n/logn Cs nlogn

Now we are ready to prove the asymptotics for s(n).

Proof of Theorem 1. We want to use Lemma 4 to count the remainders € S(n)\ {0}. Note
that n — r having a proper divisor £ > r + 1 is equivalent to n — r having a prime factor
p < (n—r)/(r+1). Moreover, note that the last inequality is equivalent to r < (n—p)/(p+1).
We want to count the remainders r systematically by going through the prime numbers p.
Therefore, we define for every n and every prime p < n the set

Ry(n) = {r: 1§T§%7p’n—7°, andp’fn—rforeveryprimep’<p}.
p

Then we have

S\ {0} = [ Ry(n)

p<n

Since all sets in the union are disjoint by construction, we have in particular

s(n) =1 =[S(n)\ {0} =) |Ry(n (3)

p<n

Instead of counting the numbers r € R,(n), we can equivalently count the numbers m = n—r.
In other words, if we define

M,(n) = {m € [n — %,n — 1] :p|m, and p’ { m for every prime p’ < p} ,
p

then we have |R,(n)| = |M,(n)|.
Let X = X (n) be some threshold function with 1 < X (n) < n that we will fix later. Our
strategy is to compute

n) =1+ M) =D [Mn)|+1+ > [My(n) (4)

p<n p<X X<p<n

::Elr(n)



We do this because on the one hand, if p is small compared to n, we can compute |M,(n)|
relatively precisely. On the other hand, if p is sufficiently large, |M,(n)| is small, and we can
estimate the error term Fj(n) trivially. Let us do the latter first. We have

Bl =1 3 el <13 st 3 =0 (viex) ©®

X<p<n p>X

where we used Lemma 8 for the last estimate.
In order to compute the main term in (4), for each p < X we apply Lemma 6 with
a—n———landt— —£_ This gives us

pri
_n—p.l. Y. mm
Myl =2 T (1 7)) + Balnn)

with

Now we can write

Sl = ¥ 2 L (12 5) + X Bl

p<X p<X p'<p p<X
1 1
= Tiprn L0 p) X T -5) « S
p<X p'<p p<X p'<p p<X
=: Ez(n)
with
[Ea(n)] < X + ) 270D < x 4270, (6)

p<X

where in the error term we estimated the first sum very crudely by X, and for the second
sum we used the definition of m(x).

Finally, recall that
1 1
c= _ 1——=.
; p(p+1) 11 ( p’)

p'<p

Thus, we can write

> |My(n)| =en—n- Z H (1—%) +Es(n), (7)

p<X p>X p'<p

with




where we used Lemma 8 for the last estimate.
Overall, we have from (4) and (7) that

s(n) = cn + Ey(n) + Ey(n) + Es(n).

Using the bounds for the error terms from (5), (6), and (8), and setting X = X(n) = logn,
we get

n
Xlog X
n

s(n) = cn+0( >+O(X) +0(2")

=cn+0 ( ) + O(logn) 4+ O(27(eem),

log nloglogn

The theorem follows upon noting that with Lemma 7 for sufficiently large n we get

27r(logn) < 21.310gn/10g10gn < nl/loglogn < n1/2 -0 n )
- - - log nloglogn

]

Remark 9. At first glance, the last estimate in the proof above appears quite rough. However,
increasing X (n) from logn even to just (logn)'** does not work using the same arguments.
To improve the bound, one would need to find stronger error bounds.

4 Differences between consecutive terms of s(n) (proof
of Theorem 2)

In this section, we try to understand better how s(n) changes as n increases by 1.
First, observe the following relation between elements in S(n + 1) and S(n).

Lemma 10. For every n > 1 we have
Sn+1)\{0}C{r+1:reShn)}.

Proof. Let r € S(n+ 1)\ {0}. Then by Lemma 4 the integer n + 1 — r has a proper divisor
k >r+1. Now since n — (r — 1) = n+ 1 — r has a proper divisor k > r + 1 > r, we have
r—1e€S(n). O

From this, we immediately see that the value of s(n) can increase by at most one at a
time:

Proposition 11. For every n > 1 we have

s(n+1) <s(n)+ 1.
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Proof. We have
s(n+1) =1 =[5+ 1)[-1<|S(n+1)\{0}] < [S(n)] = s(n),
where we applied Lemma 10 for the last inequality. O

Note that 0 = n mod 1 is always in S(n + 1) and recall Lemma 10, and its proof. We
can interpret it in the following way: The set S(n + 1) consists precisely of the element 0
and all the elements r + 1 that were “transferred” from S(n) to S(n + 1) by being increased
by 1. Thus, to understand the difference s(n + 1) — s(n), we need to understand how many
elements r were not transferred. We denote the set of “not transferred elements” by

Tnn+1):={r:reSn)andr+1¢ S(n+1)}.
Then we have
s(n+1) =s(n) +1—[T(n,n+1)[. (9)
Next, we characterize the set T'(n,n + 1).

Lemma 12. We have r € T'(n,n + 1) if and only if r + 1 is the largest proper divisor of
n—r.

Proof. This follows directly from Lemma 4: r € S(n) is equivalent to n — r having a proper
divisor > r+ 1, and r+ 1 ¢ S(n+ 1) is equivalent to (n+ 1) — (r + 1) = n — r not having a
proper divisor > r + 2. O

To count such occurrences, we will use the following simple lemma.

Lemma 13. Let n,d be positive integers. Then d is the largest proper divisor of n if and
only if n/d = p for some prime p and every prime factor of d is > p.

Now, for even n, the situation is rather simple:

Proposition 14. Let n > 2 be even. Then
{(n—2)/3}, ifn=2 (mod 3);

0, otherwise.

T(n,n+1):{

In particular,
sn+1) = {s(n), if n =2 (mod 3);

s(n) 4+ 1, otherwise.

Proof. By Lemma 12 we have r € T'(n,n+1) if and only if 7 4 1 is the largest proper divisor
of n —r. By Lemma 13, this is the case if and only if (n —r)/(r + 1) = p for some prime p
and every prime factor of r + 1 is > p. Let us find all values of r for which this is the case.
Assume first that r is odd. Then (n —r)/(r +1) = odd/even = p, which is impossible. Now
assume that r is even, and we have (n —r)/(r + 1) = even/odd = p. This means that p = 2
and n = 3r 4+ 2. So this happens if and only if n = 2 (mod 3) and r = (n — 2)/3.

The second part of the lemma now follows immediately from formula (9). O
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For odd n, we will prove that |T'(n,n 4+ 1)| is at most double logarithmic in n.
Let us first use Lemmas 12 and 13 to characterize the sets T'(n,n + 1) more precisely.

Lemma 15. Assume that n+ 1 = pi*---p,* is the prime factorization of n + 1 with p; <
s < pp. Let 1 <r < (n—2)/3. Thenr € T(n,n+ 1) if and only if all of the following
conditions are satisfied:

(i) r+1=p7"---p;* for some index 2 < I <{;
(ii) (n+1)/(r+1)—1=p{ - -p;" " — 1 =p for some prime p;

(iii) p < pr.

Ie_

Moreover, r = 0 € T(n,n + 1) if and only if n = pi*---p, 1 is prime. Finally, if
n =2 (mod 3), thenr = (n—2)/3 € T'(n,n+1).

Proof. By Lemma 12 we have r € T'(n,n+ 1) if and only if r + 1 is the largest proper divisor
of n —r. By Lemma 13 this is equivalent to
n—r n+1
— 1= 10
r+1 r+1 b (10)
and every prime factor of r + 1 is at least of size p. (11)

Let 1 <r < (n—2)/3 and assume that n +1 = pi* - - - p;*. We check that (10) and (11) are
equivalent to the three conditions in the statement of the lemma.
Assume first that (10) and (11) hold. Then since r + 1 | n + 1, we have

Let I be the index such that p; < -+ < p;_1 <p < pr <--- < pp (where [ =1 is allowed
and means that p < p;). Then (11) implies that y; = --- = y;_1 = 0. Moreover, for every

I < i< /¢ we can write
n+1

r+1

with some integer A > 1. Then p; > p implies x; —y; = 0 for all ¢+ = I,... ¢, except if
pi=3,2,—y; =1, A=1and p = 2. The exceptional situation is (n 4+ 1)/(r + 1) = 3,
which is equivalent to r = (n — 2)/3 and was excluded. In the other situations, we have
yr =g, ...,Y¢ = x4, and the three conditions in the lemma are clearly satisfied (the condition
I > 2 follows from (n+1)/(r+1)=p+1>1).

Conversely, it is clear that the three conditions in the lemma imply (10) and (11).

The statement for » = 0 holds because always 0 € S(n) and by Lemma 4 we have
1 € S(n+1) if and only if n = (n + 1) — 1 is composite.

Finally, assume r = (n — 2)/3 is an integer. Then n mod (n+1)/3 =r and so r € S(n).
On the other hand, r +1 > (n —2)/3 = [(n + 1 — 2)/3] and so by Lemma 5 we have
r+1¢Sn+1). O

:pfi*yi.A:p_i_l’
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Proposition 16. For every odd n > 1 we have
s(n) —s(n+1) = O(loglogn).
Proof. In view of formula (9) it suffices to prove that
|T(n,n+ 1)\ {0, (n —2)/3}| = O(loglogn).

In other words, we want to show that there are at most O(loglogn) numbers r satisfying
the three conditions in Lemma 15. Fix an odd n > 1 and let

n+1=pi*--p

be the prime factorization of n + 1 with p; < --- < py. Then by Lemma 15, » + 1 must be
of the shape r + 1 = p7’ - - p,* for some index 2 < I < . Moreover, for these indices I, we
have

pr>p=pit-opl = 1>pyprog.

Assume that there are ¢ such numbers r, corresponding to the indices I; < --- < I;. Then
we can weaken the above inequality to

PI; 2 PRIy D1, -
Using this inequality inductively, we get

n=pi'--p —12>pLpn -,
t—2 t
> (popr - pr)’ = Lo L)t > >y, >3

—2
This implies

t — 2 <log,logs(n),
and so t = O(loglogn), as desired. O

Proposition 17. We have

liminf s(n + 1) — s(n) = —oc.
n—oo

Proof. Let us set
t(n) :=|T(n,n+1)|.

In view of formula (9), our strategy is to use Lemma 15 to recursively construct numbers
nM n® . with the properties

e nU) is prime and

o t(nl)) > j.
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For good intuition, let us set the first three values straight away:
D.=3=22-1, n®.=11=22.3-1, n®:=131=22.3-11—1.
This works because of Lemma 15 and the following facts: 22 — 1 is prime and 22 — 1 > 3,

and 22 -3 — 1 is prime and 22-3 —1 > 11, and also 22 -3 - 11 — 1 is prime.
Now assume we have already constructed n) for some j > 3. Set

_

pgn(j>

For reasons that will become apparent in (12), we want to choose an integer y with the
following properties:

(a) ged(xP 4y, P) =1 for all integers x. This is equivalent to y # 0 (mod p) for all p | P.

(b) ged(y(n) +1) — 1, P) = 1. This is equivalent to y(n) + 1) # 1 (mod p) for all p | P
with pJ(n(J + 1.

Overall, we want y to satisfy
y #0,(nY +1)7" (mod p) for all p | P.

For each p > 3, this is clearly possible, since at most two residue classes need to be avoided.
For the case p = 2, note that since n/) is a prime, n\) + 1 is even, so p | nt) + 1 and we
only need to avoid y = 0 (mod 2).

Therefore, by the Chinese remainder theorem, there exists an integer 1 < y < P with
properties (a) and (b).

We fix such an integer y and consider the arithmetic progression

iy = (MY +1)(@P+y) —1=2PnP + 1) +y(n? +1) -1, z>1. (12)
Now our property (b) implies that
ged(P(nY) + 1), y(nW +1)—1) = 1.

Thus, by Dirichlet’s prime number theorem, there exists an integer x > 1 such that a, is a
prime. We set

nUt) = (n@ £ 1) (2P +y) — 1 = a,.
By construction, nU+" is prime, and we finally only need to check that indeed ¢(nU+Y) >
tnW)+1>j+1.

It is easy to see that by construction nV*1 = 2 (mod 3) for all j > 2 and nV*Y is prime,
so the special cases from Lemma 15, namely r = 0 and r = (nU*Y) — 2)/3, are always in
T(nU+), pU+D) 4 1),

Moreover, let us write nt) = p{*--.pj* — 1 with p; < --- < p;. Then we have nU+Y =
pit - pyt - @ — 1, where all prime factors in Q = P + y are larger than p, by property (a)
and the definition of P. Thus, if r satisfied the three conditions in Lemma 15 for n'9), then
7' = (r—1)-Q+ 1 satisfies the three conditions in Lemma 15 for nU+Y. The increase comes
from the fact that now " = @) — 1 satisfies the three conditions as well. O
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Proof of Theorem 2. Combine Propositions 11, 14, 16, and 17. [

5 Iterated remainder sets and their relation to the “n
mod a problem”

Recall that we defined the sets of iterated remainders of n inductively by

So(n) :={1,2,...,|n/2]} and
Sj(n) :={nmod k: k€ S;_1(n)\ {0}} forj>1.

These sets are related to an older open problem about the length of the Pierce expansion.
Shallit [9] first studied the problem, which we state as follows:

Fix a positive integer n and choose another integer 1 < a < n. Set a9 := a and
aj11 :=nmod a; for j > 0 and as long as a; > 0. For example, for (n,a) = (35,22), we get
ap = 22,a7 = 13,a9 = 9,a3 = 8,a4 = 3,a5 = 2,a6 = 1,a; = 0. Now let us define P(n,a) to
be the integer ¢ such that a; = 0. So, for example, P(35,22) = 7. Finally, let us set

P(n) := ax P(n,a).
The problem is to obtain upper and lower bounds for P(n) in terms of n. In particular,
experiments suggest that the upper bound should be sublinear; however, this seems to be
hard to prove. The best known bounds are due to Chase and Pandey [1], who slightly
improved the bounds by Erdds and Shallit [2]: We have
logn 1.2
—= <P 377t 13
loglogn<< (n) <n (13)
for sufficiently large n.
This problem is directly related to our sets S;(n) via the following two simple lemmas.

Lemma 18. Let j > 1 and n > 1. Then r € Sj(n) if and only if there exists an integer
(n/2] +1 < a <n such that in the above notation a1 =r.

Proof. This follows directly from the definitions. The index shift comes from the fact that
we are assuming [n/2] +1 < a <n and so a; can be exactly every element from Sy(n). O

Lemma 19. The following statements are equivalent:
1. P(n) =t;
2. Sii1(n) ={0};
3. |Sir1(n)| =1 and |Siy145(n)| =0 for all j > 1.
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Proof. When computing P(n) = max;<,<, P(n,a), we may restrict ourselves to [n/2]+1 <

a < n, since if a < [n/2 + 1], the starting value n — a gives P(n,n —a) = P(n,a) + 1.
Now the equivalences follow from Lemma 18 and the fact that S;(n) = 0 if and only if

Si—1=0or S;_; ={0}. O

Remark 20. The known bounds (13) imply that for sufficiently large n, we have |S;(n)| =0
for all j > n'/3. On the other hand, there exists a constant ¢ such that for all sufficiently
large n we have |S;(n)| > 1 for j < clogn/loglogn.

6 Bounds for iterated remainders

Recall that we defined
sj(n) == |S;(n)].
In this section, we prove upper and lower bounds for s;(n).
We start with a simple upper bound.

Lemma 21. For all j > 0 and n > 1 we have

s;(n) —1 < maxS;(n) < in.

Proof. The first inequality is clear since minSj(n) = 0. We show the second inequality by
induction. For j = 0 this is clearly satisfied by definition. Now assume that max S;(n) <
n/(j + 2) for some j > 0. Then for every r € S;i1(n) there exists a k € S;(n) with k > r
such that n = gk +r. By induction hypothesis we have kK < n/(j +2); hence ¢ > j+ 2. Now

r+1§k:n_r
q
implies
n—gq n
r < < - ,
qg+1 743
as desired. O

Remark 22. The arguments from [2] for the upper bound on P(n) in fact give stronger upper
bounds when j is relatively large compared to n. For example, since maxS;(n) strictly
decreases as j increases, one can show that max S;(n) is roughly bounded by 2v/n — j for
Jj > v/n. One can do even better (see [2, proof of Theorem 2]), using the fact that the
number of divisors of m is O(m?). It turns out that for j > n'/3*¢ we get roughly the upper
bound 2n?/3+e — j . pl/3,

Finally, we prove a lower bound. In particular, we show that the sequence s;(n) grows
linearly (even if lim,,_, s;(n)/n might not exist).
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Lemma 23. For every j > 0 and n > N(j) there exists an integer x; = x;(n) such that

_ i1
Sin) D {r:j<r< %, r=ux; (mod (j+ 1))} (14)
In particular,
. si(n) 1
lim inf (15)

> .

Proof. Fix some J > 0 and let n > N(J). We want to prove (14) for j = 0,1,...,J with
finite induction. For j = 0 the inclusion (14) is clearly true with zq = 0, since Sp(n) =
{0,1,...,|n/2]}. Now assume that (14) holds for some 0 < j < .J — 1. Our goal is to show

n—j—2

S.; Dyr:j+1<r<
jpi(n) 2{r:j+1<r< e

yr=n— (4 2)z; (mod (5 +2)h)};

i.e., we set xj41 =n — (j + 2)z;. Assume r is in the set on the right hand side. Then the
condition on the residue class implies that we can write r = n — (j + 2)z; — ¢(j + 2)! with
some integer ¢q. This implies

n—r=(+2)(z;+q(G+ 1) = +2k

where we set k := z;+¢(j+1)!. Thus, to prove r € S;41(n) it suffices to show that k € S;(n)
and k > r + 1.

Since n —r = (j + 2)k, the condition k > r + 1 is equivalent to n —r > (j + 2)(r + 1).
This is equivalent to r < (n — j —2)/(j + 3), which is satisfied by assumption.

Clearly, k = x; (mod (j + 1)! ), so in order to show k € S;(n) we only need to check
J<k<(n—-7-1)/(+2). First, k < (n—j—1)/(j + 2) is equivalent to n —r <
(7+2)(n—75—1)/(j +2) =n—j—1, so this indeed holds for r > j + 1. Finally, £ > j is
equivalent to n — r > (j + 2)j, which holds since r < (n —j —2)/(j +3) <n— (5 + 2)j for
sufficiently large n.

The bound (15) follows immediately from (14), since for large n the interval length is
m—j53—-1)/(j+2) —j+1~n/(j+2) and every (j + 1)!-th number is included. O

Proof of Theorem 5. Combine Lemmas 21 and 23. O]

7 Numerical experiments and open problems

Recall that in Theorem 1 we proved

n
s(n) = en+0 <lognloglogn> '

The bound for the error term seems very large. We have computed the values for s(n) for
n < 107 and determined the points (n, s(n) — cn) where s(n) — cn reaches a new maximum

15
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Figure 1: The function 2n'/® and the largest deviations of s(n) from cn.

or minimum. These points are plotted in Figure 1, together with the graph of 2n'/3. This
suggests that perhaps the correct bound for the error term might be O(n'/3). In any case,
we propose the following problem.

Problem 1. Tmprove the bound for the error term for s(n) in Theorem 1.

For the iterated remainder sets, recall that Theorem 3 says that

. . 1
< lim inf M < lim sup 53(n) < —.

(j +_2>! n—oo T n—00 n J+2

In particular, there is a gap between our lower and our upper bound. Indeed, numerical
experiments strongly suggest that lim,_, s;(n)/n does not exist for j > 2. The three plots
in Figure 2 show the values of s;(n), s2(n), s3(n), respectively, for n < 10%. For sy(n) and
s3(n) we see some “bands” of values. The blue points correspond to n = 0 (mod 6), the
green points correspond to n = 2,4 (mod 6), the yellow points to n = 3 (mod 6), and the
red points to n = 1,5 (mod 6). It seems that really the precise divisibility properties of n
determine the value of s5(n), s3(n). To support this further, in Figure 3 we have plotted the
values of sy(n) only for n =1 (mod 6) in the range [6-10*,6 - 10 + 10]. In particular, we
only consider numbers n not divisible by 2 and 3. Indeed, the numbers n that are divisible
by 5 (points colored red) yield the smallest relative values. In any case, the easiest problem
in this context might be Problem 2.

Problem 2. Prove that for j > 2 the limit lim,,_, sj(n)/n does not exist.
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Figure 2: Plots of s;(n) for n = 1,2, 3; colors according to divisibility by 2 and 3.

7760' o

7740 Soe®, %

7720 . ohere L.
‘e

7700 1 LD °e

7680 A

7660 . o .

76404 oo A

7620 .

60000 60200 60400 60600 60800 61000

Figure 3: so(n) for n =1 (mod 6); the points where n is divisible by 5 are colored red.
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