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Abstract

We find formulas for the determinants of several Toeplitz-Hessenberg matrices

whose nonzero entries are Fuss-Catalan numbers. By Trudi’s formula, one obtains

equivalent multi-sum identities indexed over the set of partitions of a fixed integer in-

volving the product of Fuss-Catalan numbers and multinomial coefficients. We make

use of generating functions to establish our results and, as a consequence, several en-

tries from the OEIS are afforded new combinatorial interpretations as determinants

of certain Toeplitz-Hessenberg matrices. Finally, we provide counting arguments for

several of our determinant identities drawing upon combinatorial interpretations of

various specific cases of the Fuss-Catalan numbers in terms of Dyck paths, ternary

trees, and non-crossing partitions.
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1 Introduction

The Fuss-Catalan numbers An(p, r) were introduced in [23] and are given explicitly by

An(p, r) =
r

pn + r

(
pn + r

n

)
=

r

n!

n−1∏

i=1

(pn + r − i), n ≥ 0.

The An(p, r) are given recursively by

An(p, r) = An(p, r − 1) + An−1(p, p + r − 1), n ≥ 1,

and represent the coefficient of xn in M r, where M = M(x) satisfies xMp = M − 1. Note
that the An(p, r) reduce to the binomial coefficients of order r when p = 0 and to Pascal’s
triangle, read along diagonals, when p = 1. When p = 2 and r = 1, the Fuss-Catalan
numbers reduce to the classical Catalan numbers Cn = 1

n+1

(
2n
n

)
, which occur throughout

enumerative combinatorics, see [27]. The An(p, r) are referred to as the Raney numbers by
some authors, with the Fuss-Catalan descriptor being reserved for the special case when
p = 2 and r = 1. Here, we will assume that p and r denote fixed non-negative integers, not
both zero.

The An(p, r) where p ≥ 1 answer the question of finding the number of possible sequences
for completing a computer stack of instructions in exactly pn + r steps (and not fewer) if at
each step either a single instruction is processed or p−1 new instructions arrive, where at the
beginning, there are r instructions outstanding. See also [13, Chapter 7] for an equivalent
formulation (and combinatorial proof of the solution) of the problem in terms of lattice paths.
When p = k + 1 and r = 1, the An(p, r) enumerate the non-crossing partitions of size kn in
which the number of elements in each block is divisible by k, see [7, Lemma 4.1]. See also,
for example, the following references for other appearances of the Fuss-Catalan numbers in
algebra [2, 14], probability [6, 19], and combinatorics [1, 3, 16, 21, 22, 24].

In [9], it was shown

D+(C1, C2, . . . , Cn) = (−1)n−1Cn−1, n ≥ 1,

and
D−(C1, C2, . . . , Cn) = (2n− 1)Cn−1, n ≥ 1,

by both algebraic and combinatorial arguments, where D±(a1, . . . , an) denotes the determi-
nant of a Toeplitz-Hessenberg matrix of the form (1) below in which a0 = ±1. Here, we
extend these and other results from [9] by considering matrices with Fuss-Catalan number
entries and special cases thereof (especially p = 2 or 3). This yields new connections between
An(p, r) and several sequences occurring in [25]. By contrast, Toeplitz-Hessenberg matrices
whose determinants work out to the Fuss-Catalan numbers have previously been considered
in [8]. Finally, we note that comparable formulas have been found for the determinants of
Toeplitz-Hessenberg matrices whose nonzero entries are derived from other well-known se-
quences such as, inter alia, the Motzkin [10], Leonardo [12], Schröder, and Fine [11] numbers.
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The organization of this paper is as follows. In the second section, we establish a gen-
eral formula for D+(A1(p, r), . . . , An(p, r)), and note some particular cases corresponding to
entries in [25]. We also establish several further determinant formulas involving An(p, r) for
specific p and r. As a consequence of our results, we obtain new combinatorial interpretations
in terms of Toeplitz-Hessenberg matrices for several sequences in [25]. By Trudi’s formula,
these determinant formulas may be expressed as multi-sum identities involving sums of prod-
ucts of Fuss-Catalan numbers and multinomial coefficients. In the third section, we provide
combinatorial proofs of several of our formulas using the definition of the determinant as a
signed sum over the set of permutations of [n] = {1, . . . , n}.

Our combinatorial arguments entail finding a direct enumeration of a discrete structure
counted by the resulting positive determinant sum when a0 = −1 and a sign-changing
involution on a related (signed) structure whose sum of signs is given by the determinant
when a0 = 1. In our combinatorial proofs, we draw upon interpretations of various specific
cases of An(p, r) in terms of ternary trees, Dyck paths, and non-crossing partitions. A
notable bijection is used in our argument of the formula for D−(A0(3, 1), . . . , An−1(3, 1)),
see (19) below, wherein a one-to-one correspondence is found between the set of Dyck paths
of semi-length 2n with all descents even and no valleys of height one and a subset of the
non-crossing partitions of [2n] with all even block sizes whose first block satisfies a certain
restriction with regard to its run lengths. On the other hand, our proofs of the formulas
for D+(K−1, . . . , Kn−2) and D+(K0, . . . , Kn−1), where Kn = Cn+2 − Cn+1, require defining
a somewhat intricate sign-changing involution in each case on sets of vectors of Dyck paths
whose combined semi-length satisfies a certain restriction. It will be seen that the survivors
of the involution in both instances are enumerated by partial sums of Catalan numbers
starting from either one or zero, respectively (see entry A014137 in [25]).

2 Fuss-Catalan determinants

Consider an n× n matrix An for some n ≥ 1 of the form

An := An(a0; a1, . . . , an) =




a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0
a3 a2 a1 · · · 0 0
...

...
...

. . .
...

...
an−1 an−2 an−3 · · · a1 a0
an an−1 an−2 · · · a2 a1




, (1)

where a0 6= 0. Such a matrix An is described as being Toeplitz-Hessenberg (see, e.g., [20]).
The following expression for det(An) in terms of the ai is known as Trudi’s formula [17,

Theorem 1], the a0 = 1 case of which has been attributed to Brioschi [20].

Lemma 1. If n ≥ 1, then

det(An) =
∑

α̃=n

(−a0)
n−|α|mn(α)aα1

1 aα2
2 · · · aαn

n , (2)
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where the sum is over all n-tuples α = (α1, . . . , αn) of non-negative integers such that α̃ =

α1 + 2α2 + · · · + nαn = n, with |α| = α1 + · · · + αn and mn(α) = |α|!
α1!···αn!

.

Note that the sum in (2) may be regarded as being over the set of all partitions of the
integer n.

Consider now the generating functions

f(x) =
∑

n≥1

det(An)xn and g(x) =
∑

i≥1

aix
i,

where An is of the form in (1). Using (2), one can establish the following relation (see, e.g.,
[12]) between f(x) and g(x), which will be made frequent use of.

Lemma 2. We have

f(x) =
− 1

a0
g(−a0x)

1 + 1
a0
g(−a0x)

. (3)

To simplify notation, we denote the specific cases of det(An(a0; a1, . . . , an)) when a0 =
±1 by D±(a1, . . . , an). We have the following general determinant formula involving Fuss-

Catalan numbers, where the binomial coefficient
(
α
k

)
is taken to be α(α−1)···(α−k+1)

k!
for any

number α and non-negative integer k.

Theorem 3. Let p, r ≥ 0 be fixed integers. Then we have

D+(A1(p, r), A2(p, r), . . . , An(p, r)) = (−1)n−1 r

n

(
pn− r − 1

n− 1

)
, n ≥ 1. (4)

Proof. Let u(x) =
∑

n≥1 An(p, r)xn and v(x) =
∑

n≥1(−1)n−1 r
n

(
pn−r−1
n−1

)
xn. By Lemma 2, to

establish (4), it suffices to show

−u(−x)

1 + u(−x)
= v(x), i.e., u(x) + v(−x) = −u(x)v(−x),

upon replacing x with −x. Consider equating coefficients of xn for n ≥ 1 on both sides of
the last equation, taking into account a convolution on the right-hand side. Then (4) is seen
to be equivalent to the following binomial identity for all n ≥ 1:

r

n

(
pn + r − 1

n− 1

)
− r

n

(
pn− r − 1

n− 1

)
=

n−1∑

i=1

r2

i(n− i)

(
pi + r − 1

i− 1

)(
pn− pi− r − 1

n− i− 1

)
. (5)

To show (5), we first recall the general convolution identity for all integers n, t ≥ 0 and real
numbers r and s from [13, p. 202, Eq. (5.63)]:

n∑

k=0

rs

(tk + r)(tn− tk + s)

(
tk + r

k

)(
tn− tk + s

n− k

)
=

r + s

tn + r + s

(
tn + r + s

n

)
,
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the s = −r case of which corresponds to

n∑

k=0

r2

(tk + r)(tn− tk − r)

(
tk + r

k

)(
tn− tk − r

n− k

)
= 0. (6)

Now consider separating the k = 0 and k = n terms in (6) and then applying the fact(
α
k

)
= α

k

(
α−1
k−1

)
for any real number α and positive integer k. This yields

n−1∑

k=1

r2

k(n− k)

(
tk + r − 1

k − 1

)(
tn− tk − r − 1

n− k − 1

)
=

r

tn + r

(
tn + r

n

)
− r

tn− r

(
tn− r

n

)

=
r

n

(
tn + r − 1

n− 1

)
− r

n

(
tn− r − 1

n− 1

)
,

which is equivalent to (5) and completes the proof of (4).

The following special cases of Theorem 3 correspond to entries in [25].

Corollary 4. We have

(−1)n−1D+(A1(2, 3), A2(2, 3), . . . , An(2, 3)) = Cn−1 − Cn−2 = A000245(n− 2), n ≥ 2,

(7)

(−1)n−1D+(A1(2, 4), A2(2, 4), . . . , An(2, 4)) = Cn−1 − 2Cn−2 = −A115143(n), n ≥ 3, (8)

(−1)n−1D+(A1(3, 1), A2(3, 1), . . . , An(3, 1)) =
1

n

(
3n− 2

n− 1

)
= A006013(n− 1), n ≥ 1, (9)

(−1)n−1D+(A1(3, 2), A2(3, 2), . . . , An(3, 2)) =
2

n

(
3n− 3

n− 1

)
= A007226(n− 1), n ≥ 1.

(10)

Remark 5. Using the fact
(
−n
k

)
= (−1)k

(
n+k−1

k

)
, we have that the p = 0 case of (4) is

equivalent to

D+

((
r

1

)
,

(
r

2

)
, . . . ,

(
r

n

))
=

(
n + r − 1

n

)
, n, r ≥ 1. (11)

Let Kn := An(2, 3) = Cn+2 − Cn+1 for n ≥ −1 and let

C := C(x) =
1 −

√
1 − 4x

2x

denote the Catalan number generating function. We have the following further determinant
formulas involving Cn and Kn.
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Theorem 6. If n ≥ 1, then

D−(C1, C3, . . . , C2n−1) = A066357(n), (12)

D−(C2, C3, . . . , Cn+1) = pn, (13)

D+(K−1, K0, . . . , Kn−2) = (−1)n−1

n−1∑

i=1

Ci, (14)

D+(K0, K1, . . . , Kn−1) = (−1)n−1

n−1∑

i=0

Ci = (−1)n−1A014137(n− 1), (15)

D−(K0, K1, . . . , Kn−1) = A026674(n), (16)

where pn is given by 1
2−C2 = 1 +

∑
n≥1 pnx

n.

Proof. To show (12), first note

∑

n≥1

C2n−1x
2n−1 =

C(x) − C(−x)

2
=

2 −
√

1 − 4x−
√

1 + 4x

4x
,

and hence
∑

n≥1

C2n−1x
n =

2 −
√

1 − 4x1/2 −
√

1 + 4x1/2

4
.

By the a0 = −1 case of (3), we then have

∑

n≥1

D−(C1, . . . , C2n−1)x
n =

2 −
√

1 − 4x1/2 −
√

1 + 4x1/2

2 +
√

1 − 4x1/2 +
√

1 + 4x1/2
.

Recall
∑

n≥1

A066357(n)xn = xC2(x1/2)C2(−x1/2) =
1 − 2x1/2 −

√
1 − 4x1/2

1 + 2x1/2 +
√

1 + 4x1/2
,

where the second equality follows from the definition of C(y) and the fact yC2(y) = C(y)−1.
Thus, formula (12) holds if and only if the generating functions for n ≥ 1 corresponding to
the two sides are equal, i.e.,

(
2 −

√
1 − 4x1/2 −

√
1 + 4x1/2

)(
1 + 2x1/2 +

√
1 + 4x1/2

)

=
(
2 +

√
1 − 4x1/2 +

√
1 + 4x1/2

)(
1 − 2x1/2 −

√
1 − 4x1/2

)
,

which may subsequently be verified. For (13), note

∑

n≥1

Cn+1x
n =

∑

n≥2

Cnx
n−1 =

1

x
(C − 1 − x),
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and hence

∑

n≥1

D−(C2, . . . , Cn+1)x
n =

C − 1 − x

2x + 1 − C
=

x

2x + 1 − C
− 1 =

1

2 − C2
− 1,

as desired.
To show (14), first note

∑

n≥1

Kn−2x
n =

∑

n≥1

(Cn − Cn−1)x
n = (1 − x)C − 1,

and thus, by the a0 = 1 case of (3), we have

∑

n≥1

D+(K−1, . . . , Kn−2)x
n =

1 − (1 + x)D

1 − (1 − (1 + x)D)
=

1

(1 + x)D
− 1,

where D = C(−x). On the other hand,

∑

n≥1

(
(−1)n−1

n−1∑

i=1

Ci

)
xn =

∑

i≥1

Ci

∑

n≥i+1

(−1)n−1xn =
x

1 + x
(D − 1).

Using the fact xD2 = 1−D, one can show the equality of generating functions 1
(1+x)D

− 1 =
x

1+x
(D − 1), which implies (14). A similar proof applies to (15). Finally, for (16), note

∑

n≥1

Kn−1x
n =

∑

n≥0

(Cn+1 − Cn)xn =
(1 − x)C − 1

x
= xC3,

where the last equality follows from two applications of xC2 = C − 1, and hence

∑

n≥1

D−(K0, . . . , Kn−1)x
n =

xC3

1 − xC3
=
∑

n≥1

A026674(n)xn,

as desired.

Remark 7. Note that A066357(n) enumerates, among other things, the set of lattice paths
from (0, 0) to (2n, 2n) using (1, 0) and (0, 1) steps that lie on or above the line y = x and avoid
points (m,m) where m is odd. Formula (12) above is seen to provide a new combinatorial
interpretation for A066357 in terms of weighted compositions of n (see preliminary discussion
in third section). A comparable remark applies to the other sequences from [25] that arise
here as determinants of matrices with Fuss-Catalan entries.

One may obtain an explicit formula for the sequence pn as follows, which apparently does
not occur in [25]. Upon writing

∑

n≥1

pnx
n =

1

2 − C2
− 1 =

C2 − 1

1 − (C2 − 1)
=
∑

i≥1

(C2 − 1)i,

7
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we have

pn = [xn]
∑

i≥1

(C2 − 1)i =
n∑

i=1

i∑

k=1

(−1)i−k

(
i

k

)
[xn]C2k

=
n∑

i=1

i∑

k=1

(−1)i−k

(
i

k

)
2k(2n + 2k − 1)!

n!(n + 2k)!
,

where in the third equality we have made use of the well-known fact [xn]Cj = j(2n+j−1)!
n!(n+j)!

for

n, j ≥ 1; see, e.g., [29, p. 54, Eq. (2.5.16)]. The last expression may be rewritten to give

pn =
n∑

k=1

n−k∑

i=0

(−1)i
k

n + k

(
2n + 2k

n

)(
i + k

k

)
, n ≥ 1. (17)

Let

Hn := An(3, 1) =
1

3n + 1

(
3n + 1

n

)
= A001764(n)

and

Jn := An(3, 2) =
2

3n + 2

(
3n + 2

n

)
= A006013(n)

for n ≥ 0. In addition to those given above in Corollary 4, we have the following determinant
formulas involving Hn and Jn.

Theorem 8. Let n ≥ 1, unless stated otherwise. Then we have

D+(H0, H1, . . . , Hn−1) = (−1)n−1A023053(n− 1), (18)

D−(H0, H1, . . . , Hn−1) = A098746(n), (19)

D−(H1, H2, . . . , Hn) = A047099(n), (20)

D+(H2, H3, . . . , Hn+1) =
2(−1)n−1

n

(
3n− 3

n− 1

)
= (−1)n−1A007226(n− 1), n ≥ 2, (21)

D+(J0, J1, . . . , Jn−1) = (−1)n−1A121545(n), (22)

D−(J0, J1, . . . , Jn−1) = Hn. (23)

Proof. We provide proofs of (21) and (23), the others being similar. For (21), first note

∑

n≥1

Hn+1x
n =

1

x
(H − 1 − x),

where the power series
∑

n≥0 Hnx
n is denoted by H = H(x). Recall that H satisfies H =

1 + xH3. By Lemma 2, we get

∑

n≥1

D+(H2, . . . , Hn+1)x
n =

1
x
(H(−x) − 1 + x)

1 − 1
x
(H(−x) − 1 + x)

=
H(−x) − 1 + x

1 −H(−x)
,

8
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whence ∑

n≥2

D+(H2, . . . , Hn+1)x
n =

x

1 −H(−x)
− 1 − 3x.

On the other hand, from the known generating function formula for A007226(n), we have

∑

n≥2

(−1)n−1A007226(n− 1)xn = x

(
∑

n≥0

A007226(n)(−x)n − 2

)

= x

(
1 −H−2(−x)

−x
− 2

)
= H−2(−x) − 1 − 2x.

So to complete the proof of (21), we must show x
1−H(−x)

− x = H−2(−x), i.e., H−2(x) +
x

1−H(x)
= x, upon replacing x with −x. The last equality is equivalent to 1 − H + xH2 =

xH2(1 −H), which holds since xH3 = H − 1. For (23), first note
∑

n≥1 Jn−1x
n = xH2, by

the known generating function formula for Jn. By (3), we then get

D−(J0, . . . , Jn−1)x
n =

xH2

1 − xH2
.

Since
∑

n≥1 Hnx
n = H − 1, equality (23) is equivalent xH2 = (H − 1)(1 − xH2), which

follows from the relation for H.

By formula (2) and Theorems 3, 6, and 8, we obtain the following multi-sum identities
involving the Fuss-Catalan numbers.

Corollary 9. Let n ≥ 1, unless stated otherwise. Then we have

∑

α̃=n

(−1)|α|−1mn(α)A1(p, r)α1A2(p, r)α2 · · ·An(p, r)αn =
r

n

(
pn− r − 1

n− 1

)
,

∑

α̃=n

mn(α)Cα1
1 Cα2

3 · · ·Cαn

2n−1 = A066357(n),

∑

α̃=n

mn(α)Cα1
2 Cα2

3 · · ·Cαn

n+1 = pn,

∑

α̃=n

(−1)|α|−1mn(α)Kα1
−1K

α2
0 · · ·Kαn

n−2 =
n−1∑

i=1

Ci,

∑

α̃=n

(−1)|α|−1mn(α)Kα1
0 Kα2

1 · · ·Kαn

n−1 =
n−1∑

i=0

Ci,

∑

α̃=n

mn(α)Kα1
0 Kα2

1 · · ·Kαn

n−1 = A026674(n),

9
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∑

α̃=n

(−1)|α|−1mn(α)Hα1
0 Hα2

1 · · ·Hαn

n−1 = A023053(n− 1),

∑

α̃=n

mn(α)Hα1
0 Hα2

1 · · ·Hαn

n−1 = A098746(n),

∑

α̃=n

mn(α)Hα1
1 Hα2

2 · · ·Hαn

n = A047099(n),

∑

α̃=n

(−1)|α|−1mn(α)Hα1
2 Hα2

3 · · ·Hαn

n+1 = A007226(n− 1), n ≥ 2,

∑

α̃=n

(−1)|α|−1mn(α)Jα1
0 Jα2

1 · · · Jαn

n−1 = A121545(n),

∑

α̃=n

mn(α)Jα1
0 Jα2

1 · · · Jαn

n−1 = Hn,

where pn is given by (17) and we make use of the notation from Lemma 1.

3 Combinatorial proofs

In this section, we provide combinatorial arguments for several of the determinant formulas
from the prior section. First, recall the definition of the determinant of an n × n matrix A
as a (signed) sum over the set Sn of permutations of [n] given by

det(A) =
∑

σ∈Sn

sgn(σ)a1,σ(1) · · · an,σ(n), (24)

where A = (ai,j)1≤i,j≤n and sgn(σ) denotes the sign of σ ∈ Sn. Assume that permutations
are arranged as disjoint cycles, with the smallest element first in each cycle. In the case when
A is Toeplitz-Hessenberg, we have that only permutations σ each of whose cycles comprises
a set of consecutive integers in their natural order can make a nonzero contribution towards
the sum in (24). Otherwise, one of the factors ai,σ(i) in the product of terms corresponding
to σ in (24) is ensured of being zero.

Recall that a composition of n ≥ 1 is a sequence of positive integers, called parts, whose
sum is n. Let Cn,k denote the set of compositions of n whose members have exactly k parts
and let Cn = ∪n

k=1Cn,k. Then permutations of [n] capable of making a nonzero contribution
towards det(A) when A is Toeplitz-Hessenberg are clearly synonymous with the members of
Cn, upon identifying the various cycle lengths as parts.

Suppose that each part of size i for i ≥ 1 within a member of Cn is to receive a weight
of ai, where (ai)i≥0 denotes the sequence associated with the Toeplitz-Hessenberg matrix A
defined by (1). Then one may regard the sum in (24) in this case as being over Cn, where the
(signed) weight of a member π = (π1, . . . , πk) ∈ Cn,k is given by (−a0)

n−k
∏k

i=1 aπi
. When

a0 = −1, then all of the terms in the expansion of det(A) are non-negative, assuming (ai)i≥1
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is non-negative, and one gets

det(A) =
∑

π∈Cn

aπ1aπ2 · · · , a0 = −1, (25)

where πi denotes the i-th part of π = (π1, π2, . . .) ∈ Cn. On the other hand, if a0 = 1, then
one gets the signed sum

det(A) =
∑

π∈Cn

(−1)n−µ(π)aπ1aπ2 · · · , a0 = 1, (26)

where µ(π) denotes the number of parts of the composition π.
So to obtain combinatorial arguments for the determinant formulas from the prior section

wherein a0 = ±1, we interpret det(A) as a positive or signed sum over Cn in which parts are
weighted as in (25) or (26). The problem of finding combinatorial expressions (and expla-
nations thereof) for positive composition sums such as those on the right-hand side of (25)
is one that has been encountered previously on occasion; see, e.g., [26, p. 46, Exercises 14.f,
14.g, and 14.h]. For the signed sums considered here of the form (26), we will make use of
sign-changing involutions to establish the result. See, e.g., the text [4, Chapter 6] as well as
[5] for proofs of some basic combinatorial identities that utilize involutions.

For the first several results that we prove in this section, we consider cases of (25) or
(26) where ai corresponds to the cardinality of some set of lattice paths. See [9, Section 4]
for comparable combinatorial arguments in which the sequence represented by ai for i ≥ 1 is
derived from the classical Catalan numbers. Before proceeding, let us recall some standard
terminology. By a Dyck path, we mean a sequence of u = (1, 1) and d = (1,−1) steps
starting at the origin and terminating on the x-axis that never goes below the x-axis. The
semi -length of a Dyck path ρ, denoted by |ρ|, is defined as the number of u steps in ρ (i.e.,
half the total number of steps of ρ). Let Dn for n ≥ 1 denote the set of all Dyck paths
of semi-length n, with D0 the singleton set consisting of the empty lattice path. It is well-
known that |Dn| = Cn for all n ≥ 0. By a unit α within a Dyck path ρ, we mean a string of
consecutive steps of ρ of the form α = uα′d, where the initial u starts and terminal d ends
on the x-axis and α′ does not touch the x-axis at any point. That is, α′ itself is a Dyck path
(possibly empty) when viewed as starting from the origin.

We now provide combinatorial proofs of the identities (12), (13), (16), (11), (14), (15),
(7), (9), (23), and (19) in that order. For the first three identities, we perform a direct
enumeration and define an appropriate bijection in establishing the determinant in question
as a0 = −1.

3.1 Proofs of (12), (13), and (16)

To show (12), first note that D−(C1, . . . , C2n−1) enumerates compositions of n in which
parts of size i are weighted by C2i−1 for each i ≥ 1. To capture this idea combinatorially, let
π = (π1, π2, . . .) ∈ Cn and λ = (λ1, λ2, . . .), with each λi ∈ D2πi−1. Note that the number of
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parts of π, and hence components of λ, may vary from 1 to n. Then D−(C1, . . . , C2n−1) gives
the cardinality of the set S of all possible ordered pairs (π, λ), as π ranges over Cn and λ can
be any one of the vectors of Dyck paths corresponding to π. Given α = (π, λ) ∈ S, define
g(α) as the concatenation of the lattice paths uλid for i ≥ 1, i.e., g(α) =

∏
i≥1 uλid. From

this, it is seen that D−(C1, . . . , C2n−1) gives the cardinality of the subset of D2n consisting
of those members in which only returns to the x-axis of the form (2i, 0) where i is even
are possible. Recall that one of the combinatorial interpretations of A066357(n) is that
it enumerates lattice paths from (0, 0) to (2n, 2n) using (1, 0) and (0, 1) steps that lie on
or above the line y = x and avoid points (m,m) where m is odd. Upon rotating by 45◦

clockwise and dilating by a factor of
√

2, such lattice paths are seen to be synonymous with
the aforementioned subset of D2n enumerated by D−(C1, . . . , C2n−1), which implies (12).

We now show (13). Given n ≥ 1 and 1 ≤ k ≤ n, let An,k denote the set of vectors

λ = (λ1, . . . , λk) of Dyck paths such that
∑k

i=1 |λi| = n + k and |λi| ≥ 2 for all i. Then we
have D−(C2, . . . , Cn+1) = |An| for n ≥ 1, where An = ∪n

k=1An,k. We seek to show |An| = pn,
where pn is as defined above. Since

∑

n≥1

pnx
n =

1

2 − C2
− 1 =

C2 − 1

1 − (C2 − 1)
=
∑

k≥1

(C2 − 1)k,

we have that pn gives the cardinality of the set A′
n consisting of all vectors of the form

ρ = (ρ1, . . . , ρk) where k ∈ [n] in which
∑k

i=1 |ρi| = n and each ρi is a nonempty Dyck path
wherein a point of ρi along the x-axis is marked (possibly the first or last point). That is,
each ρi can be expressed as ρi = αiβi, where αi and βi are Dyck paths such that the final
point of αi is marked (with this point being the origin if αi is empty). Consider decomposing
each component λi for i ≥ 1 within λ = (λ1, λ2, . . .) ∈ An as λi = γiuδid, where γi and δi
denote possibly empty Dyck paths. Define f(λ) by (γ1δ1, γ2δ2, . . .) wherein the final point
of γi is marked in each component lattice path. Then f(λ) ∈ A′

n for each λ as |λi| ≥ 2 for
all i and f is seen to be a bijection between An and A′

n. This implies |An| = |A′
n| = pn, as

desired, and completes the proof of (13).
Finally, to show (16), first observe that Kn−1 = Cn+1 −Cn enumerates members of Dn+1

starting with uu, by subtraction. Thus, we have that D−(K0, . . . , Kn−1) counts the set Bn

consisting of all vectors ν = (ν1, ν2, . . .) of Dyck paths such that
∑

i≥1 |νi| = n+k, where each
νi starts uu and k denotes the number of components of the specific vector in question. Recall
that A026674(n) is the coefficient of xn in the expansion of xC3

1−xC3 = xC3 + x2C6 + · · · , and
a combinatorial interpretation for this sequence in terms of lattice paths may be realized as
follows. Given n ≥ 1, let B′

n denote the set of vectors π = (π1, π2, . . .) wherein
∑

i≥1 |πi| = n
and each πi is a nonempty Dyck path one of whose units is marked. Upon considering the
sections prior to and following the marked unit, we see that each component path πi within
π is accounted for by xC3. Hence, the coefficient of xkC3k enumerates the subset of vectors
in B′

n which contain exactly k components for each k ≥ 1. Considering all possible k thus
implies |B′

n| = A026674(n) for n ≥ 1.
To complete the proof of (16), it then suffices to define a bijection between Bn and B′

n. To
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do so, first note that since each component νi of ν ∈ Bn starts with uu, we have νi = uαiβidγi,
where αi is a unit and βi and γi are possibly empty Dyck paths. Define ν ′

i = βiαiγi, where
the unit αi is to be marked, and let ν ′ = (ν ′

1, ν
′
2, . . .). Note that ν ′ ∈ B′

n for all ν since a
single u and d have been removed from each component νi of ν. The mapping ν 7→ ν ′ then
provides a bijection between Bn and B′

n, which implies (16).

For the next two determinant identities when a0 = 1, we make use of sign-changing
involutions in establishing the results. Given a (signed) set S, we denote the sum of the
signs of the elements of S by σ(S).

3.2 Proofs of (11) and (14)

To show (11), where r ≥ 1 is fixed, first note that a member of Cn containing a part greater
than r does not contribute to the determinant in (11), so we may restrict attention to

members of Cn with all parts in [r]. Given 1 ≤ k ≤ n, let C(r)
n,k denote the subset of Cn,k

consisting of those members whose parts all lie in [r]. Note that C(r)
n,k = ∅ if k < t, so we

may assume k ≥ t, where t = ⌈n/r⌉. Let Ij := [(j − 1)r + 1, jr] for j ≥ 1. Define T (r)
n,k to be

the set consisting of all subsets α of [rk] of size n such that α ∩ Ij 6= ∅ for all 1 ≤ j ≤ k.

For each π = (π1, . . . , πk) ∈ C(r)
n,k, let π∗ denote the subset of T (r)

n,k consisting of those α such

that |α ∩ Ij| = πj for each j ∈ [k]. Note |π∗| =
∏k

j=1

(
r
πj

)
for each π, with T (r)

n,k = ∪ππ
∗ and

the π∗ mutually disjoint, where the union is over all π ∈ C(r)
n,k. Define the sign of a member

of T (r)
n,k by (−1)n−k. Let T (r)

n = ∪n
k=tT (r)

n,k , and thus we have

D+

((
r

1

)
,

(
r

2

)
, . . . ,

(
r

n

))
= σ(T (r)

n ), n, r ≥ 1.

Given α ∈ T (r)
n , let αj := |α ∩ Ij| and mj = min(α ∩ Ij) for j ≥ 1. Let T̃ (r)

n denote

the subset of T (r)
n consisting of those α for which αj = 1 and mj+1 − r ≤ mj for all j.

Note T̃ (r)
n ⊆ T (r)

n,n and hence each member of T̃ (r)
n is of positive sign. Further, we have

|T̃ (r)
n | =

(
n+r−1

n

)
, as members of T̃ (r)

n are seen to be synonymous with weak compositions of
n with r parts. To complete the proof of (11), it suffices to define a sign-changing involution

on T (r)
n − T̃ (r)

n as follows. Suppose α ∈ T (r)
n − T̃ (r)

n and let j0 denote the smallest j ≥ 1 such
that either (i) αj ≥ 2 or (ii) αj = 1, with mj+1 − r > mj. Let α′ be the member of T (r)

n

obtained from α by either adding r to each element of α greater than mj0 if (i) holds, or
subtracting r from each such element of α if (ii). Then one may verify that the mapping
α 7→ α′ provides the desired sign-changing involution, which completes the proof of (11).

To show (14), first note that compositions containing a part of size 1 do not contribute to
the determinant since K−1 = 0. We then associate to each part of size i ≥ 2 within π ∈ Cn
a member of Di that starts u2, where it is assumed that π contains no 1’s. We will describe
a u2 string in which the first u originates on the x-axis as basal. Concatenating the various
Dyck paths that arise as one considers all of the parts of π from left to right yields a marked
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member of Dn starting with u2 such that some subset of the basal u2 is marked, with the
initial u2 always being marked. Let En denote the set of marked members of Dn starting
with u2 and marked as described. Define the sign of ρ ∈ En as (−1)n−k, where k denotes the
number of marked basal u2 occurring in ρ. Then we have D+(K−1, . . . , Kn−2) = σ(En) for
n ≥ 1.

Define a sign-reversing involution on En by identifying the leftmost non-initial basal u2,
if it exists, and changing its status as to whether or not it is marked. The set of survivors of
this involution consists of those ρ ∈ En of the form ρ = uρ′d(ud)n−i−1 for some 1 ≤ i ≤ n−1,
where ρ′ is a Dyck path. Such ρ all have sign (−1)n−1 and are enumerated by

∑n−1
i=1 Ci, upon

considering the semi-length of ρ′. Thus, we have that σ(En) is given by the right side of (14)
as well, which completes the proof.

The combinatorial proofs of the subsequent two identities require more intricate sign-
changing involutions.

3.3 Proof of (15)

Given n ≥ 1 and 1 ≤ k ≤ n, let Fn,k denote the set of sequences of ordered pairs
(i1, λ1), . . . , (ik, λk) such that (i1, . . . , ik) ∈ Cn,k and λj ∈ Dij+1 for all j ∈ [k], with each
λj starting u2. Define the sign of a member of Fn,k by (−1)n−k and let Fn = ∪n

k=1Fn,k.
Then we have D+(K0, . . . , Kn−1) = σ(Fn) for n ≥ 1. We define a preliminary sign-changing
involution on Fn as follows. Let (x, λ) denote the final ordered pair within π ∈ Fn. Suppose
first that λ contains two or more units, that is, we may write λ = λ′λ′′, where λ′ 6= ∅ and
λ′′ is the final unit of λ. In this case, we replace (x, λ) with the two components (y, λ′),
(z, uλ′′d), leaving the rest of π undisturbed, where |λ′| = y+ 1, |λ′′| = z and x = y+ z. Note
λ′ 6= ∅ implies it must start u2 and hence y ≥ 1, as required. We perform the reversal of
the procedure just described if λ consists of a single unit of the form λ = u2νd2 for some
Dyck path ν. We will describe such a unit λ as being simple, with all other units 6= ud being
non-simple.

This involution may be extended by considering, if it exists, the rightmost component
(x, λ) within π such that λ contains two or more units or consists of a single simple unit
and performing one of the two procedures described in the preceding paragraph on this
component. Note that in cases where λ is a simple unit, we require that (x, λ) not be the
first ordered pair of π. Then the set F ′

n of survivors of this extended involution on Fn consists
of those sequences of pairs (i1, λ1), (i2, λ2), . . . in Fn such that λj for each j ≥ 2 is a non-
simple unit, with λ1 a unit of either kind. Upon deleting the initial u and terminal d steps of
λj for each j ≥ 1, one may regard members of F ′

n as sequences of the form (i1, ρ1), (i2, ρ2), . . .
such that (i1, i2, . . .) ∈ Cn and ρj ∈ Dij for all j, with each ρj containing two or more units
except for possibly ρ1, which may contain a single unit. Note that, by removing the initial u
and terminal d as described, there is no longer the restriction that Dyck paths in the second
component start with u2.

We now define an involution on F ′
n as follows. Suppose ρ = (i1, ρ1), . . . , (ik, ρk) is a
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member of F ′
n for some 1 ≤ k ≤ n. We consider several cases on ρ1. If ρ1 is a unit and

k > 1, then replace (i1, ρ1), (i2, ρ2) with (i1 + i2, ρ1ρ2). Conversely, if ρ1 contains at least
three units, then we split the first ordered pair of ρ so as to create two pairs, the first of
which will have a unit for its second coordinate. On the other hand, if ρ1 is a unit with
k = 1, then there are Cn−1 possibilities for ρ, each having sign (−1)n−1.

So suppose ρ1 within (i1, ρ1) contains exactly two units, and write ρ1 = αβ, with α
and β denoting the two units. If α = ud and k > 1, then replace (i1, udβ), (i2, ρ2) with
(i1 + i2, uρ2dβ) and, conversely, split the first ordered pair of ρ as indicated if α is non-simple
with k ≥ 1. On the other hand, if α = ud and k = 1, then no such operation can be
performed and the sum of the signs of these survivors is given by (−1)n−1Cn−2, as β is a
unit with |β| = n− 1 in this case. So assume α is a simple unit. If β = ud and k > 1, then
replace (i1, αud), (i2, ρ2) with (i1 + i2, αuρ2d) and, conversely, split the first ordered pair of ρ
as indicated if β is non-simple with k ≥ 1. If β = ud and k = 1, then, assuming n ≥ 3, there
is a contribution towards σ(F ′

n) of (−1)n−1Cn−3 in this case, as ρ1 = αud with α simple.
So assume n ≥ 4 and ρ1 = αβ, where α and β are both simple. Then we have α = uα′d

and β = uβ′d, where α′ and β′ are units. We then repeat the argument given in the preceding
paragraph with α′β′ in place of αβ. Note it is understood that one is to add a u just before
and a d directly following each of the two units of the second coordinate in the first ordered
pair within all of the relevant members of F ′

n−2 after the transformations described above
are made using α′β′ in place of αβ. This yields survivors having cardinality Cn−4 + Cn−5,
with each of sign (−1)n−1, where C−1 = 0. We then repeat the preceding argument on the
resulting set of survivors until no further steps can be applied.

Thus, combining all of the survivors from the various steps of the sign-changing involution
defined above yields members of F ′

n with k = 1 of the form (n, ν), where ν is one of the
following: (i) ν a unit, (ii) ν = αβ, where α = uidi and β = ui−1β′di−1 for some i ≥ 1, with
β′ a unit, or (iii) ν = αβ, where α = uiα′di and β = uidi for some i ≥ 1, with α′ a unit.
This implies that the cardinality of the set of survivors is given by

Cn−1 +

⌊n/2⌋∑

i=1

(Cn−2i + Cn−2i−1),

which may be rewritten as
∑n−1

i=0 Ci. As each survivor has sign (−1)n−1, we have that
σ(Fn) = σ(F ′

n) is also given by the right side of (15), which completes the proof.

3.4 Proof of (7)

Given n ≥ 2 and 1 ≤ k ≤ n, let Gn,k denote the set of sequences of ordered pairs
(i1, λ1), . . . , (ik, λk) such that (i1, . . . , ik) ∈ Cn,k and λj ∈ Dij+2 for all j ∈ [k], with each
λj starting u2. Define the sign of a member of Gn,k by (−1)n−k and let Gn = ∪n

k=1Gn,k so that
D+(K1, . . . , Kn) = σ(Gn). We define a preliminary sign-changing involution on Gn as follows.
Let (x, λ) denote the final ordered pair within π ∈ Gn,k for some k ∈ [n]. First suppose λ
contains two or more units. Let λ = αβγ, where α and γ are units and β is possibly empty.
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Let y = |α| + |β| and we consider cases on y. If y ≥ 3, then replace (x, λ) with the two
ordered pairs (y − 2, αβ), (z, u2d2γ), leaving the rest of π undisturbed, where z = |γ| and
hence x = y + z − 2. If y = 2, then α = u2d2 and β = ∅, in which case we perform the
reversal of the operation just described and merge the final two pairs of π accordingly, which
can be done provided k > 1.

We extend this involution by considering the largest j, if it exists, such that λj contains
two or more units and applying one of the two operations described in the prior para-
graph using the j-th ordered pair (and its predecessor, in case of the latter operation). The
set G ′

n of survivors of this extended involution on Gn consists of those sequences of pairs
(i1, λ1), (i2, λ2), . . . such that λj is a unit for all j ≥ 2, with λ1 either a unit or of the form
λ1 = u2d2ν for a unit ν.

Let π = (i1, λ1), . . . , (ik, λk) for some k ∈ [n] denote a member of G ′
n. First suppose λ1

is a unit. If λk = u2δd2, where δ is a Dyck path with |δ| ≥ 2, then replace (ik, λk) with
(ik − 1, uδd), (1, u3d3), and vice versa, if δ = ud. Note n ≥ 2 implies k > 1 in cases when
(ik, λk) = (1, u3d3), whence there is a predecessor and the merging of the final two pairs of π
can indeed be implemented. On the other hand, if λk is expressible as λk = uαβd, where α is
a unit and β is a Dyck path with |β| ≥ 2, then replace (ik, λk) with (x, uβd), (y, uαud2), where
x = |β|−1 and y = |α|. Note that ik = x+y, as required, since |λk| = |α|+|β|+1 = x+y+2.
If β = ud in λk, then we perform the reverse operation on π, provided k > 1. Note that
members of G ′

n with k = 1 of the form (i1, λ1) = (n, uαud2), where α is a unit, remain
unpaired. There are Cn−1 possibilities for such members of G ′

n as |α| = n in this case, and
each has sign (−1)n−1.

Now suppose λ1 = u2d2ν for a unit ν. Each such sequence π in G ′
n where k ≥ 3 is paired

with another of opposite sign, by the preceding. Thus, the unpaired π ∈ G ′
n at this point

wherein λ1 = u2d2ν are those for which k = 1 or k = 2 with λ2 = u3d3 or λ2 = uδud2 for a
unit δ. Consider the following further pairings:

(i) (n, u2d2uαd) ↔ (n− 1, u2d2α), (1, u3d3),

(ii) (n, u2d2uαβd) ↔ (a, u2d2α), (b, u2βdud2),

where α is a unit, β is a nonempty Dyck path, a = |α| and b = |β| + 1. Note that n ≥ 2
implies the section α is indeed nonempty in (i). It is seen that sequences π with k = 2 of the
form (n− 1, u2d2α), (1, u2dud2) are not paired by (i) or (ii). Then α a unit with |α| = n− 1
implies there are Cn−2 possibilities for such π, each having sign (−1)n−2. Combining with
the survivors above of the form (i1, λ1) = (n, uαud2) implies

σ(Gn) = σ(G ′
n) = (−1)n−1(Cn−1 − Cn−2),

which completes the proof of (7).

Before proving the next pair of identities, we recall some further terminology. A (rooted)
ternary tree T is a set of connected vertices (called nodes) in which each node either has
exactly three children or is childless, where one node (namely, the root) is the ancestor of
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all other nodes. Nodes of T for which there are no children are referred to as leaves. The
three nodes emanating from a node v that is not a leaf are called the left, middle, and right
children of v. The set of descendants of v is the subtree of T for which v is the root. Finally,
the level of v is the minimum number of edges one must traverse to get back to the root r
of T . Thus, the three children of r have level 1, their children have level 2, and so on, with
r being the only node of level 0. Finally, the number of nodes of T that have children is
denoted by |T |, or equivalently it is the total number of edges in T divided by three.

Let Rn denote the set of all ternary trees T with |T | = n. Recall Hn = A001764(n) = |Rn|
for n ≥ 0, with Jn = A006013(n) enumerating the set of all ordered pairs (ρ, λ) of ternary
trees for which |ρ| + |λ| = n.

3.5 Proofs of (9) and (23)

We first show (9). Given n ≥ 1 and 1 ≤ k ≤ n, let Hn,k denote the set of vectors (λ1, . . . , λk)

of ternary trees such that
∑k

j=1 |λj| = n and |λj| ≥ 1 for each j. Define the sign of a member

of Hn,k by (−1)n−k and let Hn = ∪n
k=1Hn,k. Then it is seen D+(H1, . . . , Hn) = σ(Hn) for

n ≥ 1. To define a sign-changing involution on Hn, we consider cases on the first component
λ1 of λ = (λ1, λ2, . . .) ∈ Hn as follows. Let r denote the root of λ1 and ri for 1 ≤ i ≤ 3 the
left, middle, and right child of r, respectively. Let ρ denote the subtree of λ1 obtained by
considering the complete set of descendants of r2, with r2 understood to be the root of ρ, and
let a = |ρ|. If a > 0, then we form the two ternary trees α and β, where α is obtained from
λ1 by deleting all of the descendants of r2 (which would make r2 a leaf in α) and β is taken
to be a copy of the subtree ρ. One may verify |α| + |β| = |λ1|, with this operation reversing
the sign of λ as the number of components changes by one. On the other hand, if a = 0, i.e.,
if r2 is a leaf of λ1, then we perform the reverse operation and merge the components λ1 and
λ2 of λ so that the root of λ2 coincides with the middle child r2 of r in λ1 (and hence the
non-root nodes of λ2 become the set of descendants of r2). Note that this latter operation
can be done provided λ ∈ Hn,k for some k > 1.

Combining the preceding two operations then yields a sign-changing involution on Hn

that fails to be defined on members of Hn,1 for which the middle child of the root is a leaf.
Then each survivor has sign (−1)n−1, and to see that they number Jn−1, consider the subtrees
σ and ν of λ1 corresponding to the set of descendants of the children r1 and r3 of r, noting
|σ| + |ν| = n − 1 since r2 is a leaf. Thus, we also have that σ(Hn) is given by (−1)n−1Jn−1

for n ≥ 1, which completes the proof of (9).
To show (23), first let Jn,k for 1 ≤ k ≤ n denote the set of vectors (π1, . . . , πk) such

that πi for each i is a ternary tree with |πi| ≥ 1 wherein the middle child of the root is
a leaf and

∑k
i=1 |πi| = n. Note that if |πi| = b, then there are Jb−1 possibilities for the

component πi since the combined size of the subtrees comprising the descendants of the
left and right children of the root is b − 1 (the middle child being a leaf). Thus, we have
D−(J0, . . . , Jn−1) = |Jn| for n ≥ 1, where Jn = ∪n

k=1Jn,k, since the combined size of all the
component trees πi is n.
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π1 = π2 = π3 = π4 =

f(π) =

Figure 1: π = (π1, π2, π3, π4) ∈ J6 and f(π) ∈ R6.

To complete the proof of (23), we need to show |Jn| = Hn for n ≥ 1, and for this, we
seek a bijection between Jn and Rn. To do so, suppose π = (π1, π2, . . .) ∈ Jn. Let ri denote
the root and vi the middle child of the root of πi for each i ≥ 1. Let f(π) be the ternary tree
obtained from π by fusing πi to πi+1 such that ri+1 coincides with vi for all i. See Figure
1 above for an example of f when n = 6. Then

∑
i≥1 |πi| = n implies f(π) ∈ Rn for all π.

Note that π ∈ Jn,k implies the level of the descendant δ reached by starting with the root
of f(π) and picking the middle child each time until one encounters a leaf is given by k for
each k ∈ [n]. Thus, to reverse f , one may start with the root r of λ ∈ Rn and note the
sequence of descendants r = p0, p1, . . . , pk = δ wherein pj is the middle child of pj−1 for each
j ∈ [k] and δ is childless. Then use the subtrees of λ obtained by considering the descendants
of the two siblings of pj for each j to construct the various components of f−1(λ). Hence,
the mapping f between Jn and Rn is seen to be reversible, and thus provides the desired
bijection between the two sets.

Before proving our last identity, let us recall some terminology related to finite set par-
titions. By a partition of a set, we mean a collection of nonempty pairwise disjoint sub-
sets, called blocks, whose union is the set. Let Pn denote the set of all partitions of [n]
for n ≥ 1, with P0 consisting of the single empty partition with no blocks. A partition
Π = B1/B2/ · · · ∈ Pn is said to be in standard form if its blocks Bi are arranged such that
min(Bi) < min(Bi+1) for all i. An equivalent sequential representation of Π, expressed in
standard form, is obtained by writing π = π1 · · · πn wherein i ∈ Bπi

for each i ∈ [n] (see,
e.g., [28]). The sequence π is referred to as the canonical sequential form of the partition Π.
It is straightforward to show πi+1 ≤ max(π1 · · · πi) + 1 for 1 ≤ i ≤ n− 1 with π1 = 1, which
is referred to as the restricted growth condition (see, e.g., [18]).

Recall that a partition Π is said to be non-crossing (see [15]) if its canonical form contains
no subsequences of the form a-b-a-b, where a < b (i.e., if it avoids the pattern 1-2-1-2 in the
classical sense). Let NCn denote the set of non-crossing partitions of [n]; it is well-known
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that |NCn| = Cn for all n ≥ 0. We make the following preliminary observations concerning
the canonical form of a member of NCn. Suppose that the sequential form π of a member
of NCn is written as π = 1π(1) · · · 1π(r), where each π(i) contains no 1’s if non-empty. Let
1 ≤ i1 < · · · < is ≤ r denote the set of indices i such that π(i) 6= ∅. Then the distinct
letters of π(i1) comprise the interval [2, x], where x = max(π(i1)), with π(i1) itself being
a non-crossing partition on this alphabet. Further, we have that π non-crossing implies
min(π(ij)) = max(π(ij−1)) + 1 for 2 ≤ j ≤ s, with each π(ij) non-crossing on its respective
alphabet of letters, which comprises an interval for each j. Recall that the sequence Hn

enumerates, among other things, the set Un of non-crossing partitions of [2n] where each
block is of even size, i.e., each letter in its canonical sequential form occurs an even number
of times.

We next describe a lattice path interpretation for the sequence Hn. By a descent within
a Dyck path λ, we mean a maximal sequence of consecutive d steps. A descent is classified
as even or odd depending upon the parity of the number of d steps contained therein. Let
Vn denote the subset of D2n in whose members all descents are even. Then it is well-known
that |Vn| = Hn for n ≥ 1, and we describe in the following lemma a bijection between Un

and Vn.

Lemma 10. There is a bijection gn between Un and Vn for each n ≥ 0.

Proof. By a slight abuse of notation, we will denote the bijection gn : Un 7→ Vn simply by g
for all n. We define g recursively on n, the n = 0 case sending the empty partition to the
empty lattice path. If n ≥ 1, then we represent π ∈ Un sequentially as π = 1π(1) · · · 1π(2r) for
some r ≥ 1, where π(i) for each i contains no 1’s and may be empty. From the observations
made previously concerning non-crossing partitions, each of the letters of π other than 1 has
all of its occurrences contained within some nonempty π(i), and hence each of the blocks
corresponding to the section π(i) is of even size. We may then define g(π) by setting

g(π) = ug(π(1))ug(π(2))d2 · · · ug(π(2r−1))ug(π(2r))d2,

where each section π(i) is to be viewed as a restricted growth function with smallest letter
1 concerning the application of g to π(i). Note that the number of 1’s in π is equal to twice
the number of returns to the x-axis in g(π) for all π. Upon considering the positions and
number of returns within an arbitrary member of Vn, it is then possible to construct its
inverse image under g. Thus, the mapping g yields a bijection between Un and Vn.

To illustrate the bijection g, note that when n = 1, we have g(11) = u2d2, and for
n = 2, we have g(1111) = u2d2u2d2, g(1122) = u4d4, and g(1221) = u3d2ud2. One can
then deduce g for larger n using the prior established values; for example, if n = 6 and
π = 123321441155 ∈ U6, then g(π) = u4d2ud2u3d4u4d4 ∈ V6.

We now provide a combinatorial explanation of (19), where we draw upon the prior
bijection.
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3.6 Proof of (19)

Let Ln,k for 1 ≤ k ≤ n denote the set of vectors (ρ1, . . . , ρk) of non-crossing partitions with
even block sizes such that |ρ1| + · · · + |ρk| = 2n− 2k, where the ρi are allowed to be empty,
and let Ln = ∪n

k=1Ln,k. Then we have D−(H0, . . . , Hn−1) = |Ln| for all n ≥ 1. We now seek
to express the vectors in Ln as members of a certain subset of Un as follows. By a run within
a block B in a member of Pn, we mean a maximal sequence of consecutive integers each
element of which lies in B. Let U ′

n denote the subset of Un consisting of those members such
that the first block D (i.e., the block in which 1 lies) contains the element 2n and satisfies
the following restrictions with regard to its runs:

(i) either D contains all of [2n] or it contains two or more runs,

(ii) if it contains two or more runs, the run of D that contains 1 must have odd length, as

does the run of D containing 2n,

(iii) all other runs in D have even length.

We define a bijection between Ln and U ′
n as follows. Suppose ρ ∈ Ln and say ρ =

(ρ1, . . . , ρm) for some m ∈ [n]. Let 1 ≤ i1 < i2 < · · · be the complete set of indices i such
that ρi 6= ∅. Let xj = max(ρij) for j ≥ 1. We represent the partition ρi1 sequentially as a
restricted growth function using the letters in the alphabet {2, 3, . . . , x1 + 1}. Then for each
ℓ ≥ 2, we represent ρiℓ sequentially using the letters in the interval [Sℓ−1 + 2, Sℓ + 1], where

Sℓ =
∑ℓ

j=1 xj for each ℓ ≥ 1. For each r ∈ [m], let wr denote the word obtained as described
from ρiℓ if r = iℓ for some ℓ ≥ 1 and let wr be the empty word if r 6= iℓ for any ℓ (i.e., if the
r-th component of ρ is the empty partition). Define wρ to be the word of length 2n obtained
as the concatenation

∏m
r=1(1wr1); i.e., we both prepend and append a 1 to each word wr

(including cases when it is empty) and write the resulting words for all r ∈ [m] from left
to right. It is seen that wρ ∈ U ′

n, represented sequentially, and that the combined number
of blocks in all of the nonempty components of ρ is given by max(wρ) − 1 for each ρ ∈ Ln.
One may then verify that the mapping ρ 7→ wρ is indeed a bijection between Ln and U ′

n, as
desired.

By a valley within λ, we mean an occurrence of a d step being directly followed by a u.
The height of a valley refers to the y-coordinate of the valley vertex, i.e., the final height
achieved by the d step. Let V ′

n denote the subset of Vn in which no valleys of height one occur
in its members. Recall that one of the combinatorial interpretations for A098746(n) is that
it gives the cardinality of V ′

n for all n ≥ 1. Thus, to complete the proof of (19), it suffices to
define a bijection between U ′

n and V ′
n, as it was demonstrated above that |U ′

n| = |Ln|.
To do so, we may extend the mapping g from Lemma 10 to a bijection between U ′

n and
V ′
n as follows. Let δ ∈ U ′

n for some n ≥ 1. Then δ may be expressed sequentially in the
form δ = (1δ(1)1)(1δ(2)1) · · · (1δ(s)1) for some s ≥ 1, where δ(i) for each i ∈ [s] contains no

1’s if nonempty. Note that δ ∈ U ′
n implies δ(i) ∈ Umi

, where |δ(i)|
2

= mi for some mi ≥ 0. We
may then apply g to each of the sections δ(i) and let f(δ) = u2g(δ(1))d2 · · · u2g(δ(s))d2. Note
that g(δ(i)) having all of its descents even implies the same for f(δ), with f(δ) containing no
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valleys of height one (due to all of its units being of the form u2ρd2 for some Dyck path ρ),
whence f(δ) ∈ V ′

n for all δ. Then it is seen that f provides the desired bijection between U ′
n

and V ′
n, which completes the proof of (19).
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