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Abstract

A pseudoprime is a composite integer N that mimics the behavior of primes by
satisfying the congruence 2N ≡ 2 (mod N) in Fermat’s little theorem. This paper
focuses on the subset of even pseudoprimes and obtains an upper bound for the sum
of their reciprocals. Our approach combines analytic arguments with computational
verification, showing that this sum is less than 0.0059.
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1 Introduction

By Fermat’s little theorem, if a is an integer and p is a prime, then ap ≡ a (mod p).
However, for each a ≥ 2, the congruence also holds for some composite moduli called base-a
(Fermat) pseudoprimes. It is well known that for each a ≥ 2, there are infinitely many
pseudoprimes. The base-2 pseudoprimes are also called pseudoprimes for short. We study
even pseudoprimes, that is, even numbers N > 2 such that 2N ≡ 2 (mod N). The smallest
even pseudoprime is 161038 and Beeger [3] proved that there are infinitely many. The
first 1318 even pseudoprimes have been computed by Alekseyev (extending work of Pinch),
providing an exhaustive list up to 2 · 1015. This sequence is referenced as A006935 in the
On-Line Encyclopedia of Integer Sequences [5]. Pomerance and Wagstaff [10] later extended
the exhaustive search up to 1016, and there are 727 even pseudoprimes in the range 2 ·1015 <
N ≤ 1016.

Let E = {161038, 215326, 2568226, . . .} denote the set of all even pseudoprimes. We prove
the following bounds on the sum of reciprocals of even pseudoprimes.

Theorem 1. We have

0.000011 <
∑

N∈E

1

N
< 0.0059.

In particular, this determines the numerical value of the reciprocal sum to two decimal places
as 0.00 . . .. It is known [2, 7] that the reciprocal sum of odd pseudoprimes is less than 0.0911.
Thus, as a corollary, the sum of reciprocals of all base-2 pseudoprimes is less than 0.1.

2 Notation and preliminary lemmas

Throughout the paper, x denotes a real variable, x0 = e36, p denotes a prime variable (with
or without subscripts), and log x denotes the natural logarithm. We let Y0 = 6.5 · 107. We

also define yk = e1.56
√
k and zk = ek/2/(2

√
2) for k ≥ 36. We let a1 = 0.4 and a2 = 0.48. For

a prime p > 2, let the expression ℓ2(p) denote the multiplicative order of 2 mod p, that is,
the smallest positive integer such that 2ℓ2(p) ≡ 1 (mod p). In general, if 2k ≡ 1 (mod p) for
some integer k ≥ 0, then ℓ2(p) | k. In particular, by Fermat’s little theorem, ℓ2(p) | p− 1.

Note that N = 2n ∈ E if and only if n > 1 and

22n−1 ≡ 1 (mod n). (1)

In particular, n must be odd. We have the following additional properties of even pseu-
doprimes.

Lemma 2. For every odd prime p dividing an even pseudoprime N , we have

N ≡ p (mod pℓ2(p)). (2)

Moreover, ℓ2(p) is odd, p ≡ ±1 (mod 8), and p ≤ N/14.
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Remark 3. The congruence Eq. (2) above holds for all pseudoprimes.

Before proving Lemma 2, we note the following corollary, which follows from the fact
that any even pseudoprime is of the form 2p1 · · · pr, where each pi ≡ ±1 (mod 8).

Corollary 4. If N is an even pseudoprime then N ≡ 2 or 14 (mod 16).

Proof of Lemma 2. For an even pseudoprime N = 2n, we have 22n−1 ≡ 1 (mod n) by Eq. (1).
Therefore, if p | n, then 22n−1 ≡ 1 (mod p), and thus ℓ2(p) | 2n−1, so that 2n ≡ 1 (mod ℓ2(p)).
Therefore, ℓ2(p) is odd. Also, p ≡ 1 (mod ℓ2(p)) by Fermat’s little theorem, so by the last
two congruences we have 2n ≡ p (mod ℓ2(p)). Also, 2n ≡ p (mod p) (as both sides are
0 (mod p)). Moreover, gcd(p, ℓ2(p)) = 1 because ℓ2(p) | p − 1. Therefore, N = 2n satisfies
the congruence N ≡ p (mod pℓ2(p)).

Note also that N > p because N is composite. Next, note that we have ℓ2(p) | (p− 1)/2
because ℓ2(p) is odd. Therefore, by Euler’s criterion, (2|p) ≡ 2(p−1)/2 ≡ 1 (mod p), where
(2|p) is the Legendre symbol. Thus (2|p) = 1, so p ≡ ±1 (mod 8). We now show that
p ≤ N/14. The congruence 22n−1 ≡ 1 (mod n), which holds for n = N/2, implies that n is
odd, so that N = 2mp for some odd m ≥ 1. Moreover, m 6= 1, for otherwise N = 2p and thus
22p−1 ≡ 1 (mod p), which is impossible since by Fermat’s little theorem, 22p−2 ≡ 1 (mod p).
Also, m 6= 3, 5 because the odd prime factors p of N are of the form ±1 (mod 8). Therefore,
m ≥ 7.

We use the fact that pseudoprimes are almost squarefree, in a sense made precise by the
following lemma.

Lemma 5. If N is an even pseudoprime and p2 | N for a prime p, then p is a Wieferich
prime, i.e., 2p−1 ≡ 1 (mod p2). In particular, p ≥ 3511.

Proof. The first assertion holds for all pseudoprimes by an argument similar to previous work
[2, Lemma 2]. The second assertion follows from the fact that the two smallest Wieferich
primes are 1093 and 3511, together with the fact that 1093 ≡ 5 (mod 8), and so by Lemma
2 an even pseudoprime cannot be divisible by 1093.

We also use the following bounds of Dusart [4] on the prime counting function π(x).

Lemma 6. We have

x

log x

(

1 +
1

log x

)

≤ π(x) ≤ x

log x

(

1 +
1.2762

log x

)

,

where the lower bound holds for all x ≥ 599 and the upper bound holds for all x > 1.

We use partial summation (Abel’s summation identity) [1, Theorem 4.2] to represent
sums in terms of integrals.
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Lemma 7. Let {an}n≥1 be a sequence of real or complex numbers, and let f have a continuous
derivative on the interval [x1, x], 0 < x1 < x. Let A(t) =

∑

n≤t an. Then

∑

x1<n≤x

anf(n) = A(x)f(x)− A(x1)f(x1)−
∫ x

x1

A(t)f ′(t) dt.

In particular, if A is a set of natural numbers and we define an = 1 if n ∈ A and an = 0
otherwise, then the above equality holds where A is the counting function of the set A.

We also use a result of Nguyen and Pomerance [9, Lemmas 2.9–2.10, Remark 2.1] on the
reciprocal sum of integers n > x free of prime factors exceeding a given bound y. (Such
numbers are called y-smooth or y-friable.) Let the expression P (n) denote the largest prime
factor of n, (n > 1), with the convention P (1) = 1. For 2 ≤ y < x and s > 0, let

ζ(s, y) =
∑

P (n)≤y

1

ns
,

where the sum is over all positive integers n which are products only of primes less than or
equal to y. Note that we have

ζ(s, y) =
∑

P (n)≤y

1

ns
=
∏

p≤y

(

1 +
1

ps
+

1

p2s
+ · · ·

)

=
∏

p≤y

(

1 +
1

ps − 1

)

,

where the first equality holds by unique prime factorization, and the second equality holds
by summing the geometric series. Also, let

ζ∗(s, y) =
∑

P (n)≤y

2 ∤n, n squarefree

1

ns
=
∏

3≤p≤y

(

1 +
1

ps

)

denote the restriction to y-smooth numbers which are odd and squarefree (that is, not
divisible by p2 for any prime p). Define

S(x, y) =
∑

n>x
P (n)≤y

1

n
, S∗(x, y) =

∑

n>x
2 ∤n, n squarefree, P (n)≤y

1

n
.

Lemma 8 (Nguyen and Pomerance, [9]). For 2 ≤ y < x and 0 < s < 1, we have

S(x, y) ≤ x−sζ(1− s, y). (3)

Let u = log x/ log y and s = log(u log u)/ log y. For u ≥ 3 and s ≤ 1/3, we have

S(x, y) ≤ x−sζ(1− s, y) < 25e(1+ǫ)u(u log u)−u(2s − 1)−1, (4)

where ǫ = 2.3 · 10−8.
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Remark 9. Following [9, Remark 2.1], for 2 ≤ y < x and 0 < s < 1, we have

S∗(x, y) ≤ x−sζ∗(1− s, y). (5)

We note that more generally, for a given prime p, if the sum S(x, y) is restricted by the
assumption that p2 ∤ n, then we can replace the factor 1 + 1/(ps − 1) with 1 + 1/ps in the
product defining ζ(s, y). Similarly, given the stronger restriction p ∤ n, we can remove the
factor 1 + 1/(ps − 1) in the product defining ζ(s, y).

For fixed real numbers 0 ≤ a < b ≤ 1, we define Qa,b = {p > 2 : 2 ∤ ℓ2(p) and pa <
ℓ2(p) ≤ pb}. We let Qa,b(x) = |Qa,b ∩ [1, x]|. Recall that a1 = 0.4 and a2 = 0.48. We use the
following modification of previous work [7, Inequality (8)].

Lemma 10. We have
Q0,a1(x) < Mx2a1

for all x ≥ 0, where M = 0.00754. Moreover, Qa1,a2(x) < Mx2a2 for all x ≥ 337.

Proof. We prove the claim for Q0,a1 , noting that an analogous argument deals with the case
of Qa1,a2 . (For x > e23, we use the trivial inequality Qa1,a2 ≤ Q0,a2 .) We find by a computer
check in Pari/GP [6] that the claim holds for all x ≤ e23, Q0,a1(e

23) = 638, and

∏

p∈Q0,a1

p≤e23

p > eD

where D = 12895. Let x > e23. If p ≤ x and p ∈ Q0,a1 , then p | 2m − 1 for some odd m > 1
such that m < pa1 ≤ xa1 , so that

∏

p∈Q0,a1

p≤x

p |
∏

m≤xa1

2 ∤m

(2m − 1).

Therefore,
∏

p∈Q0,a1

p≤x

p ≤
∏

m≤xa1

2 ∤m

(2m − 1)

≤ exp









log 2
∑

m≤xa1

2 ∤m

m









≤ exp

(

log 2

(

xa1 + 1

2

)2
)

≤ exp

(

log 2

4
(1.00021)x2a1

)

≤ exp(0.17333x2a1).

(6)
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Here, we used the formula 1 + 3 + 5 + · · · + (2j − 1) = j2 for the sum of the first j odd
numbers, with j = ⌊(xa1 + 1)/2⌋. Also,

∏

p∈Q0,a1

p≤x

p =
∏

p∈Q0,a1

p≤e23

p
∏

p∈Q0,a1

e23<p≤x

p > eD(e23)Q0,a1
(x)−Q0,a1

(e23),

where the lower bound on the rightmost product is obtained by replacing each factor p with
e23. We therefore have

Q0,a1(x) ≤ Q0,a1(e
23)−D/23 + 0.17333x2a1/23 = 638− 12895/23 + 0.17333x2a1/23

for all x ≥ e23. Simplifying, we complete the proof of Lemma 10.

3 The reciprocal sum of even pseudoprimes

To bound the reciprocal sum we split E into two ranges. The small range consists of N ∈ E
such that N ≤ 1016. Using the exhaustive list for N ≤ 2 · 1015, and noting that there are
727 terms in the interval (2 ·1015, 1016], contributing less than 727/(2 ·1015) to the reciprocal
sum, we obtain

∑

N∈E
N≤1016

1

N
= 0.0000118853 . . . . (7)

We are grateful to Mark Royer for computing this sum to high precision using Python.
The large range consists ofN ∈ E such thatN > x0, where x0 = e36. Note that 1016 > e36,

so there is no gap between the small and large ranges. Recall that Y0 = 6.5 ·107, yk = e1.56
√
k,

and zk = ek/2/(2
√
2), k ≥ 36. We determine an upper bound by splitting E ∩ (e36,∞) into

intervals (ek, ek+1), k ≥ 36. First, we partition E into five subsets depending on the relative
sizes of p = P (N) = P (n) and ℓ2(p) as follows:

A1 = {N ∈ E : p ≤ y⌊logN⌋}
A2 = {N ∈ E : e36 < N ≤ e130, y⌊logN⌋ < p ≤ min(Y0, zk)}
A3 = {N ∈ E \ A2 : p > y⌊logN⌋, and p ∈ Q0,a1}
A4 = {N ∈ E \ A2 : p > y⌊logN⌋, and p ∈ Qa1,a2}
A5 = {N ∈ E \ A2 : p > y⌊logN⌋, and p ∈ Qa2,1}.

We further partition A2 into the cases 36 ≤ k ≤ 38, yk < p ≤ zk and 39 ≤ k ≤ 130, yk <
p ≤ Y0. For 2 ≤ i ≤ 5 we further partition Ai into the cases 39 ≤ k ≤ 130, Y0 < p ≤ zk,
k ≥ 131, yk < p ≤ zk, and k ≥ 36, p > zk. This partition is inspired by previous work [8,
Theorem 9.11], [7, Theorem 1] on the reciprocal sum of odd pseudoprimes.

We first bound the sum over N = 2n ∈ A1 ∩ (ek, ek+1), k ≥ 36. Recall that n is odd, and
by Lemma 2, n is not divisible by any prime p such that ℓ2(p) is even. Moreover, by Lemma
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5, n is not divisible by p2 for any prime p < 3511. Using Remark 9, we find that

∑

N=2n∈A1

N>x0

1

N
=

1

2

∑

2n∈A1

n>
x0
2

1

n
=

1

2

∑

k≥36

∑

2n∈A1

ek

2
<n≤ ek+1

2

1

n
<

0.004024 + 0.002251

2
< 0.003138.

Specifically, the term 0.004024 comes from the range 36 ≤ k ≤ 120 using Eq. (3) and Remark
9 with s = log(e0.8u log u)/ log y, and the term 0.002251 comes from the range k > 120 using
Eq. (4) and Remark 9.

We now turn to the cases Ai, i = 2, 3, 4, 5. By Lemma 2 and Corollary 4, we have

∑

N∈E\A1

N>x0

1

N
≤
∑

k≥36

∑

p>yk
2 ∤ ℓ2(p)

∑

ek<N≤ek+1

N≡p (mod pℓ2(p))
N≡±2 (mod 16)

N>p

1

N
. (8)

We split this sum into cases depending on the values of k and p.
The condition N > p is redundant since N is even (and composite), however, it is useful

in the following argument. If we set aside the condition N ≡ ±2 (mod 16), we obtain an
estimate that works well for large values of p, specifically p > zk. The counting function

gp(t) := |{N ≤ t : N ≡ p (mod pℓ2(p)) and N > p}|

of numbers exceeding p that are congruent to p mod pℓ2(p) satisfies

gp(t) =

⌊

t− p

pℓ2(p)

⌋

, (t ≥ p). (9)

Thus by partial summation (Lemma 7) we have

∑

ek<N≤ek+1

N≡p (mod pℓ2(p))
N>p

1

N
=

gp(e
k+1)

ek+1
− gp(e

k)

ek
+

∫ ek+1

ek

gp(t)

t2
dt

≤ gp(e
k+1)

ek+1
− gp(e

k)

ek
+

∫ ek+1

ek

1

t2

(

t− p

pℓ2(p)

)

dt.

Integrating directly, we have

∫ ek+1

ek

1

t2

(

t− p

pℓ2(p)

)

dt =
1

pℓ2(p)
+

e−(k+1) − e−k

ℓ2(p)
.

This allows us to obtain the following upper bound.
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Fp(k) :=
∑

ek<N≤ek+1

N≡p (mod pℓ2(p))
N>p

1

N
≤ 1

ek+1

⌊

ek+1 − p

pℓ2(p)

⌋

− 1

ek

⌊

ek − p

pℓ2(p)

⌋

+
1

pℓ2(p)
+

e−(k+1) − e−k

ℓ2(p)
.

Removing the second and fourth terms, which are nonpositive, we obtain the following
proposition.

Proposition 11. For odd primes p, we have

Fp(k) =
∑

ek<N≤ek+1

N≡p (mod pℓ2(p))
N>p

1

N
≤ 2

pℓ2(p)
.

Next, we obtain an improvement when p ≤ zk := ek/2/
√
8 by using the condition N ≡

2 or 14 (mod 16). We also have N ≡ p (mod pℓ2(p)), and additionally, gcd(pℓ2(p), 16) = 1
when p and ℓ2(p) are odd. Thus by the Chinese remainder theorem, N lies within two residue
classes modulo 16pℓ2(p). The counting function is therefore

fp(t) := |{N ≤ t : N ≡ p (mod pℓ2(p)), N ≡ ±2 (mod 16)}| ≤ 2

(

t

16pℓ2(p)
+ 1

)

.

Also,

fp(t) ≥ 2

⌊

t

16pℓ2(p)

⌋

.

Using the upper bound for fp(t) and proceeding as above, we have

∑

ek<N≤ek+1

N≡p (mod pℓ2(p))
N≡±2 (mod 16)

1

N
=

fp(e
k+1)

ek+1
− fp(e

k)

ek
+

∫ ek+1

ek

fp(t)

t2
dt

≤ 1

4pℓ2(p)
+

2

ek
− fp(e

k)

ek
.

Now fp(e
k) ≥ 2 when 16pℓ2(p) ≤ ek. In particular, with ℓ2(p) odd, we have ℓ2(p) ≤ (p−1)/2,

so the inequality 16pℓ2(p) ≤ ek holds for p ≤ zk.
On the other hand, we have

fp(t) ≥ 2

⌊

t

16pℓ2(p)

⌋

≥ 2

(

t

16pℓ2(p)
− 1

)

.
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This gives
∑

ek<N≤ek+1

N≡p (mod pℓ2(p))
N≡±2 (mod 16)

1

N
≤ 1

8pℓ2(p)
+

4

ek
.

In the case of A3 and A4, for p ≤ zk, we also have ℓ2(p) < p0.4 and ℓ2(p) < p0.48,
respectively.

We summarize these bounds in the following Proposition.

Proposition 12. If p and ℓ2(p) are odd, then we have

∑

ek<N≤ek+1

N≡p (mod pℓ2(p))
N≡±2 (mod 16)

1

N
≤ 1

4pℓ2(p)

whenever 16pℓ2(p) ≤ ek, and in particular when p ≤ zk. Moreover,

∑

ek<N≤ek+1

N≡p (mod pℓ2(p))
N≡±2 (mod 16)

1

N
≤ 1/8 + 4e−kpℓ2(p)

pℓ2(p)
.

When p ≤ zk and ℓ2(p) < p0.4 (respectively, ℓ2(p) < p0.48), this is bounded above by
ck/(pℓ2(p)) (respectively, dk/(pℓ2(p))) where ck = 1/8 + (4/80.7)e−0.3k and dk = 1/8 +
(4/80.74)e−0.26k.

We now consider A2. We apply Proposition 12 to bound

∑

N∈A2

N>x0

1

N
≤

∑

36≤k≤38

∑

yk<p≤zk
2 ∤ ℓ2(p)

1

4pℓ2(p)
+

∑

39≤k≤130

∑

yk<p≤Y0

2 ∤ ℓ2(p)

1

4pℓ2(p)
< 0.000070

by direct computation.
We next consider A3. Note that p | 2ℓ2(p) − 1, so that ℓ2(p) > log p/ log 2. We therefore

have
∑

yk<p≤zk
p∈Q0,a1

1

pℓ2(p)
≤ log 2

∑

p>yk
p∈Q0,a1

1

p log p
.

By partial summation (Lemma 7), the rightmost sum above is equal to

log 2

(

−Q0,a1(yk)

yk log yk
+

∫ ∞

yk

(1 + log t)Q0,a1(t)

t2 log2 t
dt

)

.
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By Lemma 10, Q0,a1(t) ≤ Mt0.8 for all t > 0, where M = 0.00754. We therefore have

∑

p>yk
p∈Q0,a1

1

pℓ2(p)
≤ M log 2

∫ ∞

yk

1 + log t

t2−2a1 log2 t
dt

= M log 2

(

−2a1Ei((2a1 − 1) log yk) +
y2a1−1
k

log yk

)

,

(10)

where

Ei(x) =

∫ x

−∞

et

t
dt

is the exponential integral function. An analogous bound holds with Y0 in place of yk.
Similarly, for primes p > zk, we may apply Proposition 11. Let

B3(z) := M log 2

(

−2a1Ei((2a1 − 1) log z) +
z2a1−1

log z

)

.

We have

∑

N∈A3

N>x0

1

N
≤

∑

39≤k≤130

ckB3(Y0) +
∑

k≥131

ckB3(yk) +
∑

k≥36

2B3(zk).

We next consider A4. By Lemma 10 we have Qa1,a2(x) ≤ Mx2a2 for all x ≥ 337, where
M = 0.00754. Since p ∈ Qa1,a2 , we also have ℓ2(p) > pa1 . Therefore,

∑

yk<p≤zk
p∈Qa1,a2

1

pℓ2(p)
≤

∑

p>yk
p∈Qa1,a2

1

p1+a1
.

By partial summation (Lemma 7), the rightmost sum above is equal to

−Qa1,a2(yk)

y1+a1
k

+ (1 + a1)

∫ ∞

yk

Qa1,a2(t)

t2+a1
dt ≤ (1 + a1)M

∫ ∞

yk

dt

t2+a1−2a2

=
(1 + a1)M

(1 + a1 − 2a2)y
1+a1−2a2
k

.

(11)

An analogous bound holds with Y0 in place of yk, and with zk in place of yk. Let B4(z) :=
(1 + a1)M/((1 + a1 − 2a2)z

1+a1−2a2). By Propositions 11 and 12, we have

∑

N∈A4

N>x0

1

N
≤

∑

39≤k≤130

dkB4(Y0) +
∑

k≥131

dkB4(yk) +
∑

k≥36

2B4(zk).
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For A5, we have by partial summation (Lemma 7) with f(t) = 1/t1+a2 that

∑

yk<p≤zk

1

pℓ2(p)
≤
∑

p>yk

1

p1+a2
= −π(yk)

y1+a2
k

+ (1 + a2)

∫ ∞

yk

π(t)

t2+a2
dt. (12)

By Lemma 6, this is bounded above by

− 1

ya2k log yk
− 1

ya2k log2 yk
+ (1 + a2)

∫ ∞

yk

(

1

log t
+

1.2762

log2 t

)

dt

t1+a2
(13)

and the integral evaluates to

−Ei(−a2 log yk) + 1.2762

(

a2Ei(−a2 log yk) +
1

ya2k log yk

)

.

As before, an analogous bound holds with Y0 in place of yk, and with zk in place of yk. Let

B5(z) := −1 + 1/ log z

za2 log z
+ (1 + a2)

∫ ∞

z

(

1

log t
+

1.2762

log2 t

)

dt

t1+a2
.

Proceeding as we did with A4, we use Propositions 11 and 12 to bound the contribution to
the reciprocal sum as

∑

N∈A5

N>x0

1

N
≤

∑

39≤k≤130

0.25B5(Y0) +
∑

k≥131

0.25B5(yk) +
∑

k≥36

2B5(zk).

Summing the contributions from the small range along with the five cases in the large
range k ≥ 36, we obtain the following upper bound:

∑

N∈E

1

N
≤ 0.000012 + 0.003138 + 0.000070

+
∑

39≤k≤130

(ckB3(Y0) + dkB4(Y0) + 0.25B5(Y0))

+
∑

k≥131

(ckB3(yk) + dkB4(yk) + 0.25B5(yk))

+
∑

k≥36

(2B3(zk) + 2B4(zk) + 2B5(zk))

< 0.000012 + 0.003138 + 0.000070 + 0.000925 + 0.000535 + 0.001185

< 0.0059.

This completes the proof of Theorem 1.
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