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Abstract

A pseudoprime is a composite integer N that mimics the behavior of primes by
satisfying the congruence 2V = 2 (mod N) in Fermat’s little theorem. This paper
focuses on the subset of even pseudoprimes and obtains an upper bound for the sum
of their reciprocals. Our approach combines analytic arguments with computational
verification, showing that this sum is less than 0.0059.
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1 Introduction

By Fermat’s little theorem, if a is an integer and p is a prime, then a? = a (mod p).
However, for each a > 2, the congruence also holds for some composite moduli called base-a
(Fermat) pseudoprimes. It is well known that for each a > 2, there are infinitely many
pseudoprimes. The base-2 pseudoprimes are also called pseudoprimes for short. We study
even pseudoprimes, that is, even numbers N > 2 such that 2V = 2 (mod N). The smallest
even pseudoprime is 161038 and Beeger [3] proved that there are infinitely many. The
first 1318 even pseudoprimes have been computed by Alekseyev (extending work of Pinch),
providing an exhaustive list up to 2 - 105, This sequence is referenced as A006935 in the
On-Line Encyclopedia of Integer Sequences [5]. Pomerance and Wagstaff [10] later extended
the exhaustive search up to 10'%, and there are 727 even pseudoprimes in the range 210 <
N < 10'6.

Let &€ = {161038, 215326, 2568226, . . .} denote the set of all even pseudoprimes. We prove
the following bounds on the sum of reciprocals of even pseudoprimes.

Theorem 1. We have

1
0.000011 < Z & < 0.0059.
Ne&

In particular, this determines the numerical value of the reciprocal sum to two decimal places
as 0.00. ... It is known [2, 7] that the reciprocal sum of odd pseudoprimes is less than 0.0911.
Thus, as a corollary, the sum of reciprocals of all base-2 pseudoprimes is less than 0.1.

2 Notation and preliminary lemmas

Throughout the paper,  denotes a real variable, xo = €3¢, p denotes a prime variable (with

or without subscripts), and logz denotes the natural logarithm. We let Yy = 6.5 - 107. We

also define y, = e*VF and z, = ¢#/2/(2y/2) for k > 36. We let a; = 0.4 and ay = 0.48. For

a prime p > 2, let the expression ¢5(p) denote the multiplicative order of 2 mod p, that is,

the smallest positive integer such that 22®) = 1 (mod p). In general, if 28 = 1 (mod p) for

some integer k£ > 0, then ¢5(p) | k. In particular, by Fermat’s little theorem, f5(p) | p — 1.
Note that N = 2n € £ if and only if n > 1 and

22"t =1 (mod n). (1)

In particular, n must be odd. We have the following additional properties of even pseu-
doprimes.

Lemma 2. For every odd prime p dividing an even pseudoprime N, we have
N = p (mod pls(p)). (2)

Moreover, l5(p) is odd, p = +1 (mod 8), and p < N/14.
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Remark 3. The congruence Eq. (2) above holds for all pseudoprimes.

Before proving Lemma 2, we note the following corollary, which follows from the fact
that any even pseudoprime is of the form 2p; - - - p,, where each p; = +1 (mod 8).

Corollary 4. If N is an even pseudoprime then N = 2 or 14 (mod 16).

Proof of Lemma 2. For an even pseudoprime N = 2n, we have 2*"~! = 1 (mod n) by Eq. (1).
Therefore, if p | n, then 22"~1 = 1 (mod p), and thus f5(p) | 2n—1, so that 2n = 1 (mod f5(p)).
Therefore, ¢5(p) is odd. Also, p = 1 (mod f5(p)) by Fermat’s little theorem, so by the last
two congruences we have 2n = p (mod /5(p)). Also, 2n = p (mod p) (as both sides are
0 (mod p)). Moreover, ged(p, £2(p)) = 1 because lo(p) | p — 1. Therefore, N = 2n satisfies
the congruence N = p (mod ply(p)).

Note also that N > p because N is composite. Next, note that we have lo(p) | (p —1)/2
because f5(p) is odd. Therefore, by Euler’s criterion, (2|p) = 2~Y/2 = 1 (mod p), where
(2|p) is the Legendre symbol. Thus (2|p) = 1, so p = £1 (mod 8). We now show that
p < N/14. The congruence 2°"~! =1 (mod n), which holds for n = N/2, implies that n is
odd, so that N = 2mp for some odd m > 1. Moreover, m # 1, for otherwise N = 2p and thus
22r=1 =1 (mod p), which is impossible since by Fermat’s little theorem, 22?2 = 1 (mod p).
Also, m # 3,5 because the odd prime factors p of N are of the form +1 (mod 8). Therefore,
m>T. [l

We use the fact that pseudoprimes are almost squarefree, in a sense made precise by the
following lemma.

Lemma 5. If N is an even pseudoprime and p* | N for a prime p, then p is a Wieferich
prime, i.e., 2?1 =1 (mod p?). In particular, p > 3511.

Proof. The first assertion holds for all pseudoprimes by an argument similar to previous work
[2, Lemma 2]. The second assertion follows from the fact that the two smallest Wieferich
primes are 1093 and 3511, together with the fact that 1093 = 5 (mod 8), and so by Lemma
2 an even pseudoprime cannot be divisible by 1093. O

We also use the following bounds of Dusart [4] on the prime counting function 7 (z).

x 1 x 1.2762
1+ <7(x) < 1+ ,
log x log x log x log x

where the lower bound holds for all x > 599 and the upper bound holds for all x > 1.

Lemma 6. We have

We use partial summation (Abel’s summation identity) [1, Theorem 4.2] to represent
sums in terms of integrals.



Lemma 7. Let {a,}n>1 be a sequence of real or complex numbers, and let f have a continuous
derivative on the interval [x1,z], 0 <z <z. Let A(t) =), ., an. Then

> onf(0) = A @) — Ale) @) - [ AWFO) dr

r1<n<z z1

In particular, if A is a set of natural numbers and we define a, =1 if n € A and a,, = 0
otherwise, then the above equality holds where A is the counting function of the set A.

We also use a result of Nguyen and Pomerance [9, Lemmas 2.9-2.10, Remark 2.1] on the
reciprocal sum of integers n > x free of prime factors exceeding a given bound y. (Such
numbers are called y-smooth or y-friable.) Let the expression P(n) denote the largest prime
factor of n, (n > 1), with the convention P(1) = 1. For 2 <y <z and s > 0, let

1
C(S7y): Z Ea
P(n)<y

where the sum is over all positive integers n which are products only of primes less than or
equal to y. Note that we have

)= %:HOH%H%J“W):H(1+p51—1)’

P(n)<y p<y p<y

where the first equality holds by unique prime factorization, and the second equality holds
by summing the geometric series. Also, let

. 1 1
con= Y =T (1+5)
P(n)<y 3<p<y p

2tn, n squarefree

denote the restriction to y-smooth numbers which are odd and squarefree (that is, not
divisible by p? for any prime p). Define

1 1
S(z,y) = ; — Sy = ;x -
P(n)<y 24n,n squarefree, P(n)<y
Lemma 8 (Nguyen and Pomerance, [9]). For2 <y <z and 0 < s < 1, we have
S(z,y) <2°¢(1 - s,y). (3)
Let u=logx/logy and s = log(ulogu)/logy. Foru >3 and s < 1/3, we have
S(z,y) < z75¢C(1 —s,y) < 25 (ulogu)™(2° — 1), (4)

where € = 2.3 -1078.



Remark 9. Following [9, Remark 2.1], for 2 <y < z and 0 < s < 1, we have

S*(‘Tay) Sx_SC*(l—s,y). (5)

We note that more generally, for a given prime p, if the sum S(x,y) is restricted by the
assumption that p? { n, then we can replace the factor 1+ 1/(p® — 1) with 1+ 1/p® in the
product defining ((s,y). Similarly, given the stronger restriction p {f n, we can remove the
factor 1+ 1/(p® — 1) in the product defining (s, y).

For fixed real numbers 0 < a < b < 1, we define Q,p = {p > 2 : 2 { l5(p) and p* <
lo(p) < p°}. We let Qup(z) = |Qup N [1,2]|. Recall that a; = 0.4 and ay = 0.48. We use the
following modification of previous work [7, Inequality (8)].

Lemma 10. We have
Qo () < M z?@

for all x > 0, where M = 0.00754. Moreover, Qu, a,(z) < M2?* for all x > 337.

Proof. We prove the claim for () ,,, noting that an analogous argument deals with the case
of Quy.ay- (For z > €?, we use the trivial inequality Qg 4, < Qo.4,-) We find by a computer
check in Pari/GP [6] that the claim holds for all < e, Qg ., (¢**) = 638, and

where D = 12895. Let z > ¢*. If p < z and p € Qq,,, then p | 2™ — 1 for some odd m > 1
such that m < p* < 2%, so that

II »!I I] @"-0.

p€Qoa,  m<z®

p<wz 2tm
Therefore,
IT p< J] @ -1
peQO,al m<xl
p<w 2fm
1) (6)
<ex log 2 m| <exp|log2
< exp gm;ll _p<g<2>>
2tm

log 2
< exp ( Off (1.00021)#“1) < exp(0.1733322).



Here, we used the formula 1 + 3+ 5+ -+ + (27 — 1) = 52 for the sum of the first j odd
numbers, with j = |(z* +1)/2]. Also,

H p= H P H p>eD(€23)QO,a1(m)_QO,a1(623)7

pGQO,al pGQO,al pEQO,cLl
p<z p<e?d  B<p<a

where the lower bound on the rightmost product is obtained by replacing each factor p with
e?3. We therefore have

Qo.0, (1) < Qoa,(€**) — D/23 +0.173332°* /23 = 638 — 12895/23 + 0.17333x%** /23

for all x > €23, Simplifying, we complete the proof of Lemma 10. O

3 The reciprocal sum of even pseudoprimes

To bound the reciprocal sum we split £ into two ranges. The small range consists of N € £
such that N < 10%. Using the exhaustive list for N < 2 -10%, and noting that there are
727 terms in the interval (2-10',10%], contributing less than 727/(2-10%) to the reciprocal
sum, we obtain

1
E — —0.0000118853. ... 7
N g

Ne&
N<1016

We are grateful to Mark Royer for computing this sum to high precision using Python.

The large range consists of N € £ such that N > x(, where zq = ¢3¢, Note that 106 > ¢35,
so there is no gap between the small and large ranges. Recall that Yy = 6.5-107, y;, = e-%6VF,
and z, = €¥/2/(2v/2), k > 36. We determine an upper bound by splitting £ N (%%, 00) into
intervals (e, ef1), k > 36. First, we partition £ into five subsets depending on the relative
sizes of p = P(N) = P(n) and ¢5(p) as follows:

./41 = {N e& p < yUOgNJ}

Ay={Nec&:e<N< 6130,yUOgNJ < p < min(Yp, zx) }

As={N € E\ Ay :p> yogn, and p € Qpq, }

Ay ={N € E\ Ay :p> Ylogn|, and p € Qg 0, }

As ={N € E\ Ay :p > Yjiogn), and p € Qq, 1}

We further partition Ay into the cases 36 < k < 38, yp < p < 2z, and 39 < k < 130,y <

p < Yy For 2 < ¢ <5 we further partition A; into the cases 39 < k < 130,Yy < p < z,
k> 131,y < p < 2, and k > 36,p > z,. This partition is inspired by previous work |8,
Theorem 9.11], [7, Theorem 1] on the reciprocal sum of odd pseudoprimes.

We first bound the sum over N = 2n € A; N (e*, "), k > 36. Recall that n is odd, and
by Lemma 2, n is not divisible by any prime p such that ¢5(p) is even. Moreover, by Lemma



5, n is not divisible by p? for any prime p < 3511. Using Remark 9, we find that

11 1 1 1 0.004024 + 0.002251
> N:§ZEZ§Z > - < ; < 0.003138.

N=2ncA; 2neAq k>36 2neAq
N>xg n>%Q %<n§ ek2+1

Specifically, the term 0.004024 comes from the range 36 < k < 120 using Eq. (3) and Remark
9 with s = log(e®®ulogu)/logy, and the term 0.002251 comes from the range k > 120 using
Eq. (4) and Remark 9.

We now turn to the cases A;, i = 2,3,4,5. By Lemma 2 and Corollary 4, we have

1 1
Yileyy oy 4 ©
Ne&\ Ay k>36 p>yi eF < N<ekt!
N>xg 2142(p) N=p (mod pla2(p))
N=+2 (mod 16)
N>p

We split this sum into cases depending on the values of k£ and p.

The condition N > p is redundant since N is even (and composite), however, it is useful
in the following argument. If we set aside the condition N = £2 (mod 16), we obtain an
estimate that works well for large values of p, specifically p > z,. The counting function

gp(t) .= |{N <t: N =p (mod ply(p)) and N > p}|

of numbers exceeding p that are congruent to p mod ply(p) satisfies

| t-p
wt) = | B ez )

Thus by partial summation (Lemma 7) we have

ekt1

s Lol e, e,

N ek+l ek X 2
ek < N<eht! ¢
N=p (mod pl2(p))

N>p

ek+1
gple") _ gp(e") _,_/ L ft=p dt
P R AT

Integrating directly, we have

k+1

e 1 t— p 1 6,(k+1) o efk
[Py
oo 12\ pla(p) pla(p) l5(p)

This allows us to obtain the following upper bound.




1 1 6chrl - 1 ek - 1 67(k+1) . e’k
Fulk) = Z N S o L pJ ek { pJ + + .
gonemn N e pla(p) e | ply(p) | pla(p) 0s(p)
N=p (mod pl2(p))
N>p

Removing the second and fourth terms, which are nonpositive, we obtain the following
proposition.

Proposition 11. For odd primes p, we have

12
Bbj= 2. y< pla(p)’

eF < N<ektl
N=p (mod pl2(p))
N>p

Next, we obtain an improvement when p < z, := ¥/2/ V/8 by using the condition N =
2 or 14 (mod 16). We also have N = p (mod ply(p)), and additionally, ged(pla(p),16) = 1
when p and /5(p) are odd. Thus by the Chinese remainder theorem, N lies within two residue
classes modulo 16pfy(p). The counting function is therefore

t

fo(t) = |{N < t: N = p (mod ply(p)), N = £2 (mod 16)}| < 2 (W + 1) ,

Also,

fp(t) 22 {WJ |

Using the upper bound for f,(¢) and proceeding as above, we have

L fe™) hle) (7 L)
Z Nl T 2 dt
eF < N<ektl ¢

N=p (mod pl2(p))
N=+2 (mod 16)

1 N 2 fy(eM)
4ply(p) — €F ek
Now f,(e*) > 2 when 16pfls(p) < e*. In particular, with ¢5(p) odd, we have £5(p) < (p—1)/2,

so the inequality 16pfs(p) < € holds for p < z.
On the other hand, we have

5022 | e | 22 (e 1)

<



This gives

> NSgupts
ek <N<ek+! N~ 8pf2(p) ek’

N=p (mod pl2(p))
N=+2 (mod 16)

In the case of Az and Ay, for p < 2, we also have ly(p) < p®* and ly(p) < p°*,
respectively.
We summarize these bounds in the following Proposition.

Proposition 12. If p and l5(p) are odd, then we have

1 1
> ¥<
eF<N<ekt+! N 4 €2 (p)

N=p (mod plz(p))
N=+2 (mod 16)

whenever 16pls(p) < ek, and in particular when p < z,. Moreover,

1/8 + de Fply(p)
> N< D) :

eF < N<ektt
N=p (mod pl2(p))
N=+2 (mod 16)

When p < 2z, and ly(p) < p®* (respectively, lo(p) < p®*8), this is bounded above by

cr/(pla(p)) (respectively, dy./(pls(p))) where ¢, = 1/8 + (4/8%T)e 3% and dp = 1/8 +
(4/80.74)¢0.26k

We now consider A,. We apply Proposition 12 to bound

Z_< >y 4p€2 + D D g y < 0-000070

E
NeA; 36<k<38 yp<p<zj 39<k<130 y, <p<Yp p2
N>zo 2142(p) 2142 (p)

by direct computation.
We next consider Asz. Note that p | 22() — 1, so that ly(p) > logp/log2. We therefore

have ) .
S i Y
Y <p<zk p£2 (p) P>y p 10g p
pGQO,al peQO,al

By partial summation (Lemma 7), the rightmost sum above is equal to

logQ <_M + /OO (1 + logt)QO,m <t> dt> .

Yr log Yk t21log*t




By Lemma 10, Qqq, (t) < Mt%8 for all ¢t > 0, where M = 0.00754. We therefore have

1 *® 1+logt
> <M [ o
= pl(p) ye 1272 log™t
peQO,al (10)

2(11—1

= M10g2 (—2@1Ei((2a1 - ]_) logyk) + il ) )

log yx,
x t
Ei(z) = / %dt

—00

where

is the exponential integral function. An analogous bound holds with Y in place of .
Similarly, for primes p > 2., we may apply Proposition 11. Let

2a1—1
Bs(z) :== M log 2 (—QalEi((2a1 —1)logz) + Zl ) :

0g z
We have
1
> v S crBs(Yo) + Y erBs(yr) + Y 2Bs(z).
NeAs 39<k<130 k>131 k>36

N>z

We next consider A,. By Lemma 10 we have Qq, q,(z) < Ma?®2 for all & > 337, where
M = 0.00754. Since p € Qg 4y, We also have ly(p) > p*. Therefore,

1 1
Z—SZW-

lo
Y <p<zj p (p) P>k
pGQal,aQ pEQal,aQ

By partial summation (Lemma 7), the rightmost sum above is equal to

Qal ) (yk> Qal a2( )
o yi-&-al + (1 + al) t2ta e, dt < (1 + al M t2+a1 2a9
Yk

11
B (1 +a1)M (11)
(1 4+ ay — 2ay)y, o202

An analogous bound holds with Yy in place of yi, and with z; in place of yx. Let By(z) :=
(1+ay))M/((1+ ay — 2as)2*T*17222) By Propositions 11 and 12, we have

Z%< Z d, B4(Yy) + deB4yk +Z2B4Zk

NeAy 39<k<130 k>131 k>36
N>xo

10



For Ajs, we have by partial summation (Lemma 7) with f(¢) = 1/t'*%2 that

1 1 7(y) < 7(t)
> <> = - +(1+ay) [ —=dt. (12)

1+a 1+a 2+a

Y <p<zk p€2 (p) P>Yk p ’ Yk : Yk t ’

By Lemma 6, this is bounded above by
1 1 o 1 1.2762 dt

— — +(1+a + 13
yptlogyr  yp? log? yy, ( 2) /yk <logt log?t ) tltaz (13)

and the integral evaluates to

1
—Ei(—aylo + 1.2762 (a Ei(—aslo + a—) .
(—azlog yx) 2Bi(—az log yi.) o8 0n

As before, an analogous bound holds with Y} in place of y;, and with 2, in place of y. Let

1+1/1 /1 12762\ dt
Bs(z) = —ﬂ—l—(l—i—m)/ ( + )

292 ]og 2 logt  log®t ) tite2’

Proceeding as we did with A4, we use Propositions 11 and 12 to bound the contribution to
the reciprocal sum as

3 % < S 025Bs(Ye)+ 3 0.25B5(y) + 3 2Bs(x).

NeAs 39<k<130 k>131 k>36
N>xo

Summing the contributions from the small range along with the five cases in the large
range k > 36, we obtain the following upper bound:

1
Z 7 < 0.000012 + 0.003138 + 0.000070

Ne&

+ Y (exBs(Yo) + diBa(Yo) + 0.25B5(Yy))

39<k<130

+ ) (exBs(ye) + diBalyr) + 0.25B5 ()

k>131

+ Y (2Bs(zk) + 2Ba(21) + 2Bs(z))

k>36
< 0.000012 + 0.003138 + 0.000070 + 0.000925 + 0.000535 + 0.001185
< 0.0059.

This completes the proof of Theorem 1.
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