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Abstract

A divisor d of an integer N is called a unitary divisor of N if d and N/d are relatively
prime and a biunitary divisor of N if d and N/d have no common unitary divisor except
1. An integer N is called a biunitary triperfect number if the sum ¢**(N) of biunitary
divisors of N is equal to 3N. We show that 2160 is the only biunitary triperfect number
divisible by 27 = 33.

1 Introduction

As usual, we let o(N) and w(NV) denote, respectively, the sum of divisors and the number
of distinct prime factors of a positive integer N (throughout this paper, we consider only
positive divisors). We call a positive integer N perfect if o(N) = 2N. It is a well-known
unsolved problem whether or not an odd perfect number exists. Interest to this problem
has produced many analogous concepts and problems concerning divisors of an integer. For
example, it is also unknown whether or not there exists an odd multiperfect number, an
integer dividing the sum of its divisors. We call a positive integer N k-perfect if o(N) = kN.
Ordinary perfect numbers are 2-perfect numbers and multiperfect numbers are k-perfect
numbers for some positive integer k. A 3-perfect number such as 120, 672, and 523776
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is also called triperfect, given in sequence A005820 in the On-Line Encyclopedia of Integer
Sequences (OEIS).

On the other hand, some special classes of divisors have also been studied in several
papers. One of them is the class of unitary divisors, a divisor d of a positive integer N
relatively prime to N/d. As far as we know, Vaidyanathaswamy first mentioned this class of
divisors with the term “block-factor” in [10, p. 601, Example 4]. Later, Cohen [2] called such
a divisor d of N a wunitary divisor. Wall [11] introduced the notion of biunitary divisors, a
divisor d of a positive integer N satisfying ged,(d, N/d) = 1, where ged, (a, b) is the greatest
common unitary divisor of two positive integers a and b.

According to Cohen [2] and Wall [11], respectively, we let *(N) and o**(N) denote the
sum of unitary and biunitary divisors of N. Moreover, we write d || NV if d is a unitary divisor
of N. Hence, for a prime p, we have p¢ || N if p divides N exactly e times. Replacing o by
o*, Subbarao and Warren [9] introduced the notion of unitary perfect numbers by calling N
unitary perfect if 0*(IN) = 2N. They proved that there are no odd unitary perfect numbers,
and 6, 60, 90, and 87360 are the first four unitary perfect numbers. Nine years later, the
fifth unitary perfect number was found by Wall [12], but no further instance has been found.
Subbarao [8] conjectured that there are only finitely many unitary perfect numbers.

Similarly, a positive integers N is called biunitary perfect it o**(N) = 2N. Wall [11]
showed that 6, 60, and 90, the first three unitary perfect numbers, are the only biunitary
perfect numbers.

Combining the notion of multiperfect numbers and biunitary perfect numbers, Hagis [4]
introduced the notion of biunitary multiperfect numbers, integers N such that ¢**(N) = kN
for some positive integer k and proved that there is no odd biunitary multiperfect number.
Smallest instances for ¢**(N) = kN with £ > 3 are N = 120,672,2160,... with &k = 3
and N = 30240, 1028160, 6168960, . .. with £ = 4. All biunitary multiperfect numbers below
4.66 x 102 as well as many larger ones are given in A189000.

Now we can call an integer N satisfying o*™*(N) = kN biunitary k-perfect and biunitary
3-perfect numbers biunitary triperfect. Haukkanen and Sitaramaiah [5] determined all biu-
nitary triperfect numbers N such that 2% || N with 1 < a < 6 or a = 8, and such ones with
a = 7 under several conditions. In this paper, we determine all biunitary triperfect numbers
divisible by 27 = 33.

Theorem 1. There exists the only one biunitary triperfect number N = 2160 divisible by 33.

Comparison of results on ordinary, unitary, and biunitary divisors such as Wall’s result
mentioned above leads us to expect that certain biunitary problems are more accessible than
corresponding ordinary and unitary problems. Indeed, we proved [14] that M = 2 and 9 are
the only biunitary superperfect numbers, integers satisfying o**(c**(N)) = 2N, while the
corresponding equation o*(c*(/N)) = 2N has many solutions 2, 9, 165, 238, ... as given in
A038843 and we only proved [13] that 9 and 165 are the only odd solutions.

Indeed, our proof is completely elementary, based on the idea used in [14]. If 0™*(N) = 3N
with a factorization N = [, p;’, then a prime p # 3 dividing o**(p;’) must divide N since
o**(p$') | o**(N) = 3N. We see that 0**(2¢3/)/(2¢37) tends to 3 as e and f grows and for
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e and f large, 0**(2°) and o**(3/) produce new prime factors of N. In many cases, this
causes 0**(N)/N > 3, which is a contradiction (in [14], we focused on only one prime 2 to
arrive at the contradiction o™ (¢**(NN))/N > 2 in many cases). In other cases, we are led
to a contradiction that p/*! | N under the assumption that p divides N exactly f times or
oc*(N)/N < 3.

2 Preliminary lemmas

In this section, we give several preliminary lemmas concerning the sum of biunitary divisors
used to prove our main theorems.

Before all, we recall two basic facts from [11]. The sum of biunitary divisors function o**
is multiplicative. Moreover, if p is a prime and e is a positive integer, then

e e=14...41= pett—1 if e is odd:
O,**(pe) _ pe+—1i_217 + —i(_e/271)(p;%+17+1) 1 € ?S odad; (1)
%—peﬂ: 5 . if e is even.

We note that, putting e = 2s — 1 — ¢ with 0 € {0, 1}, this can be represented by the single
formula
oD@+

g ey (P
o (p°) = P

: (2)

provided that e > 0.

From these facts, we can deduce the following lemmas almost immediately. We note that
these lemmas were already proved in our previous paper [14]. However, we would like to give
proofs for self-containedness.

Lemma 2. Let n be a positive integer. Then, o**(n) is odd if and only if n is a power of
2 (including 1). More ezactly, 0**(n) is divisible by 2 at least w(n) times if n is odd and at
least w(n) — 1 times if n is even.

Proof. Whether e is even or odd, o™ (p°) is odd if and only if p = 2 by (2). Factoring
n=2°[,_, py into distinct odd primes py,po, ..., p, with e > 0 and ey, eq,...,e, > 0, each
o**(p§") is even. Hence, 0**(n) = 0**(2°) [['_, o™ (p;") is divisible by 2 at least r times, where

r =w(n) if n is odd and w(n) — 1 if n is even. O

Lemma 3. For any prime p and any positive integer e, o**(p®)/p® > 1+ 1/p?. Moreover,
o (p°)/p° = 1+ 1/p unless e = 2 and o**(p°)/p° > (1 +1/p)(1 +1/p*) if e > 3. More
generally, for any positive integers m and e > 2m — 1, we have o**(p°)/p® > o** (p*™)/p*™
and, unless e = 2m, o™ (p°)/p* > 1+ 1/p+---+1/p™.

Proof. If ¢ > 2m — 1 and e is odd, then p¢ p°!, ... p,1 are biunitary divisors of p¢. If
e > 2m and e is even, then p, p®~! ... p®™ are biunitary divisors of p¢ since e — m > e/2.
Hence, if € > 2m — 1 and e # 2m, then o™ (p®) = p* +p* 1+ - +1 > p° 4 - +p= ™" =
p“(14+1/p+---+1/p™). Since o**(p*™) /p*™ < 1+1/p+---+1/p™, o™ (p®)/p¢ with e > 2m—

takes its minimum value at e = 2m. O



Now we quote the following lemma of Bang [1], which has been rediscovered (and extended
to numbers of the form a™ — ") by many authors such as Zsigmondy [15], Dickson [3] and
Kanold [6]. Also see Shapiro [7, Theorem 6.4A.1].

Lemma 4. Ifa > 2 and n > 2 are integers, then a™ — 1 has a prime factor which does not
divide a™ — 1 for any m < n, unless (a,n) = (2,1),(2,6) orn =2 and a+ 1 is a power of
2. Furthermore, such a prime factor must be congruent to 1 modulo n.

As a corollary, we obtain the following lemma:

Lemma 5. Ifa > 2 and n > 1 are integers, then a™ + 1 has a prime factor which does not
divide a™ + 1 for any m < n unless (a,n) = (2,3). Furthermore, such a prime factor must
be congruent to 1 modulo 2n.

Proof. By Lemma 4, a*" — 1 = (a" — 1)(a" + 1) has a prime factor p which does not divide
a™ — 1 for any m < 2n. Since p does not divide a™ — 1, the prime p must divide a™ + 1. On
the other hand, for m < n, p cannot divide a™ + 1 since p does not divide a®*™ — 1. Finally,
such a prime factor p must be congruent to 1 modulo 2n. O

Now we prove that o**(2¢) and ¢**(3/) must produce a new prime factor which is not
very large.

Lemma 6. Let f be a positive integer and write f = 2t — 1 —n with n € {0,1} and t a
positive integer. If f > 5, then at least one of the following statements holds.

(A) n =0 and o**(3') has a prime factor p, with 5 < p; < (3* —1)/2,
(B) py="5]0"(3") and f =2 (mod 4) or f =7,8,

(C) o**(37) has a prime factor py with 5 < p; < /(37 —1)/2, or
(D) 4 divides t, n =1, and p; = (3""! —1)/2 is prime.

Proof. We begin by observing that o**(3/) = (3! 4+ 1)(3""7 — 1) /2 from (2). We put t = 2"v
with v odd.

If n =0 and f # 7, then, we see that t = 3 or t > 5. Hence, Lemma 4 implies that
(3" —1)/2 has a prime factor greater than 5. Defining p; to be the smallest among such prime
factors, we have 5 < p; < (3! —1)/2 and (A) holds. If f = 7, then o**(3/) = (3% - 1)/2 =
2% x 5 x 41 and (B) holds.

Henceforth we assume that n = 1. If ¢ is odd and ¢ # 5,9, then, (t —1)/2 = 3 or
(t —1)/2 > 5 and, like above, (3¢~1/2 —1)/2 has a prime factor greater than 5. Take the
smallest p; among such prime factors. Then, we have p; < (3¢=1D/2 —1)/2 < /(311 —1)/2
and p; | (3¢=D/2 —1)/2 | (37! —1)/2 | 0**(37). Hence, (C) holds.

If t =2 (mod 4), then 5 | (3" + 1) | 0**(3/) and (B) holds.

If 4 | t, then, defining p; to be the smallest prime factor of (3! — 1)/2, clearly p; =
(3771 —1)/2 is prime or p; < 4/(3=1 —1)/2. Since ¢ — 1 is odd, we can never have p; = 2
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or p; = 5. Thus we see that p; = (31 —1)/2 is prime or 5 < p; < /(3t~! — 1)/2, implying
(D) and (C), respectively.

Ift =09, then 7| (3> +1) | (32 +1) | 0**(3%) and (C) holds. Finally, if ¢ = 5, then
o**(37) = 0**(3%) = 2° x 5 x 61 and (B) holds. O

Lemma 7. Let e > 6 be an integer and write e = 2s — 1 —§ with § € {0,1} and s a positive
integer. If e # 8,12, then at least one of the following statements holds.

(a) 6§ =0 and 0**(2°) has at least two prime factors q1 and qa with 5 < q1,qa < 2° — 1,
(b) p2 =507 (29).

(c) o**(2°) has at least two prime factors q1 and qo each of which satisfies either q; =
270 1, =241, or5 < q; <25 —3. Moreover, if ¢ =21 —1 orq =2°+1
fori=1 or?2, then 4 divides s and § = 1.

Proof. We begin by observing that ¢**(2¢) = (2% +1)(2°°7 — 1) from (2). We put s = 29m
with m odd.

Ifo=0,m >1,and e # 11,23, then s # 6,12 and Lemma 4 yields that 2°—1 has a prime
factor ¢; =1 (mod s) and 22 — 1 has a prime factor g = 1 (mod 2s) not dividing 2° — 1 or
22" _ 1. Clearly, we see that ¢; # ¢ and ¢y divides (2°+1)/(22’ +1). Moreover, since s > 3
is odd, we see that ¢; = ¢ =1 (mod 2s) and ¢y divides (2° +1)/(2%° + 1) < 2° — 1. Then,
we have 5 < q1,¢2 < 2°—1 and (a) holds. If e = 11 or e = 23, then 7x 13 | (2'2—1) | o**(2/)
and therefore we can take (q1,g2) = (7,13), which yields (a) again.

Ifo6=0,m=1and s =29 > 16, then we work as above but with 25/2 _ 1 and 2° — 1
instead of 2° — 1 and 22 — 1, respectively. Now we can take two prime factors ¢, g of 2° — 1
with 5 < g1, ¢a < 2% — 1, which yields (a). If e =7 or e = 15, then 5 | (28 — 1) | 0**(2¢) and
(b) holds.

Henceforth, assume that 6 = 1. If s is odd and e # 8,12,16,24, then s # 5,7,9,13
and we see from Lemma 4 that we can take a prime factor ¢; of 26=9/2 — 1 such that
¢1 =1 (mod (s — 1)/2) and a prime factor g, of 257V/24-1 such that go = 1 (mod (s — 1)/2).
Since 26=1/2 — 1 and 26-Y/2 4 1 are relatively prime, we have ¢; # ¢o. Now 5 < ¢1,¢2 <
2(5=D/2 11 < /25 — 3 and (c) holds.

If g=1,then 5= (224+1) | (2°+ 1) | o(29).

Assume that g > 2. Let ¢; and ¢o be the smallest prime factors of 2571 — 1 and 2° + 1,
respectively. Since s — 1 is odd, we cannot have ¢; = 3 or ¢; = 5. Similarly, since 4 divides
s, we cannot have ¢o = 3 or ¢u = 5.

Since 2° is square and 2°7! — 1 = 3 (mod 4), neither of 2° + 1, 2° — 1, nor 2°°! — 1 can
be square. Hence, we see that either ¢; = 27! — 1 is prime or ¢; < /2% — 3. Similarly,
g2 = 2° + 1 is prime or ¢ < /2% — 3. Hence, we see that (c) holds.

If e = 24, then we can take (¢, q2) = (7,13) since 7x 13 | (2!2—1) | 0**(22%) to obtain (c).
Finally, if e = 16, then we can take (g1, ¢2) = (17,19) since 17x 19 | (22 —1)(2°+1) = o**(2'°)
to obtain (c) observing that p, = 19 < /29 — 3. O



We also use the following miscellaneous divisibility results.

Lemma 8.

(1) For any prime p and g > 2, o™ (p?) has a prime factor > 5.

(1) For any odd prime p and g > 4, o**(p?) has a prime factor > 7.

(III) If f > 18 or f = 13,14, then 0**(37) has at least two distinct prime factors > 127.

(I1V) If g > 2, then 0**(139) has at least two distinct prime factors in addition to 2, 3, 41,

and 547.

(V) For any g > 1, 0™ (419) has a prime factor in addition to 2, 3, 5, and 13.

Proof.

(D

(I1)

(I11)

We write g = 2u — 1 — with v € {0,1}. For g > 2, we have u > 2 and, by Lemma 5,
p* + 1 has a one prime factor > 5.

We write g = 2u — 1 — with v € {0,1}. For g > 4, we have u > 3 and, by Lemma 5,
p" 4 1 has a one prime factor > 7.

By Lemma 4, (3° — 1)/2 has at least one prime factor > 127 for s > 126 and, by
Lemma 5, 3' + 1 has at least one prime factor > 127 for ¢t > 126. Now, we can
confirm that (3° — 1)/2 has at least one prime factor > 127 for s > 7 and 3" + 1 has
at least one prime factor > 127 for ¢t > 10 (see, for example, https://homes.cerias.
purdue.edu/~ssw/cun/pmainl25.txt). Hence, putting f = 2t —1—n with n € {0, 1},
o**(37) = (3" +1)(3"" — 1) /2 has at least two distinct prime factors > 127 for f > 18.
For f = 13,14, (I) can be confirmed by noting that ¢**(3!3) = 22 x 547 x 1093 and
o**(31) = 2 x 17 x 193 x 547 .

With the aid of Lemmas 4 and 5, we see that (13° — 1)/12 has at least one prime
factor > 11 for s > 3 and 13" 4+ 1 has at least one prime factor > 11 for ¢t > 2 (these
can be confirmed by direct calculation for 3 < s < 6 and 2 <t < 5). If 41 divides
13" 4+ 1, then ¢ = 20 (mod 40) and 14281 also divides 13" + 1. Similarly, if 41 divides
(13* — 1)/12, then 14281 also divides (13° — 1)/12. If 547 divides (13% — 1)/12, then
21 | s and 61 also divides (13°—1)/12. Since 13*' =1 (mod 547), 547 can never divide
13" + 1. Hence, for g > 5, putting g = 2u — 1 — v with v € {0, 1}, each of 13“ + 1 and
(1377 — 1)/12 has at least one prime factor p; and p,, respectively, both other than
2,3, 7,41, or 547. If p; = po, then p; must divide 137 4+ 1 and therefore p; = 2 or
p1 = 7, which is a contradiction. Hence, o**(137) = (13* + 1)(13“=7~! — 1)/12 has at
least two prime factors besides 2, 3, 41, and 547 for g > 5. For 2 < g <4, (IV) can be
easily confirmed.
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(V) For p = 41, from Lemma 5, we see that 41" + 1 has a prime factor greater than 5
for u > 3. If 13 divides 41" + 1, then v = 6 (mod 12) and 29 also divides 41" + 1.
Hence, for g > 2, putting ¢ = 2u — 1 — v with v € {0,1}, 41" + 1 has a prime factor
in addition to 2, 3, 5, and 13 and so does o**(419). For g = 1, (V) is clear since
o (4l) =41 +1=2x 3 x 7.

]

3 Proof of Theorem 1

Assume that N is a biunitary triperfect number with 3% | N. We put integers e and f by
2¢ || N and 3/ || N and write e = 2s — 1 — § with § € {0,1} and f = 2t — 1 — 5 with
n € {0,1}.

In this section, once we write p; for a prime factor of N with an index i, e; denotes the
exponent of p; dividing N. Clearly, o**(p;*) divides 3N for each i. Thus, if p is a prime other
than 3 and p? divides o**(p;*) for some 7, then p? divides V.

We begin with small e and f. Although Haukkanen and Sitaramaiah [5] proved that
e > 7 whether 3% | N or not, we give a proof for small e in the view of self-containedness.

Lemma 9. We must have e > 4.

Proof. We cannot have e = 0 as Hagis [4] has shown. Indeed, if N > 1 is odd, then, by
Lemma 2, 0**(N) must be even and 0**(N) # 3N. If e = 1, then N can have no odd prime
factor other than 3 and therefore we must have o**(3/) = 2¢. By Lemma 4, we must have
f =1, contrary to the assumption that f > 3.

If e = 2, then p; = 5 = 0**(2%) | 0**(N) = 3N and therefore 5 must divide N. From
Lemma 2, we see that N has no further prime factor. Hence, 0**(3/) can have no prime
factor other than 2 and 5. By Lemma 8 (II), we must have f = 3. Now e; > 2 since
52 | 0**(223%) | 3N. However, from Lemma 8 (I), we see that py | o**(5%) | o**(N) = 3N for
some py > 5 and 2% | N by Lemma 2, which is a contradiction.

If e = 3, then p; = 5 must divide N. If e; # 2, then, with the aid of Lemma 3, we have

a*(N) < o**(23315) 28

N S iy g % (3)

contrary to the assumption that ¢**(IN) = 3N. Hence, we must have e; = 2 and py = 13
must divide N since 13 | 0**(5%) | 0**(IN) = 3N. With the aid of Lemma 8 (IT), we see that
0**(13°?) has an odd prime factor ps in addition to 3, 5, and 13. By Lemma 2, we must
have 2* | o**(3/5%13%p5?) | 3N and 2* | N, which is a contradiction. Thus, we cannot have
e=3. [

Lemma 10. We cannot have e = 5.



Proof. Assume that e = 5. Then, 0**(2°) = 3% x 7 and p; = 7 must divide N. If ¢; # 2,
then (N) _ o™(25347) 28
O.** O_**
> = — 3 4
N S w3r 97 @)

and if f # 4 and e; = 2, then 5 | o™ (p{*) = 7 + 1 and

o (N) | o (2°3°7?5%) 6929

= >3 5

N T 25367252 2268 ' (5)

which are both contradictions. If f = 4 and e; = 2, then p, = 5 divides N and 2° |
o**(3%7?5%) | 3N, which is a contradiction. O

Lemma 11. We cannot have e = 6.

Proof. Assume that e = 6. We observe that p; = 7 and p; = 17 must divide N since
7x 17 =0"*(2%) | 0**(N) = 3N. If €; # 2 and ey # 2, then

o (N) _ o™ (29397 x 17) 28
> = —
N = 26307 x 17 g =3 (6)

which is a contradiction. If e; # 2 and ey = 2, then, since 5 divides 172 + 1, ps = 5 must
divide N and (N e (527 6158
TN o T _oiss .
N 2634527 2025
which is a contradiction again.
Now we must have e; = 2. We see that p3 = 5 and ez > 2 since 5 | (72 + 1) = o™ (7?).
We observe that we cannot have f = 4 since 27 | o**(3%7°17°25%). If e3 > 2, then

o**(N) _ o™(20357%5) 45305 -
N 2636725 13608 '

(8)

which is a contradiction. Hence, e3 = 2 and py; = 13 must divide N. However, this is
impossible. Indeed, if e; = 2, then 5 | 0**(7?13%) | 3N, contrary to ez = 2, and if ey # 2,
then o**(N) _ o**(20357%5%13) 9061
> = > 3, (9)
N 2636725213 2916
which is a contradiction. O

Lemma 12. We cannot have e > 7 and f = 3.

Proof. Assume that e > 7 and f = 3. Clearly p; = 5 must divide N since 5 | 0**(3%) | 3N.
If ey # 2, then

a**(N) - 0**(2°3°5) 55

N — 2385 16

> 3, (10)

which is a contradiction.



If e; = 2, then, since o™ (5%

) =2 x 13, po = 13 must divide N. We must have e; = 2,
ps = 17 (we note that 17 | o**(13%?) =

0**(13?)), and e3 = 2 since otherwise

- w5 (982352

- ]EIN) = 2(8233?;251;3) - ;771 >3 (11)
. o**(N) _ o™(283%5%13%17) 165

N Z T ewsir s (12)
which is a contradiction. But then, we must have 5° | ¢**(3%13%17%) | 3N, contrary to
e = 2. ]

Lemma 13. We cannot have e > 7 and f = 4.

Proof. Assume that e > 7 and f = 4. Clearly p; = 7 must divide N since 7 | o**(3%) | 3.
If e; # 2, then

o™ (N) - o**(2°3'7) 55

N T 28317 18

> 3, (13)

which is a contradiction.
If e; = 2, then, since o**(7%) = 2 x 5%, p, = 5 must divide N. We must have e, = 2,
p3 = 13, and e3 = 2, since otherwise

o™ (N) _ o™(2834725) 275

=—->3 14
N T 2834725 84 (14)
o (N (2834725213 5h)
N 2834725213 18
which is a contradiction. Hence, we must have 53 | N since 5® | 0**(7213?%), which is also a
contradiction. O

Now we prove remaining cases. Assume that f > 5 e > 7 and e # 8,12. Then, a prime
p1 taken from Lemma 6 must divide N since p; | **(3/) | 3N and p; # 3. If (b) in Lemma
7 holds, then py = 5 must divide N and we have p; > 5 = py. If (a) or (¢) in Lemma 7
holds, then we can choose a prime ps € {¢1, ¢2} not equal to p;. Like above, p; must divide
N. We see that if (¢) in Lemma 7 holds, then we have either (¢/) 5 < ps < /2% — 3 or (d)
4| s, 5 =1, and either of py = 2571 — 1 or p, = 2° + 1 is prime. We put N; = 2¢p3? if (a),
(b), or (¢’) holds or (d) holds with ey # 2. It is clear that Ny || N. If (d) holds with ey = 2,
then, we observe that p; = 2 (mod 5) and 5 | (p? + 1) | o**(N) = 3N and thus we see that
Ny = 2¢5% || N. Similarly, we put Ny = 3/p{* if (A), (B), or (C) holds or (D) holds with
ey # 2 and Ny = 3/5% if (D) holds with ey, = 2 to see that Ny || N.

We observe that ¢**(Ny)/Ny > 2 and 0™ (N,) /Ny > 3/2. Indeed, if (a) holds, then

o (N) @ - D) (2% - (2 -1+ 1)
N, - 2ep% - 223—1(23 _ 1)2

> 2, (16)

Nej



If (¢/) holds, then

(M) T D@+ i+l (27 - 1)%(2° - 2)
> > 2. 1
N, - 225—2p% - 225—3(25 _ 3) = ( 7)
If (d) holds with ey # 2, then
(N 2571 —1)(2° 4+ 1 1 2571 —1)(2° + 2
oN) L @ - DE D) | @ D@ D), -

Nl - 22372p2 925—2
If (b) holds, then

(V) (27 = D@ D52+ 1) 26277 — (2 + 1)
N, © 92s—1-n5e2 = 25 x 221w

> 2, (19)

which also holds with ey replaced by es in the case (d) with e; = 2. Thus, we see that
o**(Ny)/Ny > 2 in any case.
Similarly, if (A) holds, then

ok ALY (p2 1 2t _ t_1)2
(o) S (3 )(p;Jr G 1)(E3 )°+4) 3 (20)
Ny 2 x 3/p3 2 x 32-1(3t — 1)2 2
If (C) holds, then
*k t—m __ t 2 t—m __ t t—n
o**(Ny) > (3 D3+ 1)(p?+1) > (3 (38 +1)(37"+1) - §‘ 21)
Ny 2 x 32-1-np? 2 x 3x-1=n(3t=n — 1) 2
If (D) holds with e; # 2, then
*k t—1 t t—1 t t—1
o™ (Ny) > (3 DE" +1)(pr+1) N (3 DE+HE 1) 3 (22
No 2 X 3%2p, 2 x 32-2(3t-1 — 1) 2
If (B) holds, then
(. t—m __ 1 t 1 el 1 2 t—1 _ 1 t 1
(o) (8 JE+ DG +1) 260 B3+ 3 (29)
Ny 2 x 32t=1-n5er 2 x 25 x 32t—1-n 2

which also holds with e; replaced by ez in the case (D) with e; = 2. Thus, we see that
0**(N3)/Ny > 3/2 in any case.
If (a) or (¢) holds, then ged(Ny, N2) =1 and

>3 24
N 2N, N, , (24)

which is a contradiction. If (b) or (d) holds and (A) or (C) also holds, then, we have
ged(Ny, No) = 1 and a contradiction (24) again.
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Now we settle two cases (i) (b) or (d) holds and (B) or (D) also holds and (ii) e = 8. In
both cases, 5 must divide N since 5 divides 0**(2%) = 3% x 5 x 11. We rewrite p; = 5. If
e1 # 2, then ™ (5555)

o (N) _ 0**(2°3°5) 5863
N Z 35 1w (25)
which is a contradiction. Hence, e; = 2.
Now, rewriting p, = 13, po must divide N. Hence, if e # 8, then

O_**(]\]) S 0**(2103652132)
N = 2103652132

>3 (26)
and, if e = 8 and f # 6, then

o™ (N) < o**(28385%13%)
N 283852132
and we have a contradiction. Thus, we must have e = 8 and f = 6. Since f =6, p3 =7
must divide N. If e3 = 2, then 5% | 0**(2872) | 3N, which is incompatible with e; = 2. If
es # 2, then

>3 (27)

o (N) - o**(28357) 29315
N~ 28367 9072

> 3, (28)

a contradiction again.
Now we assume that e = 12. Then, p; = 7 must divide N since 7 | (26 — 1) | o**(2'%). If
e1 # 2, then
a™*(N) < o**(2'23°7) 22919
N T 212367 6912
and, if e; = 2, then 5 divides NV and
ok *% ()129672K2
o (N)Za (2 375):297947>3' (30)
N 212367252 96768
Thus, we have a contradiction.
Now the only remaining case is the case e = 4. We prove that if e = 4, then N = 2160 to
complete the proof of Theorem 1. We begin by showing that if NV # 2160, then f > 5 and 5
cannot divide N.

Lemma 14. Ife =4 and f <4, then N = 2160.

Proof. If f =4, then 0**(37) = 247 and therefore p; = 7 must divide N and 2° | o**(3/7¢) |
3N, contrary to the assumption that e = 4.

If f = 3, then 0**(3/) = 235 and p; = 5 must divide N. If e; = 1, then 0**(2*335) = 243%5
and therefore N = 2%335. If ¢; = 2, then p? + 1 = 2 x 13 and p, = 13 must divide N, which
is impossible since 2° | 0**(3%5%213%). If e; > 3, then

O'**(N) o** (24335)
N 24335

which is a contradiction. Hence, if f = 3, then we have N = 24335. O

> 3, (29)

=3, (31)
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Now we must have f > 5 if N # 2160.
Lemma 15. Ife =4 and f > 5, then 5 cannot divide N .
Proof. Assume that p; = 5 divides N. If e; # 2, then we must have f = 6 since otherwise
o™ (N) - o**(213%5)
N 24335

which is a contradiction. Noting that 13 | 0**(3%) | 3N, py = 13 must divide N, ey = 2,
p3 = 17 must divide N and e3 = 2 since otherwise

=3, (32)

o™ (N) _ o™ (24355 x 13) 287
> _ o0 g 33
N = 21365 x 13 0 = (33)

or
o (N) _ o™(23%5 x 13%17) 41
> =—=>3 34
N = 24365 x 13217 13 ’ (34)
a contradiction again. Since 52 | 0**(13217%) and we assumed that e; # 2, we must have
e > 3 and

o (N) o (2'995118) 4879
N = 243654132 1625
which is impossible. Thus, we must have e; = 2 and py = 13 must divide N since 13 |
o**(5%) | 3N.
If f > 9, then, with the aid of Lemma 8 (III), we see that o**(3/) must have two odd

prime factors p3 and p, in addition to 5 and 13, which is incompatible with e = 4 by Lemma
2.

3, (35)

If f =8, then 61 | **(3/) and p3 = 61 must divide N. Noting that 2% | (3°+1) | o**(3%),
we must have 25 | 0**(3%5213°261%), which is a contradiction. If f = 7, then we have a
similar contradiction from ps =41 | (3* +1) | 0™ (3/). If f = 6, then p3 = 41 must divide N
again. By Lemma 8 (V), 0**(41%) has an odd prime factor ps other than 3, 5, p3 and, we
must have 2° | 0**(355213%241%pg*), which is a contradiction.

If f =5, then 7 | 0**(3%) and p3 = 7 must divide N. However, we must have 2° |
0**(3°5213%25%) | 3N from Lemma 2, contrary to e = 4. Thus we conclude that 5 cannot
divide N. ]

Now we prove that we can never have o™ (N) = 3N if N # 2160 and e = 4. By Lemmas
14 and 15, we must have f > 5 and 5 can never divide N.

If f> 18 or f = 13,14, then, By Lemma 8 (IV), 0*(3/) has at least two odd prime
factors pi,po > 127. By Lemma 2, we see that N can have at most one more prime factor
p3. Thus, we must have

0**(]\7)<27><3><7><127><131<3
N 16 x 2 x 6 x 126 x 130 ’

(36)
which is a contradiction.
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If 15 < f < 17, then 0**(3/) has at least three odd prime factors not less than 31 and

a**(N)<27><3><31><37><41<
N 16 x 2 x 30 x 36 x 40

3, (37)

which is a contradiction. If f = 7,8,10,11, then 5 | 0**(3/) and 5 must divide N, which is
impossible by Lemma 15.

If f=06,12, then p; = 13 and py = 41, 547, respectively, must divide N. By Lemma 4, we
see that ™ (13°") can have at most one prime factor other than 2, 3, or ps, which is impossible
for f =6 and f = 12 by Lemma 8 (IV). If f =9, then, 11 x 61 must divide N and, noting
that 22 | 0**(3%), N can have no prime factor except 2, 3, 11, or 61. Hence, o**(61°?) has no
prime factor except 2, 3, or 11, which is impossible since 61° +1 =2 x 11 x 31 x 1238411.

Finally, if f = 5, then 0**(3%) = 22 x 7 x 13 and therefore p, = 7 and p3 = 13 must
divide N. If e3 > 2, then 0**(13%) has another prime factor p, in addition to 2, 3, and 7
from Lemma 8 (IV) and 2° | 0**(3°7213%p§*) | 3N, which is a contradiction. If e3 = 1, then
we have a similar contradiction that 2° | o**(3°7) | 3.

Hence, we can never have **(N) = 3N if N # 2160 and e = 4. This completes the proof
of Theorem 1.

4 Concluding remarks

Our arguments in this paper and [14] lead us to strongly believe that the equations o**(c**(N)) =
3N and o**(0**(N)) = 4N have no solutions other than the known twelve solutions given in
A318175. Moreover, based on our theorem and known biunitary multiperfect numbers, we
can pose the following problems, which are so far unsolved:

e For each integer £ > 3, are there infinitely or only finitely many integers N for which
o*(N)=kN?

e For a prime power p? # 1, does there exist at least one N for which ¢**(N) = kN and
P N7

e For an integer d > 2, does there exist at least one integer N for which o**(N) = kN
and ged(d, N) = 17

Problems involving **(c**(NN)) are posed in [14].
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