
23 11

Article 25.4.5
Journal of Integer Sequences, Vol. 28 (2025),2

3

6

1

47

Determining all Biunitary Triperfect

Numbers of a Certain Form

Tomohiro Yamada
Center for Japanese Language and Culture

Osaka University
562-8678, 3-5-10, Sembahigashi

Minoo, Osaka
Japan

tyamada1093@gmail.com

Abstract

A divisor d of an integer N is called a unitary divisor of N if d and N/d are relatively
prime and a biunitary divisor of N if d and N/d have no common unitary divisor except
1. An integer N is called a biunitary triperfect number if the sum σ∗∗(N) of biunitary
divisors of N is equal to 3N . We show that 2160 is the only biunitary triperfect number
divisible by 27 = 33.

1 Introduction

As usual, we let σ(N) and ω(N) denote, respectively, the sum of divisors and the number
of distinct prime factors of a positive integer N (throughout this paper, we consider only
positive divisors). We call a positive integer N perfect if σ(N) = 2N . It is a well-known
unsolved problem whether or not an odd perfect number exists. Interest to this problem
has produced many analogous concepts and problems concerning divisors of an integer. For
example, it is also unknown whether or not there exists an odd multiperfect number, an
integer dividing the sum of its divisors. We call a positive integer N k-perfect if σ(N) = kN .
Ordinary perfect numbers are 2-perfect numbers and multiperfect numbers are k-perfect
numbers for some positive integer k. A 3-perfect number such as 120, 672, and 523776
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is also called triperfect, given in sequence A005820 in the On-Line Encyclopedia of Integer
Sequences (OEIS).

On the other hand, some special classes of divisors have also been studied in several
papers. One of them is the class of unitary divisors, a divisor d of a positive integer N
relatively prime to N/d. As far as we know, Vaidyanathaswamy first mentioned this class of
divisors with the term “block-factor” in [10, p. 601, Example 4]. Later, Cohen [2] called such
a divisor d of N a unitary divisor. Wall [11] introduced the notion of biunitary divisors, a
divisor d of a positive integer N satisfying gcd1(d,N/d) = 1, where gcd1(a, b) is the greatest
common unitary divisor of two positive integers a and b.

According to Cohen [2] and Wall [11], respectively, we let σ∗(N) and σ∗∗(N) denote the
sum of unitary and biunitary divisors of N . Moreover, we write d || N if d is a unitary divisor
of N . Hence, for a prime p, we have pe || N if p divides N exactly e times. Replacing σ by
σ∗, Subbarao and Warren [9] introduced the notion of unitary perfect numbers by calling N
unitary perfect if σ∗(N) = 2N . They proved that there are no odd unitary perfect numbers,
and 6, 60, 90, and 87360 are the first four unitary perfect numbers. Nine years later, the
fifth unitary perfect number was found by Wall [12], but no further instance has been found.
Subbarao [8] conjectured that there are only finitely many unitary perfect numbers.

Similarly, a positive integers N is called biunitary perfect if σ∗∗(N) = 2N . Wall [11]
showed that 6, 60, and 90, the first three unitary perfect numbers, are the only biunitary
perfect numbers.

Combining the notion of multiperfect numbers and biunitary perfect numbers, Hagis [4]
introduced the notion of biunitary multiperfect numbers, integers N such that σ∗∗(N) = kN
for some positive integer k and proved that there is no odd biunitary multiperfect number.
Smallest instances for σ∗∗(N) = kN with k ≥ 3 are N = 120, 672, 2160, . . . with k = 3
and N = 30240, 1028160, 6168960, . . . with k = 4. All biunitary multiperfect numbers below
4.66× 1012 as well as many larger ones are given in A189000.

Now we can call an integer N satisfying σ∗∗(N) = kN biunitary k-perfect and biunitary
3-perfect numbers biunitary triperfect. Haukkanen and Sitaramaiah [5] determined all biu-
nitary triperfect numbers N such that 2a || N with 1 ≤ a ≤ 6 or a = 8, and such ones with
a = 7 under several conditions. In this paper, we determine all biunitary triperfect numbers
divisible by 27 = 33.

Theorem 1. There exists the only one biunitary triperfect number N = 2160 divisible by 33.

Comparison of results on ordinary, unitary, and biunitary divisors such as Wall’s result
mentioned above leads us to expect that certain biunitary problems are more accessible than
corresponding ordinary and unitary problems. Indeed, we proved [14] that M = 2 and 9 are
the only biunitary superperfect numbers, integers satisfying σ∗∗(σ∗∗(N)) = 2N , while the
corresponding equation σ∗(σ∗(N)) = 2N has many solutions 2, 9, 165, 238, . . . as given in
A038843 and we only proved [13] that 9 and 165 are the only odd solutions.

Indeed, our proof is completely elementary, based on the idea used in [14]. If σ∗∗(N) = 3N
with a factorization N =

∏

i p
ei
i , then a prime p 6= 3 dividing σ∗∗(peii ) must divide N since

σ∗∗(peii ) | σ∗∗(N) = 3N . We see that σ∗∗(2e3f )/(2e3f ) tends to 3 as e and f grows and for
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e and f large, σ∗∗(2e) and σ∗∗(3f ) produce new prime factors of N . In many cases, this
causes σ∗∗(N)/N > 3, which is a contradiction (in [14], we focused on only one prime 2 to
arrive at the contradiction σ∗∗(σ∗∗(N))/N > 2 in many cases). In other cases, we are led
to a contradiction that pf+1 | N under the assumption that p divides N exactly f times or
σ∗∗(N)/N < 3.

2 Preliminary lemmas

In this section, we give several preliminary lemmas concerning the sum of biunitary divisors
used to prove our main theorems.

Before all, we recall two basic facts from [11]. The sum of biunitary divisors function σ∗∗

is multiplicative. Moreover, if p is a prime and e is a positive integer, then

σ∗∗(pe) =

{

pe + pe−1 + · · ·+ 1 = pe+1
−1

p−1
, if e is odd;

pe+1
−1

p−1
− pe/2 = (pe/2−1)(pe/2+1+1)

p−1
, if e is even.

(1)

We note that, putting e = 2s− 1− δ with δ ∈ {0, 1}, this can be represented by the single
formula

σ∗∗(pe) =
(ps−δ − 1)(ps + 1)

p− 1
, (2)

provided that e > 0.
From these facts, we can deduce the following lemmas almost immediately. We note that

these lemmas were already proved in our previous paper [14]. However, we would like to give
proofs for self-containedness.

Lemma 2. Let n be a positive integer. Then, σ∗∗(n) is odd if and only if n is a power of
2 (including 1). More exactly, σ∗∗(n) is divisible by 2 at least ω(n) times if n is odd and at
least ω(n)− 1 times if n is even.

Proof. Whether e is even or odd, σ∗∗(pe) is odd if and only if p = 2 by (2). Factoring
n = 2e

∏r
i=1 p

ei
i into distinct odd primes p1, p2, . . . , pr with e ≥ 0 and e1, e2, . . . , er > 0, each

σ∗∗(peii ) is even. Hence, σ
∗∗(n) = σ∗∗(2e)

∏r
i=1 σ

∗∗(peii ) is divisible by 2 at least r times, where
r = ω(n) if n is odd and ω(n)− 1 if n is even.

Lemma 3. For any prime p and any positive integer e, σ∗∗(pe)/pe ≥ 1 + 1/p2. Moreover,
σ∗∗(pe)/pe ≥ 1 + 1/p unless e = 2 and σ∗∗(pe)/pe ≥ (1 + 1/p)(1 + 1/p3) if e ≥ 3. More
generally, for any positive integers m and e ≥ 2m − 1, we have σ∗∗(pe)/pe ≥ σ∗∗(p2m)/p2m

and, unless e = 2m, σ∗∗(pe)/pe ≥ 1 + 1/p+ · · ·+ 1/pm.

Proof. If e ≥ 2m − 1 and e is odd, then pe, pe−1, . . . , p, 1 are biunitary divisors of pe. If
e > 2m and e is even, then pe, pe−1, . . . , pe−m are biunitary divisors of pe since e−m > e/2.
Hence, if e ≥ 2m − 1 and e 6= 2m, then σ∗∗(pe) = pe + pe−1 + · · · + 1 > pe + · · · + pe−m =
pe(1+1/p+· · ·+1/pm). Since σ∗∗(p2m)/p2m < 1+1/p+· · ·+1/pm, σ∗∗(pe)/pe with e ≥ 2m−1
takes its minimum value at e = 2m.
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Now we quote the following lemma of Bang [1], which has been rediscovered (and extended
to numbers of the form an − bn) by many authors such as Zsigmondy [15], Dickson [3] and
Kanold [6]. Also see Shapiro [7, Theorem 6.4A.1].

Lemma 4. If a ≥ 2 and n ≥ 2 are integers, then an − 1 has a prime factor which does not
divide am − 1 for any m < n, unless (a, n) = (2, 1), (2, 6) or n = 2 and a + 1 is a power of
2. Furthermore, such a prime factor must be congruent to 1 modulo n.

As a corollary, we obtain the following lemma:

Lemma 5. If a ≥ 2 and n ≥ 1 are integers, then an + 1 has a prime factor which does not
divide am + 1 for any m < n unless (a, n) = (2, 3). Furthermore, such a prime factor must
be congruent to 1 modulo 2n.

Proof. By Lemma 4, a2n − 1 = (an − 1)(an + 1) has a prime factor p which does not divide
am − 1 for any m < 2n. Since p does not divide an − 1, the prime p must divide an + 1. On
the other hand, for m < n, p cannot divide am + 1 since p does not divide a2m − 1. Finally,
such a prime factor p must be congruent to 1 modulo 2n.

Now we prove that σ∗∗(2e) and σ∗∗(3f ) must produce a new prime factor which is not
very large.

Lemma 6. Let f be a positive integer and write f = 2t − 1 − η with η ∈ {0, 1} and t a
positive integer. If f ≥ 5, then at least one of the following statements holds.

(A) η = 0 and σ∗∗(3f ) has a prime factor p1 with 5 < p1 ≤ (3t − 1)/2,

(B) p1 = 5 | σ∗∗(3f ) and f ≡ 2 (mod 4) or f = 7, 8,

(C) σ∗∗(3f ) has a prime factor p1 with 5 < p1 ≤
√

(3t−η − 1)/2, or

(D) 4 divides t, η = 1, and p1 = (3t−1 − 1)/2 is prime.

Proof. We begin by observing that σ∗∗(3f ) = (3t + 1)(3t−η − 1)/2 from (2). We put t = 2hv
with v odd.

If η = 0 and f 6= 7, then, we see that t = 3 or t ≥ 5. Hence, Lemma 4 implies that
(3t−1)/2 has a prime factor greater than 5. Defining p1 to be the smallest among such prime
factors, we have 5 < p1 ≤ (3t − 1)/2 and (A) holds. If f = 7, then σ∗∗(3f ) = (38 − 1)/2 =
24 × 5× 41 and (B) holds.

Henceforth we assume that η = 1. If t is odd and t 6= 5, 9, then, (t − 1)/2 = 3 or
(t − 1)/2 ≥ 5 and, like above, (3(t−1)/2 − 1)/2 has a prime factor greater than 5. Take the
smallest p1 among such prime factors. Then, we have p1 ≤ (3(t−1)/2 − 1)/2 <

√

(3t−1 − 1)/2
and p1 | (3(t−1)/2 − 1)/2 | (3t−1 − 1)/2 | σ∗∗(3f ). Hence, (C) holds.

If t ≡ 2 (mod 4), then 5 | (3t + 1) | σ∗∗(3f ) and (B) holds.
If 4 | t, then, defining p1 to be the smallest prime factor of (3t−1 − 1)/2, clearly p1 =

(3t−1 − 1)/2 is prime or p1 ≤
√

(3t−1 − 1)/2. Since t − 1 is odd, we can never have p1 = 2
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or p1 = 5. Thus we see that p1 = (3t−1 − 1)/2 is prime or 5 < p1 ≤
√

(3t−1 − 1)/2, implying
(D) and (C), respectively.

If t = 9, then 7 | (33 + 1) | (39 + 1) | σ∗∗(3f ) and (C) holds. Finally, if t = 5, then
σ∗∗(3f ) = σ∗∗(38) = 25 × 5× 61 and (B) holds.

Lemma 7. Let e ≥ 6 be an integer and write e = 2s− 1− δ with δ ∈ {0, 1} and s a positive
integer. If e 6= 8, 12, then at least one of the following statements holds.

(a) δ = 0 and σ∗∗(2e) has at least two prime factors q1 and q2 with 5 < q1, q2 ≤ 2s − 1,

(b) p2 = 5 | σ∗∗(2e).

(c) σ∗∗(2e) has at least two prime factors q1 and q2 each of which satisfies either qi =
2s−1 − 1, qi = 2s + 1, or 5 < qi ≤

√
2s − 3. Moreover, if qi = 2s−1 − 1 or qi = 2s + 1

for i = 1 or 2, then 4 divides s and δ = 1.

Proof. We begin by observing that σ∗∗(2e) = (2s + 1)(2s−η − 1) from (2). We put s = 2gm
with m odd.

If δ = 0, m > 1, and e 6= 11, 23, then s 6= 6, 12 and Lemma 4 yields that 2s−1 has a prime
factor q1 ≡ 1 (mod s) and 22s − 1 has a prime factor q2 ≡ 1 (mod 2s) not dividing 2s − 1 or
22

g+1 −1. Clearly, we see that q1 6= q2 and q2 divides (2
s+1)/(22

g
+1). Moreover, since s ≥ 3

is odd, we see that q1 ≡ q2 ≡ 1 (mod 2s) and q2 divides (2s + 1)/(22
g
+ 1) < 2s − 1. Then,

we have 5 < q1, q2 ≤ 2s−1 and (a) holds. If e = 11 or e = 23, then 7×13 | (212−1) | σ∗∗(2f )
and therefore we can take (q1, q2) = (7, 13), which yields (a) again.

If δ = 0, m = 1 and s = 2g ≥ 16, then we work as above but with 2s/2 − 1 and 2s − 1
instead of 2s− 1 and 22s− 1, respectively. Now we can take two prime factors q1, q2 of 2

s− 1
with 5 < q1, q2 ≤ 2s − 1, which yields (a). If e = 7 or e = 15, then 5 | (28 − 1) | σ∗∗(2e) and
(b) holds.

Henceforth, assume that δ = 1. If s is odd and e 6= 8, 12, 16, 24, then s 6= 5, 7, 9, 13
and we see from Lemma 4 that we can take a prime factor q1 of 2(s−1)/2 − 1 such that
q1 ≡ 1 (mod (s− 1)/2) and a prime factor q2 of 2

(s−1)/2+1 such that q2 ≡ 1 (mod (s− 1)/2).
Since 2(s−1)/2 − 1 and 2(s−1)/2 + 1 are relatively prime, we have q1 6= q2. Now 5 < q1, q2 ≤
2(s−1)/2 + 1 <

√
2s − 3 and (c) holds.

If g = 1, then 5 = (22 + 1) | (2s + 1) | σ(2e).
Assume that g ≥ 2. Let q1 and q2 be the smallest prime factors of 2s−1 − 1 and 2s + 1,

respectively. Since s− 1 is odd, we cannot have q1 = 3 or q1 = 5. Similarly, since 4 divides
s, we cannot have q2 = 3 or q2 = 5.

Since 2s is square and 2s−1 − 1 ≡ 3 (mod 4), neither of 2s + 1, 2s − 1, nor 2s−1 − 1 can
be square. Hence, we see that either q1 = 2s−1 − 1 is prime or q1 ≤

√
2s − 3. Similarly,

q2 = 2s + 1 is prime or q2 ≤
√
2s − 3. Hence, we see that (c) holds.

If e = 24, then we can take (q1, q2) = (7, 13) since 7×13 | (212−1) | σ∗∗(224) to obtain (c).
Finally, if e = 16, then we can take (q1, q2) = (17, 19) since 17×19 | (28−1)(29+1) = σ∗∗(216)
to obtain (c) observing that p2 = 19 <

√
29 − 3.
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We also use the following miscellaneous divisibility results.

Lemma 8.

(I) For any prime p and g ≥ 2, σ∗∗(pg) has a prime factor ≥ 5.

(II) For any odd prime p and g ≥ 4, σ∗∗(pg) has a prime factor ≥ 7.

(III) If f ≥ 18 or f = 13, 14, then σ∗∗(3f ) has at least two distinct prime factors ≥ 127.

(IV) If g ≥ 2, then σ∗∗(13g) has at least two distinct prime factors in addition to 2, 3, 41,
and 547.

(V) For any g ≥ 1, σ∗∗(41g) has a prime factor in addition to 2, 3, 5, and 13.

Proof.

(I) We write g = 2u− 1− γ with γ ∈ {0, 1}. For g ≥ 2, we have u ≥ 2 and, by Lemma 5,
pu + 1 has a one prime factor ≥ 5.

(II) We write g = 2u− 1− γ with γ ∈ {0, 1}. For g ≥ 4, we have u ≥ 3 and, by Lemma 5,
pu + 1 has a one prime factor ≥ 7.

(III) By Lemma 4, (3s − 1)/2 has at least one prime factor ≥ 127 for s ≥ 126 and, by
Lemma 5, 3t + 1 has at least one prime factor ≥ 127 for t ≥ 126. Now, we can
confirm that (3s − 1)/2 has at least one prime factor ≥ 127 for s ≥ 7 and 3t + 1 has
at least one prime factor ≥ 127 for t ≥ 10 (see, for example, https://homes.cerias.
purdue.edu/~ssw/cun/pmain125.txt). Hence, putting f = 2t−1−η with η ∈ {0, 1},
σ∗∗(3f ) = (3t+1)(3t−η − 1)/2 has at least two distinct prime factors ≥ 127 for f ≥ 18.
For f = 13, 14, (I) can be confirmed by noting that σ∗∗(313) = 22 × 547 × 1093 and
σ∗∗(314) = 2× 17× 193× 547 .

(IV) With the aid of Lemmas 4 and 5, we see that (13s − 1)/12 has at least one prime
factor ≥ 11 for s ≥ 3 and 13t + 1 has at least one prime factor ≥ 11 for t ≥ 2 (these
can be confirmed by direct calculation for 3 ≤ s ≤ 6 and 2 ≤ t ≤ 5). If 41 divides
13t + 1, then t ≡ 20 (mod 40) and 14281 also divides 13t + 1. Similarly, if 41 divides
(13s − 1)/12, then 14281 also divides (13s − 1)/12. If 547 divides (13u − 1)/12, then
21 | s and 61 also divides (13s−1)/12. Since 1321 ≡ 1 (mod 547), 547 can never divide
13t + 1. Hence, for g ≥ 5, putting g = 2u− 1− γ with γ ∈ {0, 1}, each of 13u + 1 and
(13u−γ − 1)/12 has at least one prime factor p1 and p2, respectively, both other than
2, 3, 7, 41, or 547. If p1 = p2, then p1 must divide 13γ + 1 and therefore p1 = 2 or
p1 = 7, which is a contradiction. Hence, σ∗∗(13g) = (13u + 1)(13u−γ−1 − 1)/12 has at
least two prime factors besides 2, 3, 41, and 547 for g ≥ 5. For 2 ≤ g ≤ 4, (IV) can be
easily confirmed.
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(V) For p = 41, from Lemma 5, we see that 41u + 1 has a prime factor greater than 5
for u ≥ 3. If 13 divides 41u + 1, then u ≡ 6 (mod 12) and 29 also divides 41u + 1.
Hence, for g ≥ 2, putting g = 2u − 1 − γ with γ ∈ {0, 1}, 41u + 1 has a prime factor
in addition to 2, 3, 5, and 13 and so does σ∗∗(41g). For g = 1, (V) is clear since
σ∗∗(41) = 41 + 1 = 2× 3× 7.

3 Proof of Theorem 1

Assume that N is a biunitary triperfect number with 33 | N . We put integers e and f by
2e || N and 3f || N and write e = 2s − 1 − δ with δ ∈ {0, 1} and f = 2t − 1 − η with
η ∈ {0, 1}.

In this section, once we write pi for a prime factor of N with an index i, ei denotes the
exponent of pi dividing N . Clearly, σ∗∗(peii ) divides 3N for each i. Thus, if p is a prime other
than 3 and pg divides σ∗∗(peii ) for some i, then pg divides N .

We begin with small e and f . Although Haukkanen and Sitaramaiah [5] proved that
e ≥ 7 whether 33 | N or not, we give a proof for small e in the view of self-containedness.

Lemma 9. We must have e ≥ 4.

Proof. We cannot have e = 0 as Hagis [4] has shown. Indeed, if N > 1 is odd, then, by
Lemma 2, σ∗∗(N) must be even and σ∗∗(N) 6= 3N . If e = 1, then N can have no odd prime
factor other than 3 and therefore we must have σ∗∗(3f ) = 2e. By Lemma 4, we must have
f = 1, contrary to the assumption that f ≥ 3.

If e = 2, then p1 = 5 = σ∗∗(22) | σ∗∗(N) = 3N and therefore 5 must divide N . From
Lemma 2, we see that N has no further prime factor. Hence, σ∗∗(3f ) can have no prime
factor other than 2 and 5. By Lemma 8 (II), we must have f = 3. Now e1 ≥ 2 since
52 | σ∗∗(2233) | 3N . However, from Lemma 8 (I), we see that p2 | σ∗∗(5e1) | σ∗∗(N) = 3N for
some p2 > 5 and 23 | N by Lemma 2, which is a contradiction.

If e = 3, then p1 = 5 must divide N . If e1 6= 2, then, with the aid of Lemma 3, we have

σ∗∗(N)

N
≥ σ∗∗(23345)

23345
=

28

9
> 3, (3)

contrary to the assumption that σ∗∗(N) = 3N . Hence, we must have e1 = 2 and p2 = 13
must divide N since 13 | σ∗∗(52) | σ∗∗(N) = 3N . With the aid of Lemma 8 (II), we see that
σ∗∗(13e2) has an odd prime factor p3 in addition to 3, 5, and 13. By Lemma 2, we must
have 24 | σ∗∗(3f5213e2pe33 ) | 3N and 24 | N , which is a contradiction. Thus, we cannot have
e = 3.

Lemma 10. We cannot have e = 5.
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Proof. Assume that e = 5. Then, σ∗∗(25) = 32 × 7 and p1 = 7 must divide N . If e1 6= 2,
then

σ∗∗(N)

N
≥ σ∗∗(25347)

25347
=

28

9
> 3 (4)

and if f 6= 4 and e1 = 2, then 5 | σ∗∗(pe11 ) = 72 + 1 and

σ∗∗(N)

N
≥ σ∗∗(25367252)

25367252
=

6929

2268
> 3, (5)

which are both contradictions. If f = 4 and e1 = 2, then p2 = 5 divides N and 26 |
σ∗∗(34725e2) | 3N , which is a contradiction.

Lemma 11. We cannot have e = 6.

Proof. Assume that e = 6. We observe that p1 = 7 and p2 = 17 must divide N since
7× 17 = σ∗∗(26) | σ∗∗(N) = 3N . If e1 6= 2 and e2 6= 2, then

σ∗∗(N)

N
≥ σ∗∗(26347× 17)

26347× 17
=

28

9
> 3, (6)

which is a contradiction. If e1 6= 2 and e2 = 2, then, since 5 divides 172 + 1, p3 = 5 must
divide N and

σ∗∗(N)

N
≥ σ∗∗(2634527)

2634527
=

6188

2025
> 3, (7)

which is a contradiction again.
Now we must have e1 = 2. We see that p3 = 5 and e3 ≥ 2 since 52 | (72 + 1) = σ∗∗(72).

We observe that we cannot have f = 4 since 27 | σ∗∗(347217e25e3). If e3 > 2, then

σ∗∗(N)

N
>

σ∗∗(2636725)

2636725
=

45305

13608
> 3, (8)

which is a contradiction. Hence, e3 = 2 and p4 = 13 must divide N . However, this is
impossible. Indeed, if e4 = 2, then 53 | σ∗∗(72132) | 3N , contrary to e3 = 2, and if e4 6= 2,
then

σ∗∗(N)

N
≥ σ∗∗(2636725213)

2636725213
=

9061

2916
> 3, (9)

which is a contradiction.

Lemma 12. We cannot have e ≥ 7 and f = 3.

Proof. Assume that e ≥ 7 and f = 3. Clearly p1 = 5 must divide N since 5 | σ∗∗(33) | 3N .
If e1 6= 2, then

σ∗∗(N)

N
≥ σ∗∗(28335)

28335
=

55

16
> 3, (10)

which is a contradiction.

8



If e1 = 2, then, since σ∗∗(5e1) = 2 × 13, p2 = 13 must divide N . We must have e2 = 2,
p3 = 17 (we note that 17 | σ∗∗(13e2) = σ∗∗(132)), and e3 = 2 since otherwise

σ∗∗(N)

N
≥ σ∗∗(28335213)

28335213
=

77

24
> 3 (11)

or
σ∗∗(N)

N
≥ σ∗∗(28335213217)

28335213217
=

165

52
> 3, (12)

which is a contradiction. But then, we must have 53 | σ∗∗(33132172) | 3N , contrary to
e1 = 2.

Lemma 13. We cannot have e ≥ 7 and f = 4.

Proof. Assume that e ≥ 7 and f = 4. Clearly p1 = 7 must divide N since 7 | σ∗∗(34) | 3N .
If e1 6= 2, then

σ∗∗(N)

N
≥ σ∗∗(28347)

28347
=

55

18
> 3, (13)

which is a contradiction.
If e1 = 2, then, since σ∗∗(7e1) = 2 × 52, p2 = 5 must divide N . We must have e2 = 2,

p3 = 13, and e3 = 2, since otherwise

σ∗∗(N)

N
≥ σ∗∗(2834725)

2834725
=

275

84
> 3 (14)

or
σ∗∗(N)

N
≥ σ∗∗(2834725213)

2834725213
=

55

18
> 3, (15)

which is a contradiction. Hence, we must have 53 | N since 53 | σ∗∗(72132), which is also a
contradiction.

Now we prove remaining cases. Assume that f ≥ 5, e ≥ 7 and e 6= 8, 12. Then, a prime
p1 taken from Lemma 6 must divide N since p1 | σ∗∗(3f ) | 3N and p1 6= 3. If (b) in Lemma
7 holds, then p2 = 5 must divide N and we have p1 > 5 = p2. If (a) or (c) in Lemma 7
holds, then we can choose a prime p2 ∈ {q1, q2} not equal to p1. Like above, p2 must divide
N . We see that if (c) in Lemma 7 holds, then we have either (c′) 5 < p2 ≤

√
2s − 3 or (d)

4 | s, δ = 1, and either of p2 = 2s−1 − 1 or p2 = 2s + 1 is prime. We put N1 = 2epe22 if (a),
(b), or (c′) holds or (d) holds with e2 6= 2. It is clear that N1 || N . If (d) holds with e2 = 2,
then, we observe that pi ≡ 2 (mod 5) and 5 | (p2i + 1) | σ∗∗(N) = 3N and thus we see that
N1 = 2e5e3 || N . Similarly, we put N2 = 3fpe11 if (A), (B), or (C) holds or (D) holds with
e2 6= 2 and N2 = 3f5e3 if (D) holds with e2 = 2 to see that N2 || N .

We observe that σ∗∗(N1)/N1 > 2 and σ∗∗(N2)/N2 > 3/2. Indeed, if (a) holds, then

σ∗∗(N1)

N1

≥ (2e+1 − 1)(p22 + 1)

2ep22
≥ (22s − 1)((2s − 1)2 + 1)

22s−1(2s − 1)2
> 2. (16)
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If (c′) holds, then

σ∗∗(N1)

N1

≥ (2s−1 − 1)(2s + 1)(p22 + 1)

22s−2p22
≥ (2s−1 − 1)2(2s − 2)

22s−3(2s − 3)
> 2. (17)

If (d) holds with e2 6= 2, then

σ∗∗(N1)

N1

≥ (2s−1 − 1)(2s + 1)(p2 + 1)

22s−2p2
≥ (2s−1 − 1)(2s + 2)

22s−2
> 2. (18)

If (b) holds, then

σ∗∗(N1)

N1

≥ (2s−η − 1)(2s + 1)(5e2 + 1)

22s−1−η5e2
≥ 26(2s−η − 1)(2s + 1)

25× 22s−1−η
> 2, (19)

which also holds with e2 replaced by e3 in the case (d) with e2 = 2. Thus, we see that
σ∗∗(N1)/N1 > 2 in any case.

Similarly, if (A) holds, then

σ∗∗(N2)

N2

≥ (3f+1 − 1)(p21 + 1)

2× 3fp21
≥ (32t − 1)((3t − 1)2 + 4)

2× 32t−1(3t − 1)2
>

3

2
. (20)

If (C) holds, then

σ∗∗(N2)

N2

≥ (3t−η − 1)(3t + 1)(p21 + 1)

2× 32t−1−ηp21
≥ (3t−η − 1)(3t + 1)(3t−η + 1)

2× 32t−1−η(3t−η − 1)
>

3

2
. (21)

If (D) holds with e1 6= 2, then

σ∗∗(N2)

N2

≥ (3t−1 − 1)(3t + 1)(p1 + 1)

2× 32t−2p1
≥ (3t−1 − 1)(3t + 1)(3t−1 + 1)

2× 32t−2(3t−1 − 1)
>

3

2
. (22)

If (B) holds, then

σ∗∗(N2)

N2

≥ (3t−η − 1)(3t + 1)(5e1 + 1)

2× 32t−1−η5e1
≥ 26(3t−1 − 1)(3t + 1)

2× 25× 32t−1−η
>

3

2
, (23)

which also holds with e1 replaced by e3 in the case (D) with e1 = 2. Thus, we see that
σ∗∗(N2)/N2 > 3/2 in any case.

If (a) or (c′) holds, then gcd(N1, N2) = 1 and

σ∗∗(N)

N
≥ σ∗∗(N1)

N1

× σ∗∗(N2)

N2

> 3, (24)

which is a contradiction. If (b) or (d) holds and (A) or (C) also holds, then, we have
gcd(N1, N2) = 1 and a contradiction (24) again.
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Now we settle two cases (i) (b) or (d) holds and (B) or (D) also holds and (ii) e = 8. In
both cases, 5 must divide N since 5 divides σ∗∗(28) = 32 × 5 × 11. We rewrite p1 = 5. If
e1 6= 2, then

σ∗∗(N)

N
≥ σ∗∗(28365)

28365
=

5863

1728
> 3, (25)

which is a contradiction. Hence, e1 = 2.
Now, rewriting p2 = 13, p2 must divide N . Hence, if e 6= 8, then

σ∗∗(N)

N
≥ σ∗∗(2103652132)

2103652132
> 3 (26)

and, if e = 8 and f 6= 6, then

σ∗∗(N)

N
≥ σ∗∗(283852132)

283852132
> 3 (27)

and we have a contradiction. Thus, we must have e = 8 and f = 6. Since f = 6, p3 = 7
must divide N . If e3 = 2, then 53 | σ∗∗(2872) | 3N , which is incompatible with e1 = 2. If
e3 6= 2, then

σ∗∗(N)

N
≥ σ∗∗(28367)

28367
=

29315

9072
> 3, (28)

a contradiction again.
Now we assume that e = 12. Then, p1 = 7 must divide N since 7 | (26 − 1) | σ∗∗(212). If

e1 6= 2, then
σ∗∗(N)

N
≥ σ∗∗(212367)

212367
=

22919

6912
> 3, (29)

and, if e1 = 2, then 5 divides N and

σ∗∗(N)

N
≥ σ∗∗(212367252)

212367252
=

297947

96768
> 3. (30)

Thus, we have a contradiction.
Now the only remaining case is the case e = 4. We prove that if e = 4, then N = 2160 to

complete the proof of Theorem 1. We begin by showing that if N 6= 2160, then f ≥ 5 and 5
cannot divide N .

Lemma 14. If e = 4 and f ≤ 4, then N = 2160.

Proof. If f = 4, then σ∗∗(3f ) = 247 and therefore p1 = 7 must divide N and 25 | σ∗∗(3f7e1) |
3N , contrary to the assumption that e = 4.

If f = 3, then σ∗∗(3f ) = 235 and p1 = 5 must divide N . If e1 = 1, then σ∗∗(24335) = 24345
and therefore N = 24335. If e1 = 2, then p21 + 1 = 2× 13 and p2 = 13 must divide N , which
is impossible since 25 | σ∗∗(335213e2). If e1 ≥ 3, then

σ∗∗(N)

N
>

σ∗∗(24335)

24335
= 3, (31)

which is a contradiction. Hence, if f = 3, then we have N = 24335.
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Now we must have f ≥ 5 if N 6= 2160.

Lemma 15. If e = 4 and f ≥ 5, then 5 cannot divide N .

Proof. Assume that p1 = 5 divides N . If e1 6= 2, then we must have f = 6 since otherwise

σ∗∗(N)

N
>

σ∗∗(24335)

24335
= 3, (32)

which is a contradiction. Noting that 13 | σ∗∗(36) | 3N , p2 = 13 must divide N , e2 = 2,
p3 = 17 must divide N and e3 = 2 since otherwise

σ∗∗(N)

N
≥ σ∗∗(24365× 13)

24365× 13
=

287

90
> 3 (33)

or
σ∗∗(N)

N
≥ σ∗∗(24365× 13217)

24365× 13217
=

41

13
> 3, (34)

a contradiction again. Since 52 | σ∗∗(132172) and we assumed that e1 6= 2, we must have
e1 ≥ 3 and

σ∗∗(N)

N
≥ σ∗∗(243654132)

243654132
=

4879

1625
> 3, (35)

which is impossible. Thus, we must have e1 = 2 and p2 = 13 must divide N since 13 |
σ∗∗(52) | 3N .

If f ≥ 9, then, with the aid of Lemma 8 (III), we see that σ∗∗(3f ) must have two odd
prime factors p3 and p4 in addition to 5 and 13, which is incompatible with e = 4 by Lemma
2.

If f = 8, then 61 | σ∗∗(3f ) and p3 = 61 must divide N . Noting that 22 | (35+1) | σ∗∗(38),
we must have 25 | σ∗∗(385213e261e3), which is a contradiction. If f = 7, then we have a
similar contradiction from p3 = 41 | (34 + 1) | σ∗∗(3f ). If f = 6, then p3 = 41 must divide N
again. By Lemma 8 (V), σ∗∗(41e3) has an odd prime factor p4 other than 3, 5, p3 and, we
must have 25 | σ∗∗(365213e241e3pe44 ), which is a contradiction.

If f = 5, then 7 | σ∗∗(35) and p3 = 7 must divide N . However, we must have 25 |
σ∗∗(355213e25e3) | 3N from Lemma 2, contrary to e = 4. Thus we conclude that 5 cannot
divide N .

Now we prove that we can never have σ∗∗(N) = 3N if N 6= 2160 and e = 4. By Lemmas
14 and 15, we must have f ≥ 5 and 5 can never divide N .

If f ≥ 18 or f = 13, 14, then, By Lemma 8 (IV), σ∗∗(3f ) has at least two odd prime
factors p1, p2 ≥ 127. By Lemma 2, we see that N can have at most one more prime factor
p3. Thus, we must have

σ∗∗(N)

N
<

27× 3× 7× 127× 131

16× 2× 6× 126× 130
< 3, (36)

which is a contradiction.
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If 15 ≤ f ≤ 17, then σ∗∗(3f ) has at least three odd prime factors not less than 31 and

σ∗∗(N)

N
<

27× 3× 31× 37× 41

16× 2× 30× 36× 40
< 3, (37)

which is a contradiction. If f = 7, 8, 10, 11, then 5 | σ∗∗(3f ) and 5 must divide N , which is
impossible by Lemma 15.

If f = 6, 12, then p1 = 13 and p2 = 41, 547, respectively, must divide N . By Lemma 4, we
see that σ∗∗(13e1) can have at most one prime factor other than 2, 3, or p2, which is impossible
for f = 6 and f = 12 by Lemma 8 (IV). If f = 9, then, 11× 61 must divide N and, noting
that 22 | σ∗∗(39), N can have no prime factor except 2, 3, 11, or 61. Hence, σ∗∗(61e2) has no
prime factor except 2, 3, or 11, which is impossible since 615 + 1 = 2× 11× 31× 1238411.

Finally, if f = 5, then σ∗∗(35) = 22 × 7 × 13 and therefore p2 = 7 and p3 = 13 must
divide N . If e3 ≥ 2, then σ∗∗(13e3) has another prime factor p4 in addition to 2, 3, and 7
from Lemma 8 (IV) and 25 | σ∗∗(357e213e3pe44 ) | 3N , which is a contradiction. If e3 = 1, then
we have a similar contradiction that 25 | σ∗∗(357) | 3N .

Hence, we can never have σ∗∗(N) = 3N if N 6= 2160 and e = 4. This completes the proof
of Theorem 1.

4 Concluding remarks

Our arguments in this paper and [14] lead us to strongly believe that the equations σ∗∗(σ∗∗(N)) =
3N and σ∗∗(σ∗∗(N)) = 4N have no solutions other than the known twelve solutions given in
A318175. Moreover, based on our theorem and known biunitary multiperfect numbers, we
can pose the following problems, which are so far unsolved:

• For each integer k ≥ 3, are there infinitely or only finitely many integers N for which
σ∗∗(N) = kN?

• For a prime power pg 6= 1, does there exist at least one N for which σ∗∗(N) = kN and
pg || N?

• For an integer d > 2, does there exist at least one integer N for which σ∗∗(N) = kN
and gcd(d,N) = 1?

Problems involving σ∗∗(σ∗∗(N)) are posed in [14].
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