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Abstract

Gijswijt’s sequence consists almost entirely of small positive integers. However, it is
known that every positive integer eventually appears in the sequence. In this paper we
determine its growth rate. Specifically, we prove that for n = 4, 5, 6, . . . , the number n
occurs for the first time at position 2 ↑ (2 ↑ (3 ↑ (4 ↑ (5 ↑ · · · ↑ ((n− 2) ↑ α))))), where
↑ denotes exponentiation, and α ∈ (n− 2, n− 1) is a real number. Our result confirms
the growth rate conjectured by van de Bult et al.

1 Introduction

To define Gijswijt’s sequence, we begin with the concept of a curling number, introduced by
van de Bult, Gijswijt, Linderman, Sloane, and Wilks [3]. For a finite nonempty string S over
an arbitrary alphabet, the curling number of S is the largest integer k such that

S = X Y Y · · ·Y
︸ ︷︷ ︸

k copies

for some strings X and Y , where the string Y must be nonempty. The curling number of S is
denoted by C(S). For example, we have C(112112223) = 1. We also have C(222322232223) =
3, since the string 2223 is repeated 3 times. Using this concept, van de Bult et al. constructed
a recursive sequence A:

A(1) := 1, A(n+ 1) := C(A(1), A(2), . . . , A(n)) for all n ≥ 1.
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This sequence is now known as Gijswijt’s sequence, after Dion Gijswijt, who first defined
it [3, p. 4]. The sequence starts with

A = 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 1, 1, 2, 1, . . .

Gijswijt’s sequence can be found as sequence A090822 in the On-Line Encyclopedia of Integer
Sequences (OEIS) [2]. This sequence consists almost entirely of small positive integers. The
first time that a 4 occurs is at position 220, and the sequence continues with elements 1,
2, 3, and 4 for millions of entries. However, van de Bult et al. [3, p. 12] proved that all
positive integers must occur at some point in Gijswijt’s sequence. After this, they used
heuristic arguments to specify the approximate location of the first occurrence of a number
n in the sequence [3, Section 4]. For n = 1, 2, 3, 4 this position is respectively 1, 3, 9, 220.
These positions form sequence A091409 in the OEIS. Surprisingly, the first 5 occurs at about

position 1010
23

[3, p. 22]. The decimal (or binary) representation of this number would require
zettabytes of storage.

The heuristic arguments by van de Bult et al. led up to a conjecture [3, Conjecture 4.4].
It states that for n ≥ 5, the first occurrence of n in Gijswijt’s sequence is about position

22
34
...

n−1

. (1)

In this tower of exponents, the 2 occurs twice at the base, followed by the exponents
3, 4, . . . , n − 2, n − 1. From Expression (1) we see that Gijswijt’s sequence has a very slow
growth rate.

The goal of this paper is to establish a precise version of the conjecture. We do this by
providing explicit upper and lower bounds for the position of the first n in the sequence.
Our main result is as follows:

Theorem 1. For all integers n ≥ 4, the first occurrence of n in Gijswijt’s sequence is at
position

22
34
..
.(n−2)α

,

for a real number α ∈ (n− 2, n− 1) that depends on n.

Take, for example, the number n = 4. The first occurrence in Gijswijt’s sequence is

at position 220 = 22
2.96...

, so α = 2.96 . . . ∈ (2, 3). Now consider the number n = 6. It

follows from our theorem that the first 6 occurs between the positions 22
34

4

≈ 1010
10121

and 22
34

5

≈ 1010
10489

. On the other hand, Theorem 1 is false for n = 3. Gijswijt’s sequence
starts with 1, 1, 2, 1, 1, 2, 2, 2, 3 . . . , so the first 3 occurs at position 9 = 23.1699.... The exponent
3.1699 . . . falls outside the interval (1, 2).

This paper is devoted to the proof of Theorem 1. We do this as follows. In Section 2
we recall the ‘recursive structure’ that was found by van de Bult et al. [3, Section 2]. This

2

https://oeis.org/A090822
https://oeis.org/A091409


structure makes Gijswijt’s sequence A = A(1) the first member of a family of sequences A(m).
These sequences are built from finite strings called blocks and glue strings. In Section 3 we
show how the positions of first occurrence of n in the various A(m) relate to each other. In
Sections 4 and 5 we derive inequalities involving the lengths of the blocks and glue strings.
In Section 6 we prove our main result by combining the inequalities into a single expression.
Remark 21 explains a strategy to obtain sharper bounds.

Our Section 3 is based on the ideas in van de Bult et al. [3, Section 4.6]. At first glance,
the arguments in our Section 4 have nothing to do with their heuristic derivation [3, Section
4]. However, our Section 4 is actually inspired by the ‘tabular construction’ and ‘smoothing’
techniques that they provided. In their Section 4, van de Bult et al. made three other
conjectures about related inequalities and the recursive structure [3, Conjectures 4.1–4.3].
These conjectures served mainly as stepping stones towards Expression (1). It might be
possible to derive the conjectures from our work, but we prefer to focus on the main result.

1.1 The curling number conjecture

Van de Bult et al. [3] posed another conjecture near the end of their paper [3, Finiteness
Conjecture]. In a different paper, Chaffin et al. [1] called this conjecture the curling number
conjecture.

Conjecture 2 (The curling number conjecture [1, Conjecture 1]). If one starts with any
initial string of integers S, and extends it by repeatedly appending the curling number of
the current string, the string will eventually reach 1.

The techniques in this paper are completely unsuitable for proving this conjecture. The
curling number conjecture seems harder than the one regarding the growth rate of Gijswijt’s
sequence. However, Chaffin et al. [1] made some progress. Among other things, they com-
putationally verified the conjecture for all initial strings with lengths up to 48 that consist
only of the digits 2 and 3.

1.2 Notation

We use the term string for a finite list e1, e2, . . . , el of positive integers and reserve the
term sequence for infinite lists e1, e2, . . . of positive integers. The objects e1, e2, . . . , el are
the elements of the string. The length of a string is the number of elements, including
duplicates. The empty string ǫ has length 0. We usually omit the commas, so 1222 means
1, 2, 2, 2. We can concatenate strings S = s1 · · · sl and T = t1 · · · tm to obtain a new string
W = ST = s1 · · · slt1 · · · tm. Similarly, the concatenation W = ST is a sequence when S is a
string and T is a sequence. In either case, the string S is a prefix of W and a proper prefix if
T is not empty. When W = ST is a string, the string T is a suffix of W and a proper suffix
if S is not empty. When W = USV is a string or sequence, the string S is a substring of
W . We denote the kth element of S by S(k). Consider strings S1, S2, S3, . . . such that Sn is
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a proper prefix of Sn+1 for all n ≥ 1. We define the limit limn→∞ Sn as the unique sequence
S such that Sn is a prefix of S for all n ≥ 1.

For a string X and an integer k ≥ 1, we denote XX · · ·X
︸ ︷︷ ︸

k copies

by Xk. Now the curling

number of a string S is the largest integer c such that S can be written as XY c with Y
nonempty. Van de Bult et al. [3] only defined the curling number of a nonempty string;
we additionally define C(ǫ) := 1. Throughout this paper, the expression (m + 1)k can
both denote the string (m + 1)k = (m+ 1)(m+ 1) · · · (m+ 1)

︸ ︷︷ ︸

k copies

or the number (m + 1)k =

(m+ 1) · (m+ 1) · . . . · (m+ 1)
︸ ︷︷ ︸

k copies

. The difference will be clear from the context. We always

use · for multiplication, and no symbol for concatenation.

2 The recursive structure

Van de Bult et al. defined a family of sequences that generalize Gijswijt’s sequence [3,
Section 3]. For m ≥ 1, the mth order sequence A(m) is given by

A(m)(1) := m, A(m)(n+ 1) := max(m, C(A(m)(1), A(m)(2), . . . , A(m)(n))) for all n ≥ 1.

Note that A(1) = A. The sequences A(2) and A(3) start as follows:

A(2) = 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, . . .

A(3) = 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 4, 3, . . .

These are sequences A091787 and A091799 in the OEIS [2]. Van de Bult et al. proved that

each sequence A(m), for m ≥ 1, is built from finite strings B
(m)
t and S

(m)
t . The strings B

(m)
t

are called blocks and the strings S
(m)
t are called glue strings. They satisfy the following

relations for t,m ≥ 1:

B
(m)
1 = m

B
(m)
t+1 = B

(m)
t B

(m)
t · · ·B

(m)
t

︸ ︷︷ ︸

m+1 copies

S
(m)
t

A(m) = lim
t→∞

B
(m)
t

A(m+1) = S
(m)
1 S

(m)
2 S

(m)
3 · · ·

The limit in the third line means that every block B
(m)
t is a prefix of A(m). Therefore we can

obtain the sequence A(m) by starting with B
(m)
1 , and then repeatedly applying the second

equation. In each iteration, we copy the current block B
(m)
t for m + 1 times, and then add

the glue string S
(m)
t to find B

(m)
t+1 . Surprisingly, the glue strings used for constructing A(m)
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can be combined to form the sequence A(m+1); this is the fourth equation. Note that the
blocks B

(m)
t contain only elements m and higher, while the glue strings S

(m)
t contain only

elements m+ 1 and higher.
A few examples are in order. Consider the sequence A(2). The first prefix blocks are

B
(2)
1 = 2, B

(2)
2 = 2223, B

(2)
3 = (2223)33, B

(2)
4 = ((2223)33)3334. The associated glue strings

are S
(2)
1 = 3, S

(2)
2 = 3, S

(2)
3 = 334. When we concatenate these glue strings we get 33334,

which is the prefix B
(3)
2 of A(3). In turn, the block B

(3)
2 equals (B

(3)
1 )4S

(3)
1 . We have B

(3)
1 = 3

and S
(3)
1 = 4. The string S

(3)
1 = 4 is the prefix B

(4)
1 of A(4).

This structure implies that every element of A(m+1) also occurs in A(m). Indeed, if x is
in A(m+1), then there is a t such that x is in S

(m)
t . Therefore, the element x occurs in B

(m)
t+1 ,

and hence in A(m). Now from induction we see that for n ≥ m, every element of A(n) occurs
in A(m). Since A(n) starts with n, we conclude that A(m) contains all integers that are at
least m. Like Gijswijt’s sequence, the sequences A(m) for m ≥ 2 are also slow-growing; see
Remark 22.

Additionally, van de Bult et al. [3] defined strings T
(m)
t for t,m ≥ 1:

T
(m)
t := S

(m)
1 S

(m)
2 · · ·S

(m)
t−1 .

Now it follows that
A(m+1) = lim

t→∞
T

(m)
t .

Since T
(m)
t is a prefix of A(m+1) for all m, t ≥ 1, the strings T

(m)
t consist of elements m + 1

and higher. Here is a short table for reference:

B
(m)
1 B

(m)
2 S

(m)
1 T

(m)
1 T

(m)
2

m mm+1(m+ 1) m+ 1 ǫ m+ 1

Table 1: Blocks and glue strings for small t and general m.

The strings B
(m)
t and S

(m)
t are always nonempty. However, the strings T

(m)
1 are empty for

all m. The lengths of
B

(m)
t , S

(m)
t , T

(m)
t

are denoted by respectively
β(m)(t), σ(m)(t), τ (m)(t).

For all m and t, the string B
(m)
t is a proper prefix of B

(m)
t+1 and the string T

(m)
t is a proper

prefix of T
(m)
t+1 . Therefore the functions β(m)(t) and τ (m)(t) are strictly increasing in t. This

is not true for σ(m)(t).
We often use the following property of curling numbers:
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Lemma 3. If S is a string with suffix T , then C(S) ≥ C(T ).

Proof. Let c := C(T ). Then T has a suffix Y c with Y nonempty. It follows that S has suffix
Y c as well, so C(S) ≥ c = C(T ).

We can now start our derivation of Theorem 1. As a first step we prove three lemmas
about the recursive structure.

Lemma 4. For all m ≥ 1 and t ≥ 2, the string mT
(m)
t is a suffix of B

(m)
t . This is the only

occurrence of T
(m)
t as a substring of B

(m)
t .

Proof. We prove the first statement by induction on t. For t = 2, the string mT
(m)
2 =

m(m+ 1) is a suffix of B
(m)
2 = mm+1(m+ 1).

Now suppose that the first statement is true for t = k. Then we use that

B
(m)
k+1 = (B

(m)
k )m+1S

(m)
k .

By the induction hypothesis, the string B
(m)
k+1 has suffix mT

(m)
k S

(m)
k . The suffix equals mT

(m)
k+1

by definition of T
(m)
k+1. This completes the induction step.

The second statement is van de Bult et al. [3, Lemma 3.2b].

Lemma 5. For all m ≥ 1, the strings T
(m)
t are exactly the prefixes of A(m+1) with curling

number at most m.

Proof. The string T
(m)
1 = ǫ is a prefix of A(m+1) with curling number 1.

For t ≥ 2, the block B
(m)
t+1 is a prefix of A(m). This block equals (B

(m)
t )m+1S

(m)
t , so since

B
(m)
t (1) = m, the string B

(m)
t m is also a prefix of A(m). Now from the definition of A(m) we

obtain that max(m, C(B
(m)
t )) = m, so C(B

(m)
t ) ≤ m. We know by Lemma 4 that T

(m)
t is a

suffix of B
(m)
t , so Lemma 3 tells us that C(T

(m)
t ) ≤ C(B

(m)
t ) ≤ m.

Conversely, let P be a nonempty prefix of A(m+1) with curling number at most m. Then
we can write P = T

(m)
t Q for some t ≥ 2 and a proper prefix Q of S

(m)
t . We have S

(m)
t = QR

for a nonempty string R. All elements of R are at least m+1, in particular the first element
R(1). Now the string

(B
(m)
t )m+1QR(1)

is a prefix of B
(m)
t+1 , so it is also a prefix of A(m). Therefore max(m, C((B

(m)
t )m+1Q)) =

R(1) ≥ m + 1, so C((B
(m)
t )m+1Q) ≥ m + 1. Hence the string (B

(m)
t )m+1Q has a nonempty

suffix Xm+1. By the first part of Lemma 4, the string (B
(m)
t )m+1Q also has suffix mT

(m)
t Q.

Since C(T
(m)
t Q) = C(P ) ≤ m, the string mT

(m)
t Q must be a suffix of Xm+1. Therefore

m ∈ Xm+1, so m ∈ X. Now it follows that mT
(m)
t Q is a suffix of X. Therefore T

(m)
t Q occurs

as a substring of (B
(m)
t )m+1. But T

(m)
t Q contains only elements that are at least m+1, while

B
(m)
t (1) = m. So T

(m)
t Q is a substring of B

(m)
t . It follows by the second part of Lemma 4

that the substring T
(m)
t must occur at the end of B

(m)
t , so Q is empty. We conclude that P

is of the form T
(m)
t with t ≥ 2.
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Lemma 6. For all m ≥ 1 and t ≥ 2, the elements m in B
(m)
t occur in groups of m + 1

consecutive times m. These groups are always followed by an element m+ 1.

Proof. We use induction on t. For t = 2 we have B
(m)
2 = mm+1(m+ 1). This is exactly one

group of m + 1 consecutive m’s, followed by exactly one element m + 1. Now suppose that
the statement holds for t = k. We know that

B
(m)
k+1 = (B

(m)
k )m+1S

(m)
k .

Each copy of B
(m)
k contains m’s in groups of m + 1 times m followed by an element m + 1

by the induction hypothesis. The string S
(m)
k contains no elements m. This finishes the

induction step.

3 The function t(m,n)

We now turn our attention to the first occurrence of n in the sequence A(m), where n ≥ m.
We show in Lemma 7 that the first n in A(m) occurs at the end of a block B

(m)
t . The question

is then: what is the value of t? We denote this value by t(m,n).

Lemma 7. For all integers m,n with n ≥ m ≥ 1, the first occurrence of n in A(m) is as the
last element of a prefix block B

(m)
t for some t ≥ 1.

Proof. For n = m, the number m occurs at the beginning of A(m). This is also at the end
of B

(m)
1 = m. Now suppose that n > m. Let t be minimal such that n is in B

(m)
t . Since

n is not an element of B
(m)
t−1 , the first n in A(m) must be in the glue string S

(m)
t−1 . Let B be

the prefix of A(m), ending at the first n. Now (B
(m)
t−1)

m+1 is a proper prefix of B, and B is a

prefix of B
(m)
t . Since n appears at the end of B and nowhere else in B, we have C(B) = 1.

Now by definition of A(m), the prefix B of A(m) is followed by m. Since m 6∈ S
(m)
t−1 , it follows

that B = B
(m)
t . We conclude that the first n in A(m) is the last element of B

(m)
t .

Hence we can make the following definition:

Definition 8. For all integers m,n with n ≥ m ≥ 1, define t(m,n) as the integer such that

the first n in A(m) occurs at the end of prefix block B
(m)
t(m,n).

Van de Bult et al. [3, p. 22] deduced that the first occurrence of 5 in A(2) is at the end of

the block B
(2)
80 . Therefore it occurs at position β(2)(80). In our new terminology we obtain

t(2, 5) = 80. In general, the first occurrence of n in A(m) is at position β(m)(t(m,n)). The
values of t(1, n) are given in sequence A357064 of the OEIS [2].

The function t(m,n) is not only related to the blocks B
(m)
t , but also to the strings T

(m)
t :

Lemma 9. For n ≥ m+ 1 we have the relation T
(m)
t(m,n) = B

(m+1)
t(m+1,n).
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Proof. By Lemma 4, the string T
(m)
t(m,n) is a suffix of B

(m)
t(m,n). It follows by definition of t(m,n)

that the last element of T
(m)
t(m,n) is n, and that T

(m)
t(m,n) has no other elements n. Also, the string

T
(m)
t(m,n) is a prefix of A(m+1). Therefore the first occurrence of n in A(m+1) is both at the end

of T
(m)
t(m,n) and at the end of B

(m+1)
t(m+1,n); hence the two strings are equal.

Let us consider a few examples.

Example 10. For all m ≥ 1, we have the following:

• t(m,m) = 1 since B
(m)
1 = m.

• t(m,m+ 1) = 2 since B
(m)
2 = mm+1(m+ 1).

• For n = m+2, we need the values σ(m)(x) = 1 for x = 1, 2, . . . ,m and σ(m)(m+1) = 3
by van de Bult et al. [3, Equation 35]. Summing these values, we obtain τ (m)(m+2) =

m + 3. Now T
(m)
m+2 consists of the first m + 3 elements of A(m+1). It follows that

T
(m)
m+2 = (m + 1)m+2(m + 2) = B

(m+1)
2 = B

(m+1)
t(m+1,m+2). It follows from Lemma 9 that

t(m,m+ 2) = m+ 2.

Lemma 9 tells us that T
(m)
t(m,n) = B

(m+1)
t(m+1,n). Therefore their lengths are equal:

τ (m)(t(m,n)) = β(m+1)(t(m+ 1, n)). (2)

In Section 4 we prove inequalities between values of the functions τ (m) and β(m+1). From
this we deduce bounds for t(m,n) in terms of t(m + 1, n). We can then combine this for
various values of m, to obtain bounds for t(1, n) in terms of t(n − 2, n), which equals n by
Example 10. Since the first occurrence of n in Gijswijt’s sequence is at position β(1)(t(1, n)),
it remains to bound β(1)(t) in terms of t. We do that in Section 5.

4 Linking β(m+1) and τ (m)

In this section we bound the value of β(m+1)(u) by τ (m)(t) for certain values of t and u.
We do this with a series of lemmas that leads up to the inequalities in Lemma 17. Using
these inequalities we bound t(m,n) in terms of t(m + 1, n). The result can be found in
Proposition 19.

Our strategy is as follows. Fix u,m ≥ 1. We know that every string T
(m)
t is a prefix

of A(m+1). The string B
(m+1)
u is also a prefix of A(m+1). We prove lower and upper bounds

for the number of proper prefixes of B
(m+1)
u that are of the form T

(m)
t . If there are at least

L such proper prefixes, then it follows that β(m+1)(u) ≥ τ (m)(L). If there are at most U
such proper prefixes, then we get β(m+1)(u) ≤ τ (m)(U +1). In Lemma 17 we prove this with
L = m · (m+ 1)u−2 and U = (m+ 1)u−1.

8



In Lemmas 11–13 we analyze the curling numbers of proper prefixes of B
(m+1)
u , as this

determines whether a given prefix can be written as T
(m)
t via Lemma 5. We combine these

results in Lemma 16. This lemma proves that certain proper prefixes of B
(m+1)
u are of the

form T
(m)
t , and gives restrictions on which proper prefixes can be of the form T

(m)
t . This

gives us lower and upper bounds for the amount of proper prefixes of the form T
(m)
t , which

is exactly what we need.
Recall from Lemma 5 that the strings T

(m)
t are exactly the prefixes of A(m+1), and hence

of some B
(m+1)
u , that have curling number at most m. Before investigating these strings

further, we study the prefixes of B
(m+1)
u with curling number at most m+ 1. The following

lemma gives a characterization of those strings.

Lemma 11. For m,u ≥ 1, the proper prefixes P of B
(m+1)
u with C(P ) ≤ m + 1 are exactly

the strings of the form
(B

(m+1)
u−1 )au−1 · · · (B

(m+1)
2 )a2(B

(m+1)
1 )a1 (3)

with a1, a2, . . . , au−1 ∈ {0, 1, . . . ,m+ 1}.

Proof. By definition of A(m+1), the prefixes with curling number at most m + 1 are the
prefixes that are followed by an element m + 1. Every string B

(m+1)
u is a prefix of A(m+1),

so the same is true for all proper prefixes of B
(m+1)
u . We prove by induction on u that these

strings have the desired form. For u = 1, the string B
(m+1)
1 = (m + 1) has only one proper

prefix ǫ, which is followed by m + 1. This corresponds to Expression (3) since there are no
numbers between 1 and u− 1 for u = 1.

Now suppose that the statement holds for u = k. Then we use that

B
(m+1)
k+1 = (B

(m+1)
k )m+2S

(m+1)
k .

The string B
(m+1)
k starts with m+1 while S

(m+1)
k contains no elements m+1. Therefore the

proper prefixes P of B
(m+1)
k+1 that are followed by m+ 1 are of the form

P = (B
(m+1)
k )aP ′,

where 0 ≤ a ≤ m + 1 and P ′ is a proper prefix of B
(m+1)
k that is followed by an element

m+ 1. By the induction hypothesis, the string P ′ is of the form

(B
(m+1)
k−1 )ak−1 · · · (B

(m+1)
2 )a2(B

(m+1)
1 )a1 .

Concatenating this to (B
(m+1)
k )a completes the induction step.

To find whether a string (B
(m+1)
u−1 )au−1 · · · (B

(m+1)
1 )a1 can be written as T

(m)
t for some t,

we need to know whether its curling number is at most m, or equal to m + 1. For a large
class of strings, we can easily prove that this curling number is exactly m+ 1:

Lemma 12. Let m,u ≥ 1, and consider a prefix P := (B
(m+1)
u−1 )au−1 · · · (B

(m+1)
1 )a1 of B

(m+1)
u ,

for a1, . . . , au−1 ∈ {0, 1, . . . ,m+1}. Suppose that ai = m+1 for some i. Then C(P ) = m+1.
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Proof. By Lemma 11, the string Q := (B
(m+1)
i−1 )ai−1 · · · (B

(m+1)
1 )a1 is a prefix of B

(m+1)
i . There-

fore we can write B
(m+1)
i = QR. The string (B

(m+1)
i )aiQ is a suffix of P , and (B

(m+1)
i )aiQ is

equal to (QR)aiQ = Q(RQ)ai = Q(RQ)m+1. Therefore, we have C(P ) ≥ m+ 1.
By Lemma 11, this curling number is also at most m+ 1. Therefore the curling number

is exactly m+ 1.

It follows from Lemmas 5 and 12 that all strings (B
(m+1)
u−1 )au−1 · · · (B

(m+1)
1 )a1 where at

least one of a1, . . . , au−1 is equal to m + 1, are not of the form T
(m)
t . The remaining strings

that we have to consider are the strings (B
(m+1)
u−1 )au−1 · · · (B

(m+1)
1 )a1 with ai ∈ {0, 1, . . . ,m}

for all i. In the following lemma, we establish that under the condition a1 6= 0, the curling
number of such strings is at most m.

Lemma 13. For m ≥ 1 and u ≥ 2, let

P = (B
(m+1)
u−1 )au−1 · · · (B

(m+1)
1 )a1

be a prefix of B
(m+1)
u with a1, . . . , au−1 ∈ {0, 1, . . . ,m} and a1 6= 0. Then we have C(P ) ≤ m.

Proof. We prove this by contradiction, so suppose that P has a nonempty suffix of the form
Xm+1. We can then write

P = (B
(m+1)
u−1 )au−1 · · · (B

(m+1)
1 )a1 = QXm+1.

Since a1 6= 0, the last element of P is m+ 1. Therefore m+ 1 is also the last element of X.
We now prove a claim about the first elements of X.

Claim 14. The string X has prefix (m+ 1)k(m+ 2) for some k > 0.

Proof. Since a1 ≤ m, the curling number of (B
(m+1)
1 )a1 = (m + 1)a1 is smaller than m + 1.

We see that Xm+1 has to be longer than (m+1)a1 (that is, it has more elements). It follows

from Lemma 4 that all strings B
(m+1)
i with i ≥ 2 end with an element larger than m + 1.

Hence Xm+1 has a suffix l(m+1)a1 for some l > m+1. This can only happen when l(m+1)a1

is a suffix of X itself. Now P looks like this:

P = (B
(m+1)
u−1 )au−1 · · · (B

(m+1)
1 )a1 = Q . . . l(m+ 1)a1

︸ ︷︷ ︸

first X

. . . l(m+ 1)a1
︸ ︷︷ ︸

second X

· · · . . . l(m+ 1)a1
︸ ︷︷ ︸

last X

By Lemma 6, applied to B
(m+1)
u , the elements m+1 in P occur in groups of m+2 times

m+1, followed by an element m+2. Since we cut off the string B
(m+1)
u at the end of P , there

is a possible exception to this at the end of P . When we now consider that the first copy
of X in Xm+1 has suffix l(m+ 1)a1 , we deduce that the second copy of X (and hence all of
them) has prefix (m+1)m+2−a1(m+2). From a1 ≤ m it follows that k := m+2−a1 > 0.

Next we prove that the first element of X is larger than m + 1, which contradicts the
previous claim.
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Claim 15. The first element of X is larger than m+ 1.

Proof. Define i as the largest integer such that Xm+1 contains T
(m+1)
i as a substring. We

saw in Claim 14 that Xm+1 contains an element m + 2 = T
(m+1)
2 . Therefore i ≥ 2. Since

X ends with m + 1 and T
(m+1)
i contains no element m + 1, the string T

(m+1)
i has to be a

substring of X. Therefore Xm+1 contains at least m+ 1 disjoint copies of T
(m+1)
i .

By Lemma 11, the string Pi−1 := (B
(m+1)
i−1 )ai−1 · · · (B

(m+1)
1 )a1 is a proper prefix of B

(m+1)
i .

It follows from Lemma 4 that Pi−1 does not have T
(m+1)
i as a substring. Again using Lemma 4,

the string Pi := (B
(m+1)
i )ai · · · (B

(m+1)
1 )a1 contains exactly ai copies of T

(m+1)
i . Now since

ai ≤ m, the string Xm+1 contains more copies of T
(m+1)
i than Pi. Both Xm+1 and Pi are

suffixes of P . Therefore Pi is a proper suffix of Xm+1.
Let j be the smallest integer larger than i such that aj 6= 0. Then B

(m+1)
j Pi is a suffix of

P . The string B
(m+1)
j has suffix T

(m+1)
j by Lemma 4, but Xm+1 cannot contain T

(m+1)
j as a

substring by definition of i. So Xm+1 is a proper suffix of T
(m+1)
j Pi. Remembering that Pi is

a proper suffix of Xm+1, it follows that the first element of Xm+1 lies inside T
(m+1)
j . Hence

this element is larger than m+ 1.

Since the two claims contradict each other, the lemma must be true.

Combining the above lemmas, we conclude the following about the strings T
(m)
t :

Lemma 16. Let m ≥ 1 and u ≥ 2.

(a) For each proper prefix T
(m)
t of B

(m+1)
u , there are a1, . . . , au−1 ∈ {0, 1, . . . ,m} such that

T
(m)
t = (B

(m+1)
u−1 )au−1 · · · (B

(m+1)
1 )a1.

(b) For all integers a1, . . . , au−1 ∈ {0, 1, . . . ,m} with a1 6= 0, there is a proper prefix T
(m)
t

of B
(m+1)
u such that (B

(m+1)
u−1 )au−1 · · · (B

(m+1)
1 )a1 = T

(m)
t .

Proof.

(a) By Lemma 5, the string T
(m)
t has curling number at most m. Now it follows from

Lemma 11 that T
(m)
t can be written as (B

(m+1)
u−1 )au−1 · · · (B

(m+1)
1 )a1 with a1, . . . , au−1 ∈

{0, . . . ,m+ 1}. By Lemma 12, all these exponents are at most m.

(b) Consider a string (B
(m+1)
u−1 )au−1 · · · (B

(m+1)
1 )a1 with m ≥ 1, a1 6= 0, and a1, . . . , au−1 ∈

{0, . . . ,m}. By Lemma 11, this string is a proper prefix of B
(m+1)
u , and hence of A(m+1).

By Lemma 13, the string has curling number at most m. Now it follows from Lemma 5
that (B

(m+1)
u−1 )au−1 · · · (B

(m+1)
1 )a1 is equal to T

(m)
t for some t.

We can now deduce inequalities between values of β(m+1) and τ (m). All further estimates
are based on the following lemma.

11



Lemma 17. For all m ≥ 1 and u ≥ 2 we have

τ (m)(m · (m+ 1)u−2) ≤ β(m+1)(u) ≤ τ (m)((m+ 1)u−1 + 1).

When u = m+ 3, the second inequality is strict.

Proof. By Lemma 16 (b), the string B
(m+1)
u has at least m · (m+1)u−2 proper prefixes of the

form T
(m)
t : there is one prefix for every combination of exponents a1, . . . , au−1 ∈ {0, . . . ,m}

with a1 6= 0. Therefore T
(m)

m·(m+1)u−2 is a prefix of B
(m+1)
u . This proves the first inequality.

Lemma 16 (a) tells us that the string B
(m+1)
u has at most (m + 1)u−1 proper prefixes of

the form T
(m)
t . Therefore the string T

(m)

(m+1)u−1+1 cannot be a proper prefix of B
(m+1)
u . Now

B
(m+1)
u must be a prefix of T

(m)

(m+1)u−1+1. This proves the second inequality.

In case that u = m + 3, consider the (m + 1)u−1 proper prefixes from the previous

paragraph. One of them is B
(m+1)
m+2 . This string has suffix T

(m+1)
m+2 . From Lemma 5 it follows

that T
(m+1)
m+2 = (m + 2)m+1. Now T

(m+1)
m+2 has curling number m + 1, so B

(m+1)
m+2 has curling

number at least m + 1. It follows by Lemma 5 that B
(m+1)
m+2 cannot be of the form T

(m)
t .

There are then only (m+1)u−1−1 proper prefixes left, so the second inequality is strict.

From these estimates we deduce two propositions that we use in further sections:

Proposition 18. For all m ≥ 1 and t ≥ 2 we have

β(m+1)(⌈logm+1(t)⌉) ≤ τ (m)(t) ≤ β(m+1)(⌈logm+1(t)⌉+ 2).

Proof. Since τ (m) is an increasing function, we have

τ (m)(t) ≥ τ (m)((m+ 1)⌈logm+1(t)⌉−1 + 1).

Suppose that ⌈logm+1(t)⌉ = 1. Then

τ (m)((m+ 1)⌈logm+1(t)⌉−1 + 1) = τ (m)(2) = 1 = β(m+1)(1) = β(m+1)(⌈logm+1(t)⌉).

Now suppose that ⌈logm+1(t)⌉ ≥ 2. Then we apply Lemma 17 with u = ⌈logm+1(t)⌉. It
follows that τ (m)((m + 1)⌈logm+1(t)⌉−1 + 1) ≥ β(m+1)(⌈logm+1(t)⌉). In both cases we obtain
that τ (m)(t) ≥ β(m+1)(⌈logm+1(t)⌉).

On the other hand we have

τ (m)(t) ≤ τ (m)(m · (m+ 1)⌈logm+1(t)⌉).

By Lemma 17 this is at most β(m+1)(⌈logm+1(t)⌉+ 2).

Proposition 19. For all m ≥ 1 and n ≥ m+ 3, we have

m · (m+ 1)t(m+1,n)−2 ≤ t(m,n) ≤ (m+ 1)t(m+1,n)−1 + 1.

The second inequality is strict when n = m+ 3.
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Proof. We apply Lemma 17 to u = t(m+ 1, n) with n ≥ m+ 3 and m ≥ 1 to see that

τ (m)(m · (m+ 1)t(m+1,n)−2) ≤ β(m+1)(t(m+ 1, n)) ≤ τ (m)((m+ 1)t(m+1,n)−1 + 1).

When n = m+ 3, we have u = t(m+ 1,m+ 3) = m+ 3 by Example 10, so then the second
inequality is strict. Now using Equation (2), we get

τ (m)(m · (m+ 1)t(m+1,n)−2) ≤ τ (m)(t(m,n)) ≤ τ (m)((m+ 1)t(m+1,n)−1 + 1).

Since τ (m) is a strictly increasing function, the same inequalities hold for its arguments.

In this last proposition we connect t(m,n) and t(m + 1, n). The exponential nature of
this connection explains the tower of exponents in Theorem 1.

5 Bounds for β(m)(u)

In this section we give an upper bound for β(m)(u), which is the last building block for our
main theorem. Van de Bult et al. [3, p. 19] observed from calculations that there are real
constants εm for m ≥ 1 such that for each m, we have β(m)(u) ≈ εm · (m+ 1)u−1 as u → ∞.
We prove that this is indeed the case.

Intuitively, this can be explained as follows. Since B
(m)
u+1 = (B

(m)
u )m+1S

(m)
u , we have

β(m)(u+ 1) = (m+ 1) · β(m)(u) + σ(m)(u).

If σ(m)(u) is relatively small, then it follows that β(m)(u + 1) is approximately equal to
(m+ 1) · β(m)(u). Iterating this we obtain that β(m)(u) ≈ (m+ 1)u−1, and the contributions
from the σ(m)(u) give us the extra factor εm.

As a first step we can use the above equality to deduce that (m+1)·β(m)(u) ≤ β(m)(u+1),

so β(m)(u) ≤ β(m)(u+1)
m+1

. With induction we obtain the following:

β(m)(t) ≤
β(m)(u)

(m+ 1)u−t
for all t, u with 1 ≤ t ≤ u. (4)

Then we see that

β(m)(t)

(m+ 1)t−1
≤

β(m)(u)

(m+ 1)u−1
for all t, u with 1 ≤ t ≤ u. (5)

Hence, if we can prove that β(m)(u)
(m+1)u−1 is bounded as u → ∞, then it follows that β(m)(u)

(m+1)u−1

converges for u → ∞. The limit value is then equal to the constant εm.
We use the inequalities from the previous section to obtain an upper bound for σ(m): for

all m, t ≥ 1 we have

σ(m)(t) ≤ τ (m)(t+ 1)

≤ β(m+1)(⌈logm+1(t+ 1)⌉+ 2) (by Proposition 18),
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hence
σ(m)(t) ≤ β(m+1)(⌈logm+1(t+ 1)⌉+ 2). (6)

We are now ready to prove the upper bound for β(m)(u).

Lemma 20. Consider the numbers M7,M8, · · · ∈ R defined by M7 := 4 and Mk+1 :=
Mk · (1 + 9 · (k + 1)1.59/2k) for k ≥ 7. Then

β(m)(u)

(m+ 1)u−1
< Mu for all m ≥ 1, u ≥ 7.

Proof. We prove by induction on u that the lemma holds for all u ≥ 7. First consider
u = 7. From the values of β(m)(t) that van de Bult et al. calculated [3, Table 6], we see that
β(m)(7) < 4 · (m + 1)6 for m = 1, 2, 3, 4, 5. For m ≥ 6, we know from van de Bult et al. [3,

Lemma 4.1, p. 19] that β(m)(7) = (m+1)7−1
m

< 4 · (m+ 1)6. So the lemma holds for u = 7.
Now suppose that for a fixed k ≥ 7, we have β(m)(k) < Mk · (m + 1)k−1 for all m ≥ 1.

Then we have

β(m)(k + 1)

(m+ 1)k
=

(m+ 1) · β(m)(k)

(m+ 1)k
+

σ(m)(k)

(m+ 1)k

≤
β(m)(k)

(m+ 1)k−1
+

β(m+1)(⌈logm+1(k + 1)⌉+ 2)

(m+ 1)k
(by Inequality (6))

< Mk +
β(m+1)(⌈logm+1(k + 1)⌉+ 2)

(m+ 1)k
(induction hypothesis)

≤ Mk +
β(m+1)(k)

(m+ 2)k−⌈logm+1(k+1)⌉−2 · (m+ 1)k
(by Inequality (4); see below)

< Mk +
Mk · (m+ 2)⌈logm+1(k+1)⌉+1

(m+ 1)k
(induction hypothesis)

≤ Mk ·

(

1 +
(m+ 1)log2(3)·(⌈logm+1(k+1)⌉+1)

(m+ 1)k

)

(see below)

≤ Mk · (1 + (m+ 1)log2(3)·(⌈log2(k+1)⌉+1)−k)

≤ Mk · (1 + 2log2(3)·(⌈log2(k+1)⌉+1)−k) (see below)

< Mk · (1 + 9 · (k + 1)1.59/2k) (see below)

= Mk+1.

Here we used that the following four inequalities hold for all k ≥ 7 and m ≥ 1:

⌈logm+1(k + 1)⌉+ 2 ≤ k

logm+1(m+ 2) ≤ log2(3)

log2(3) · (⌈log2(k + 1)⌉+ 1)− k ≤ 0

log2(3) < 1.59.

Proving these inequalities is straightforward.
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From the lemma and Inequality (5), we obtain that β(m)(u)
(m+1)u−1 < M for all m,u ≥ 1, where

we define M as 4 ·
∏∞

k=7(1 + 9 · (k + 1)1.59/2k). Our calculations give M = 96.504 . . . , so
M < 100. Hence

β(m)(u)

(m+ 1)u−1
< 100 (7)

for all m,u ≥ 1.
In the end we only need bounds for β(1)(u). A lower bound is easy: Inequality (4) gives

us that β(1)(u) ≥ 2u−1 · β(1)(1) = 2u−1. Hence

2u−1 ≤ β(1)(u) < 100 · 2u−1. (8)

6 The tower of exponents

We combine Proposition 19 and Inequality (8) to prove our main result, which we restate
for convenience:

Theorem 1. For all integers n ≥ 4, the first occurrence of n in Gijswijt’s sequence is at
position

22
34
...

(n−2)α

,

for a real number α ∈ (n− 2, n− 1) that depends on n.

Proof. The first occurrence of n = 4 is at position 220. This equals 22
2.96...

.
Now suppose that n ≥ 5. The location of the first n is at position β(1)(t(1, n)). By

Inequality (8) this is at least 2t(1,n)−1. We can now repeatedly apply the first part of Propo-
sition 19, which states that

t(m,n) ≥ m · (m+ 1)t(m+1,n)−2

for all m ≥ 1 and n ≥ m+ 3. Using this for m = 1 yields 2t(1,n)−1 ≥ 22
t(2,n)−2−1 ≥ 22

t(2,n)−3
.

We also see that
t(m,n)− 3 ≥ (m+ 1)t(m+1,n)−3

for 2 ≤ m ≤ n− 4. Combining this we obtain

22
t(2,n)−3

≥ 22
34
..
.(n−3)t(n−3,n)−3

.

For m = n− 3, we have

t(n− 3, n)− 3 ≥ (n− 3) · (n− 2)t(n−2,n)−2 − 3 = (n− 3) · (n− 2)n−2 − 3 > (n− 2)n−2.
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Here we used Example 10 which implies that t(n− 2, n) = n. We conclude that the position
of the first n is larger than

22
3.
..(n−3)(n−2)n−2

.

On the other hand, Inequality (8) tells us that β(1)(t(1, n)) < 100 · 2t(1,n)−1. We can now
use the second part of Proposition 19, which gives us that

t(m,n)− 1 ≤ (m+ 1)t(m+1,n)−1

for all m ≥ 1 and n ≥ m+ 3. By repeatedly using this we see that 100 · 2t(1,n)−1 is at most

100 · 22
3.
..(n−3)t(n−3,n)−1

.

We apply the proposition again form = n−3, and this time it is a strict inequality. Therefore
we get the upper bound

100 · 22
3.
..(n−3)

[

(n−2)t(n−2,n)−1−1
]

= 100 · 22
3.
..(n−3)[(n−2)n−1−1]

.

Since n ≥ 5 this is smaller than

22
3.
..(n−2)n−1

.

There is some room for improvement:

Remark 21. It is possible to narrow down the interval of α, thereby giving tighter bounds
for the position of the first n. This can be done by constructing a closed-form expression for
t(n − 3, n). Then Proposition 19 needs to be used one less time for obtaining the tower of
exponents.

Remark 22. We could also generalize Theorem 1 to the sequences A(m) for m ≥ 2. That
would look something like this: For n large enough, the first occurrence of n in A(m) is at
position

(m+ 1)(m+1)(m+2)•

•

•

(n−2)α

,

for a real number α ∈ (n − 2, n − 1) that depends on m and n. We already have all the
ingredients for this: both Proposition 19 and Inequality (7) hold for all m.
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