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Abstract

In this paper, we use the Thue-Morse sequence and the paperfolding sequence to

build a Dirichlet series that evaluates to a linear combination of the Riemann zeta

function at odd positive integers and odd powers of π. In doing so, we also provide an

alternative proof of a 2015 result by Allouche and Sondow.

1 Introduction

Let

ζ(s) =
∑

n≥1

1

ns

denote the Riemann zeta function for positive integers s > 1. The values of ζ at even integers
s = 2k are expressible in terms of even powers of π and the Bernoulli numbers Bs thanks to
Euler’s classical formula (see, for instance, Apostol [8, Thm. 12.17, p. 266]),

ζ(2k) =
(−1)k+1B2k(2π)

2k

2(2k)!
.

On the other hand, no such formula is known for odd integers s = 2k + 1, and several
authors, such as Waldschmidt [20], conjectured that for k ≥ 1, the numbers ζ(2k + 1) and
π are algebraically independent. In fact, the arithmetic nature of ζ(2k + 1) is still not fully
understood. Apéry [7] showed that ζ(3) is irrational and later, Rivoal [16] and Ball and Rivoal
[9] proved that ζ(2k + 1) is irrational for infinitely many k ≥ 1. Zudilin [21] then showed

1

mailto:uk.laszlo.toth@gmail.com


that at least one of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational, and then a year later
[22] that for any integer k ≥ 0, at least one number in ζ(2k + 3), ζ(2k + 5), . . . , ζ(16k + 7)
is irrational. More recently, Rivoal and Zudilin [17] showed that there exist at least two
irrational numbers amongst the 33 odd zeta values ζ(5), ζ(7), . . . , ζ(69).

Some representations of the zeta function at odd positive integers involve odd powers of
π. One example, given by Nörlund [14, Eq. 81*, p. 66], is

ζ(2k + 1) =
(−1)k+1(2π)2k+1

2(2k + 1)!

∫ 1

0

B2k+1(x) cot(πx)dx,

where the B2k+1 are the Bernoulli polynomials. A recent proof of this equality was given by
Cvijović and Klinowski [11].

Other formulas exist that are specific to certain odd integers. One such example is
Ramanujan’s [10] classical formula for ζ(3),

ζ(3) =
7

180
π3 − 2

∞
∑

k=1

1

k3(e2πk − 1)
.

Plouffe [15] discovered several similar identities involving odd powers of π, including

ζ(7) =
19

57600
π7 − 2

∞
∑

k=1

1

k7(e2πk − 1)
.

However, no closed form formula exists today involving ζ(2k + 1) and π2k+1 akin to Euler’s
identity for ζ(2k) and π2k.

1.1 Scope of this paper

In this paper we look at this problem by constructing Dirichlet series involving two binary
sequences; first, the classical Thue-Morse sequence (tn)n≥0, beginning with

0, 1, 1, 0, 1, 0, 0, 1, . . . ,

available in the On-Line Encyclopedia of Integer Sequences (OEIS) [18] as sequence A010060
and admitting the recurrence relation

t2n = tn, t2n+1 = 1− tn.

Second, the paperfolding or “dragon-curve” sequence (bn)n≥1, starting with

0, 0, 1, 0, 0, 1, 1, 0, . . .

and defined by the recurrence

b2n = bn, b4n+1 = 0, b4n+3 = 1,

listed in the OEIS as A014707 (with a few variations, such as A014577). A few examples of
our results are shown below.
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Example 1. We have the following equalities.

(i) ζ(3)− π3 =
∑

n≥1

8−1(9tn−1 + 7tn) + 28(2bn − 1)

n3
,

(ii) ζ(5)−
5

3
π5 =

∑

n≥1

32−1(33tn−1 + 31tn) + 496(2bn − 1)

n5
,

(iii) ζ(7)−
122

45
π7 =

∑

n≥1

128−1(129tn−1 + 127tn) + 8128(2bn − 1)

n7
.

In fact, we prove the following theorem.

Theorem 2. For all positive integers k ≥ 1, we have

ζ(2k + 1)−
22k−1|E2k|

(2k)!
π2k+1 =

∑

n≥1

N(n; k)

n2k+1
,

where

N(n; k) = (24k+1 − 22k)(2bn − 1) + (2−(2k+1))((22k+1 + 1)tn−1 + (22k+1 − 1)tn)

and Ek is the kth Euler number defined by

1

cosh t
=

∑

k≥0

Ek

k!
tk.

We note that Dirichlet series whose coefficients are linear combinations of 2-automatic
sequences have been widely studied in the past. A few examples involving the Thue-Morse
sequence are

∑

n≥0

εn
(n+ 1)s

=
∑

k≥1

2−s−k

(

s+ k − 1

k

)

∑

n≥0

εn
(n+ 1)s+k

,

with εn = (−1)tn for all n ≥ 0 and valid for all ℜ(s) > 1, due to Allouche and Cohen [3],
which was subsequently continued by Allouche, Mendès France, and Peyrière [4], and the
identity

∑

n≥0

εn
(n+ 1)s

=
1− 2s

1 + 2s

∑

n≥1

εn
ns
,

which was shown by Allouche and Cohen [3] as well as Alkauskas [2] using different tech-
niques. More recently, the present author [19] proved that

∑

n≥1

(2s + 1)tn−1 + (2s − 1)tn
ns

= 2sζ(s), (1)
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valid for all ℜ(s) > 1. On the other hand, Dirichlet series involving the paperfolding sequence
also exist, and one particularly interesting example is

∑

n≥0

βn
(n+ 1)2k+1

=
π2k+1|E2k|

(22k+2 − 2)(2k)!
, (2)

where
βn = (−1)bn ,

which is due to Allouche and Sondow [6]. The reader may notice a resemblance to our
identity in Theorem 2. In this paper, we provide an alternative proof of identity (2) using a
special case of the Hurwitz zeta function, which we also employ within our other proofs.

1.2 Structure of this paper

Our main result, Theorem 2, is the combination of several smaller results. First, we find
a closed form expression for the Dirichlet series associated with the sequence bn using its
recurrence relation, in terms of odd powers of π. We do so by using the Hurwitz zeta
function and the polygamma function. Then, we employ an existing result on Dirichlet
series associated with the sequence tn. Combined, these results form our proof of Theorem
2.

2 The Hurwitz zeta function with argument 3
4

Recall the Hurwitz zeta function,

ζ(s, a) =
∞
∑

n=0

1

(n+ a)s
,

defined here for rational a > 0 and Re(s) > 1. A central element in our proofs in this
paper is a closed form for ζ(s, 3/4) at positive odd integers s = 2k + 1, and argument 3

4
.

Some special values of ζ(2k + 1, p/q) for integer p and q (including p

q
= 3

4
) were already

studied by Adamchik [1] using generating functions of trigonometric functions and related
results involving the ψ function were given by Kölbig [13] using functional properties of
the polylogarithm. On the other hand, here we provide another, elementary proof of the
following identity that is easily adaptable to other values of p and q for which the polygamma
function admits a closed form in terms of known constants and functions.

Lemma 3. For k ∈ N, we have

ζ(2k + 1, 3/4) = −
22k−1

(2k)!
π2k+1|E2k|+ 22k(22k+1 − 1)ζ(2k + 1),

where Ek is the kth Euler number.
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Proof. Recall the classical relationship between the Hurwitz zeta function and the polygamma
function ψ(k)(z) :

ψ(k)(z) = (−1)k+1k!ζ(k + 1, z).

Thus,

ζ(2k + 1, 3/4) = −
1

(2k)!
ψ(2k)(3/4).

The ψ-term has been known since Kölbig [12]:

ψ(2k)(3/4) = 22k−1
(

π2k+1|E2k| − 2(2k)!(22k+1 − 1)ζ(2k + 1)
)

,

where Ek denotes the kth Euler number and ζ(k) is the Riemann zeta function. Thus, we
have

ζ(2k + 1, 3/4) = −
22k−1

(2k)!

(

π2k+1|E2k| − 2(2k)!(22k+1 − 1)ζ(2k + 1)
)

,

which after simplification yields the desired identity.

A few examples are shown below.

Example 4. We have

(i) ζ(3, 3/4) = 28ζ(3)− π3,

(ii) ζ(5, 3/4) = 496ζ(5)−
5

3
π5.

3 Dirichlet series associated with bn

Now let

δ(s) =
∑

n≥1

bn
ns
,

and note that δ(s) converges for ℜ(s) > 1 since the sequence (bn)n≥0 takes only finitely many
values. In fact, it is connected to the Hurwitz zeta function with argument 3

4
as follows:

(1− 2−s)δ(s) = 4−sζ(s, 3/4), (3)

which is valid for ℜ(s) > 1. We note that Eq. (3) above can easily be proved by splitting
the series to even (2n) and odd (4n + 1, 4n + 3) indexes (see, e.g., Allouche and Shallit [5,
Ex. 27, p. 205]). Now simply combining Lemma 3 with Eq. (3) gives us the following result.

Lemma 5. For all integers k ≥ 1, we have

(24k+1 − 22k)
∑

n≥1

2bn − 1

n2k+1
= −

22k−1

(2k)!
π2k+1|E2k|,

where En denotes the nth Euler number.
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Proof. Let s = 2k+1. Taking Eq. (3) and expanding the Hurwitz zeta function term on the
right-hand side using Lemma 3 gives

42k+1(1− 2−(2k+1))δ(2k + 1) = −
22k−1

(2k)!
π2k+1|E2k|+ 22k(22k+1 − 1)ζ(2k + 1).

Thus,

42k+1(1− 2−(2k+1))δ(2k + 1)− 22k(22k+1 − 1)ζ(2k + 1) = −
22k−1

(2k)!
π2k+1|E2k|.

Now letting
R(n; k) = 42k+1(1− 2−(2k+1))bn − 22k(22k+1 − 1)

and expanding the left-hand side gives us

∑

n≥1

R(n; k)

n2k+1
= −

22k−1

(2k)!
π2k+1|E2k|.

Finally, we can rearrange the terms is R(n; k) in order to form

R(n; k) = (24k+1 − 22k)(2bn − 1),

which concludes the proof.

Note that the coefficients (24k+1 − 22k) are available in the OEIS in sequence A079598.
The sequence begins

8, 496, 8128, 130816, 2096128, 33550336, . . . .

A few examples of Lemma 5 with different values of k are shown below.

Example 6. The following equalities hold.

(i) 28
∑

n≥1

2bn − 1

n3
= −π3,

(ii) 496
∑

n≥1

2bn − 1

n5
= −

5

3
π5,

(iii) 8128
∑

n≥1

2bn − 1

n7
= −

122

45
π7.

We conclude this section by providing an alternative proof for Allouche and Sondow’s
result, as mentioned in the introduction (Eq. (2)).
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Corollary 7. Let βn = (−1)bn for all n ≥ 0. Then for all k ≥ 1, we have

∑

n≥0

βn
(n+ 1)2k+1

=
π2k+1|E2k|

(22k+2 − 2)(2k)!
,

where En denotes the nth Euler number.

Proof. Notice that for any sequence (sn)n≥0 with values in {0, 1}, we have (−1)sn = 1− 2sn.
Applying this to the sequence bn and using Lemma 5, we have

(24k+1 − 22k)
∑

n≥1

βn
n2k+1

=
22k−1

(2k)!
π2k+1|E2k|,

and dividing both sides by (24k+1 − 22k) yields the desired identity.

4 Proof of Theorem 2

We now have all the tools necessary to prove the theorem shown in the introduction.

Proof of Theorem 2. Recall the identity (1) that we mentioned in the introduction, that for
all ℜ(s) > 1, we have

∑

n≥1

(2s + 1)tn−1 + (2s − 1)tn
ns

= 2sζ(s),

where tn denotes the Thue-Morse sequence. Taking this identity for odd positive integers
s = 2k + 1 and isolating the zeta term gives

2−(2k+1)
∑

n≥1

(22k+1 + 1)tn−1 + (22k+1 − 1)tn
n2k+1

= ζ(2k + 1).

Adding this to our equation in Lemma 5 gives

∑

n≥1

N(n; k)

n2k+1
= ζ(2k + 1)−

22k−1

(2k)!
π2k+1|E2k|,

where

N(n; k) = (24k+1 − 22k)(2bn − 1) + (2−(2k+1))((22k+1 + 1)tn−1 + (22k+1 − 1)tn).
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5 Conclusion and further work

In this short paper we have constructed Dirichlet series whose coefficients are linear combi-
nations of automatic sequences, which allowed us to find identities related to the Riemann
zeta function at odd positive integers. Our results are easily adapted to other sequences that
satisfy different recurrence relations, making it possible to find such closed forms for known
constants and functions. For instance, a recurrence relation resulting in a closed form in-
volving the Hurwitz zeta function at even positive integers (as opposed to the results in this
paper), would allow evaluating Catalan’s constant C in a similar way, using the well-known
identity

ζ(2, 3/4) = π2 − 8C,

which is given, for instance, by Kölbig [12], in terms of the polygamma function.
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[11] D. Cvijović and J. Klinowski, Integral representations of the Riemann zeta function for
odd-integer arguments, J. Comput. Appl. Math. 142 (2002), 435–439.

[12] K. S. Kölbig, The polygamma function ψ(k)(x) for x = 1
4
and x = 3

4
, J. Comput. Appl.

Math. 75 (1996), 43–46.

[13] K. S. Kölbig, The polygamma function and the derivatives of the cotangent func-
tion for rational arguments, CERN-IT-Reports, CERN-CN-96-005 (1996). Available
at https://cds.cern.ch/record/298844/files/cn-96-5.pdf?version=1.

[14] N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, 1924.

[15] S. Plouffe, Identities inspired from the Ramanujan Notebooks, first series (1998), arxiv
preprint arXiv: 1101.4826 [math.CA], 2011. Available at https://arxiv.org/abs/

1101.4826.
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