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Abstract

We determine, for every n ≥ 1, the generalized eigenvalues of an n×n MAX matrix

to the corresponding MIN matrix. We also show that a similar result holds for the

generalized eigenvalues of an n×n LCMmatrix to the corresponding GCD matrix when

n ≤ 4, but breaks down for n > 4. In addition, we prove Cauchy’s interlacing theorem

for generalized eigenvalues, and we conjecture an unexpected connection between the

OEIS sequence A004754 and the appearance of −1 as a generalized eigenvalue in the

LCM–GCD setting.

1 Introduction

Let A and B be complex Hermitian n× n matrices, and suppose that B is positive definite;
that is, the conjugate transpose A∗ and A are equal, and x∗Bx > 0 whenever 0 6= x ∈ C

n.
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The generalized eigenvalue equation of A to B is

Ax = λBx, 0 6= x ∈ C
n. (1)

Then λ is called a generalized eigenvalue (“g-eigenvalue” for short) of A to B, and x is
a corresponding generalized eigenvector (“g-eigenvector”). For more information, see, for
example, Ghojogh, Karray, and Crowley [5]. They consider real symmetric matrices, yet all
results extend naturally to complex Hermitian matrices.

It is actually enough that B is invertible in (1), and A can be arbitrary. However, the
above assumptions are usually stated. Then all g-eigenvalues are real, and g-eigenvectors
corresponding to distinct g-eigenvalues are orthogonal with respect to the inner product
〈x,y〉 = y∗Bx.

The standard eigenvalues (“s-eigenvalues” for short) are widely studied. The g-eigenvalue
equation (1) reduces to the s-eigenvalue equation

B−1Ax = λx.

However, this “quick and dirty solution” [5] does not have significant use. So, g-eigenvalues
must be considered in a different way. This area has not been studied much in the literature.

Let
S = {s1, . . . , sn}, s1 < · · · < sn,

be a set of positive real numbers. The n × n MAX matrix MS and MIN matrix NS on S
are defined by

MS = (mS
ij), mS

ij = max (si, sj), NS = (nS
ij), nS

ij = min (si, sj).

Then NS is positive definite [10, Theorem 8.1]. Also, let

T = {t1, . . . , tn}, t1 < · · · < tn,

be a set of positive integers. The n × n LCM matrix LT and GCD matrix GT on T are
defined by

LT = (lTij), lTij = lcm(ti, tj), GT = (gTij), gTij = gcd (ti, tj).

Also, GT is positive definite [3, Theorem 2].
We study g-eigenvalues of MS to NS in Section 2, and those of LT to GT in Sections 3

and 4. Finally, we complete our paper with discussion in Section 5.
All g-eigenvalues of A to A are trivially equal to one. We can therefore expect that,

also in some nontrivial cases, the g-eigenvalues of A to B may be more accessible than the
s-eigenvalues of A and B. We will see this in the case A = MS, B = NS, and also in the
case A = LT , B = GT , where T = {1, . . . , n}, n ≤ 4. Recently, these matrices have been
studied extensively (e.g., [1, 4, 6, 9, 10, 13]). These works discuss not only new results in
this field but also applications to various other areas of mathematics—and, for instance, to
computing [8], statistics [10], and signal processing [12].
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2 MAX–MIN setting

We want to evaluate the g-eigenvalues of MS to NS, i.e., the solutions λ to the equation
det(MS − λNS) = 0.

We begin with n = 2. Let S = {a, b}, 0 < a < b. Then

det (MS − λNS) =

∣
∣
∣
∣

a− λa b− λa
b− λa b− λb

∣
∣
∣
∣
= a(b− a)λ2 − b(b− a) = 0

if and only if

λ = ±
√

b

a
.

Our aim is to prove Theorem 1 below. However, because the general proof is not easily
readable, we show the details only in the case n = 4. A careful reader will notice that we
can proceed similarly for every integer n > 2.

Theorem 1. The g-eigenvalues of MS to NS, n > 2, are

λ1 =

√
sn
s1
, λ2 = · · · = λn−1 = −1, λn = −

√
sn
s1
. (2)

Proof. Let S = {a, b, c, d}, 0 < a < b < c < d. Then

MS =







a b c d
b b c d
c c c d
d d d d







, NS =







a a a a
a b b b
a b c c
a b c d







.

The matrix

MS +NS =







2a a+ b a+ c a+ d
a+ b 2b b+ c b+ d
a+ c b+ c 2c c+ d
a+ d b+ d c+ d 2d







has rank 2 and nullity 2. Consequently, −1 is a g-eigenvalue of MS to NS with multiplicity 2.
We show that the remaining g-eigenvalues are

λ = ±
√

d

a
.

Regardless of the sign of λ, we have (note that d = λ2a)

det (MS + λNS) =

∣
∣
∣
∣
∣
∣
∣
∣

a+ λa b+ λa c+ λa d+ λa
b+ λa b+ λb c+ λb d+ λb
c+ λa c+ λb c+ λc d+ λc
d+ λa d+ λb d+ λc d+ λd

∣
∣
∣
∣
∣
∣
∣
∣
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=

∣
∣
∣
∣
∣
∣
∣
∣

a+ λa b+ λa c+ λa d+ λa
b− a λ(b− a) λ(b− a) λ(b− a)
c− b c− b λ(c− b) λ(c− b)
d− c d− c d− c λ(d− c)

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

λa b c λ2a
b− a λ(b− a) λ(b− a) λ(b− a)
c− b c− b λ(c− b) λ(c− b)
d− c d− c d− c λ(d− c)

∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣

a λa λa λa
b− a λ(b− a) λ(b− a) λ(b− a)
c− b c− b λ(c− b) λ(c− b)
d− c d− c d− c λ(d− c)

∣
∣
∣
∣
∣
∣
∣
∣

=: D1 +D2.

Since D1 = D2 = 0, the claim follows.

Remark 2. Theorem 1 holds also for n = 2. Then the chain λ2 = · · · = λn−1 is “empty”.

Remark 3. If the ordering of s1, . . . , sn is arbitrary, then (2) reads

λ1 = max
i,j

√
si
sj
, λ2 = · · · = λn−1 = −1, λn = −max

i,j

√
si
sj
. (3)

See also [10, Remark 2.1].

Remark 4. Theorem 1 applies also to the g-eigenvalues of MS to NS′ , where

S ′ = {s′1, . . . , s′n}, s′1 − s1 = · · · = s′n − sn.

3 LCM–GCD setting on T = {1, 2, . . . , n}
3.1 The case n ≤ 4

Let T = {1, 2, . . . , n}, let λn1 ≥ · · · ≥ λnn be the g-eigenvalues of LT to GT , and let
pn(λ) = det (LT − λGT ) be the g-characteristic polynomial. Then

p1(λ) = 1− λ, λ11 = 1,

p2(λ) =

∣
∣
∣
∣

1− λ 2− λ
2− λ 2− 2λ

∣
∣
∣
∣
= λ2 − 2, λ21 =

√
2, λ22 = −

√
2,

p3(λ) =

∣
∣
∣
∣
∣
∣

1− λ 2− λ 3− λ
2− λ 2− 2λ 6− λ
3− λ 6− λ 3− 3λ

∣
∣
∣
∣
∣
∣

= −2(λ+ 1)(λ2 − 6), λ31 =
√
6, λ32 = −1, λ33 = −

√
6,

p4(λ) =

∣
∣
∣
∣
∣
∣
∣
∣

1− λ 2− λ 3− λ 4− λ
2− λ 2− 2λ 6− λ 4− 2λ
3− λ 6− λ 3− 3λ 12− λ
4− λ 4− 2λ 12− λ 4− 4λ

∣
∣
∣
∣
∣
∣
∣
∣

= 4(λ+ 1)2(λ2 − 12),

λ41 =
√
12, λ42 = λ43 = −1, λ44 = −

√
12.
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3.2 The case n > 4

The g-eigenvalues in Section 3.1 suggest that there may also be values of n > 4 such that

λn1 =
√
m, λn2 = · · · = λn,n−1 = −1, λnn = −

√
m (4)

for some integer m. We examine this hypothesis and begin with the case n = 5. We have

p5(λ) = −16λ5 − 48λ4 + 528λ3 + 2480λ2 + 2880λ+ 960

= −16(λ+ 1)(λ4 + 2λ3 − 35λ2 − 120λ− 60)

=: −16(λ+ 1)q(λ).

Because q(−1) = 24 6= 0, the multiplicity of λ = −1 is only one, falsifying (4). The g-
eigenvalues are

λ51 = 6.4798, λ52 = −0.6118, λ53 = −1, λ54 = −3.3489, λ55 = −4.5191.

(These are approximations to four decimal places, similarly throughout the paper.) Interest-
ingly,

√
42 = 6.4807 is near to λ51. If their difference were due to rounding errors, then the

first equation in (4) would hold for n = 5, too. But p5(
√
42) = −3168

√
42 + 20448, showing

that the difference is actual.
Moreover,

λ61 = 6.8501, λ62 = 2.5592, λ63 = −0.7419, λ64 = −1.3749, λ65 = −3.4396, λ66 = −5.8528.

Thus −1 is not a g-eigenvalue when n = 6.
These two cases already suffice to make it fairly clear that λn2 = · · · = λn,n−1 = −1

does not hold for n > 4. However, we choose to verify this claim thoroughly, as it involves
first proving and then applying Cauchy’s interlacing theorem [7, Theorem 4.3.17] for g-
eigenvalues—a result that is arguably of general interest. To that end, recall that there are
two positive g-eigenvalues for n = 6. By Theorem 6 below, there are at least two positive
g-eigenvalues for n = 7. Continuing in this way confirms the claim.

We conclude this section by exploring in which dimensions −1 occurs as a g-eigenvalue.
Computer experiments covering the range 1 ≤ n ≤ 1000 (with code provided in the Ap-
pendix) show that −1 is a g-eigenvalue if and only if

n =

2
︷︸︸︷

4, 5 ,

22
︷ ︸︸ ︷

8, 9, 10, 11,

23
︷ ︸︸ ︷

16, . . . , 23,

24
︷ ︸︸ ︷

32, . . . , 47,

25
︷ ︸︸ ︷

64, . . . , 95,

26
︷ ︸︸ ︷

128, . . . , 191,

27
︷ ︸︸ ︷

256, . . . , 383, 512, . . . ,

where the overbrace indicates the number of terms. This sequence is the same as the
OEIS [11] sequence A004754 without the first term. Its description [11] raises an interesting
conjecture.

Conjecture 5. Let T = {1, . . . , n}, n > 3. Then −1 is a g-eigenvalue of LT to GT if and
only if the binary representation of n begins with 10.
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For example, 4 = (100)2, 5 = (101)2, 8 = (1000)2, 19 = (10011)2.
This OEIS sequence (an) satisfies [11]

a2m+k = 2m+1 + k, m ≥ 0, 0 ≤ k < 2m. (5)

If, for example, m = k = 3, then the left-hand side equals a8+3 = a11 = 19, and the right-
hand side equals 16 + 3 = 19. An induction proof of Conjecture 5 can perhaps be found by
using (5).

3.3 Cauchy’s interlacing theorem for g-eigenvalues

Theorem 6. Let A and B be as in (1), n > 1, with first leading principal submatrices A′

and respectively B′ (obtained by removing the nth row and column). Let

λ1 ≥ · · · ≥ λn and λ′
1 ≥ · · · ≥ λ′

n−1

be the g-eigenvalues of A to B and, respectively, of A′ to B′. Then

λ1 ≥ λ′
1 ≥ λ2 ≥ λ′

2 ≥ · · · ≥ λn−1 ≥ λ′
n−1 ≥ λn.

Proof. Let � denote the subspace inclusion. Because the Courant-Fischer theorem [7, The-
orem 4.2.6] extends to g-eigenvalues [2, Theorem 3] (note the wrong ordering of max and
min in its formulation), we have

λk = max
U�Cn

dimU=k

min
0 6=x∈U

x∗Ax

x∗Bx
, k = 1, . . . , n, (6)

and

λ′
k = max

V�Cn−1

dimV=k

min
0 6=y∈V

y∗A′y

y∗B′y
, k = 1, . . . , n− 1. (7)

Let

0 6= x ∈ C
n, x =

(
x′

xn

)

, A =

(
A′ u

u∗ ann

)

, B =

(
B′ v

v∗ bnn

)

.

If xn = 0, then
x∗Ax

x∗Bx
=

(x′)∗A′x′

(x′)∗B′x′
,

so, for k = 1, . . . , n− 1,

λ′
k = max

V�Cn−1

dimV=k

min
0 6=x′∈V
xn=0

x∗Ax

x∗Bx
=: M.

Since
{

min
0 6=x′∈V
xn=0

x∗Ax

x∗Bx
: V � C

n−1, dimV = k
}

⊆
{

min
0 6=x∈U

x∗Ax

x∗Bx
: U � C

n, dimU = k
}

,
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it follows that

M ≤ max
U�Cn

dimU=k

min
0 6=x∈U

x∗Ax

x∗Bx
. (8)

Now, by (7), (8), and (6),
λ′
k ≤ λk.

To find a reverse inequality, we change the ordering of max and min in the generalized
Courant-Fischer theorem:

λk+1 = min
U�Cn

dimU=n−k

max
0 6=x∈U

x∗Ax

x∗Bx
, k = 0, . . . , n− 1,

and

λ′
k = min

V�Cn−1

dimV=n−k

max
0 6=y∈V

y∗A′y

y∗B′y
, k = 1, . . . , n− 1.

By a simple modification of the previous argument, we obtain

λ′
k ≥ λk+1,

completing the proof.

4 LCM–GCD setting on some T 6= {1, 2, . . . , n}
4.1 The cases n = 2, 3

First, let T = {u, v}, 0 < u < v. Studying {u/d, v/d} if d = gcd (u, v) > 1, we can assume
that gcd (u, v) = 1. Then

det (LT − λGT ) =

∣
∣
∣
∣

u− λu uv − λ
uv − λ v − λv

∣
∣
∣
∣
= (uv − 1)(λ2 − uv), λ1 =

√
uv, λ2 = −

√
uv.

Next, let T = {1, u, v}, where 1 < u < v and gcd (u, v) = 1. Then

det (LT − λGT ) =

∣
∣
∣
∣
∣
∣

1− λ u− λ v − λ
u− λ u− λu uv − λ
v − λ uv − λ v − λv

∣
∣
∣
∣
∣
∣

= (u+ v − uv − 1)λ3 + (u+ v − uv − 1)λ2 + (u2v2 + uv − u2v − uv2)λ+ u2v2 − u2v

− uv2 + uv = (u− 1)(v − 1)(λ+ 1)(λ2 − uv), λ1 =
√
uv, λ2 = −1, λ3 = −

√
uv.

More generally, let T = {u, v, w}, where 1 < u < v < w and gcd (u, v) = gcd (u, w) =
gcd (v, w) = 1. It seems that we do not get pretty results. If, for example, T = {2, 3, 5},
then
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det (LT − λGT ) =

∣
∣
∣
∣
∣
∣

2− 2λ 6− λ 10− λ
6− λ 3− 3λ 15− λ
10− λ 15− λ 5− 5λ

∣
∣
∣
∣
∣
∣

= −22λ3 − 38λ2 + 420λ+ 900,

λ1 = 4.5128, λ2 = −2.3027, λ3 = −3.9371.

4.2 The case T = {1, p, . . . , pn−1}, p ∈ P

In this case,

LT =










1 p p2 · · · pn−1

p p p2 · · · pn−1

p2 p2 p2 · · · pn−1

...
...

...
...

...
pn−1 pn−1 pn−1 · · · pn−1










= MT , GT =










1 1 1 · · · 1
1 p p · · · p
1 p p2 · · · p2

...
...

...
...

...
1 p p2 · · · pn−1










= NT .

By Theorem 1, the g-eigenvalues of LT to GT are

λ1 = p
n−1

2 , λ2 = · · · = λn−1 = −1, λn = −p
n−1

2 .

4.3 Reordering does not matter

We noted in Remark 3 that reordering S in the MAX–MIN setting only changes (2) to (3),
so all g-eigenvalues remain unchanged. We now show that reordering T in the LCM–GCD
setting also preserves the g-eigenvalues. More generally, let X = (xij) be a complex square
matrix of order n. Given a permutation σ of (1, . . . , n), define

Xσ = (xσ
ij), xσ

ij = xσ(i),σ(j),

and let Pσ denote the permutation matrix corresponding to σ. Since

Xσ = PσXPσ and detPσ = ±1,

we have
detXσ = detX,

implying the claim.
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5 Discussion

Above, we first examined the g-eigenvalues of MAX matrices to MIN matrices. The results
reveal distinct structural patterns: the g-eigenvalues are completely characterized and consist
of one positive value, several values −1 (with multiplicity zero when n = 2), and one negative
value. This regularity highlights an underlying symmetry and robustness in the generalized
eigenstructure of these matrices.

We then turned to the g-eigenvalues of LCMmatrices to GCDmatrices on T = {1, . . . , n}.
This case is more intricate. While the above pattern holds for n ≤ 4, it breaks down for
n > 4. In the course of verifying this, we proved a generalization of Cauchy’s interlacing
theorem for eigenvalues—namely, the corresponding theorem for g-eigenvalues.

A surprising observation is the emergence of connection to OEIS sequence A004754 in
Conjecture 5. If proven, this would provide a novel bridge between matrix theory and number
theory, offering a new insight into exploring spectral properties of matrices through binary
representations of integers.

We concluded our study by considering sets T 6= {1, . . . , n} to demonstrate that certain
configurations in the LCM–GCD setting exhibit a MAX–MIN structure. We also showed
that, in general, reordering S and T does not affect the g-eigenvalues, thereby reinforcing
the robustness of these matrices under permutations.

From a computational perspective, determining generalized eigenvalues poses significant
challenges, as it typically requires finding the roots of high-degree characteristic polynomials.
As n increases, these polynomials become difficult to construct and numerically unstable to
solve. However, in constructing the sequence in Conjecture 5, these difficulties can largely be
avoided: it is not necessary to form or factorize pn(λ) = det(LT − λGT ) explicitly. Instead,
one can directly compute pn(−1) = det(LT +GT ). This approach is computationally lighter,
numerically more stable, and sufficient to verify whether −1 is a g-eigenvalue.

Appendix

1 import numpy as np

2 import math

3 from scipy.linalg import eig

4

5 def gcd_matrix(n):

6 """ Construct an n x n matrix with entries gcd(i, j)."""

7 M = np.zeros ((n, n), dtype=int)

8 for i in range(1, n+1):

9 for j in range(1, n+1):

10 M[i-1, j-1] = math.gcd(i, j)

11 return M

12

13 def lcm_matrix(n):

14 """ Construct an n x n matrix with entries lcm(i, j)."""

9
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15 M = np.zeros ((n, n), dtype=int)

16 for i in range(1, n+1):

17 for j in range(1, n+1):

18 M[i-1, j-1] = math.lcm(i, j)

19 return M

20

21 def find_n_with_minus_one(tol=1e-5, max_n =1000):

22 """

23 For n = 1 to max_n , computes the generalized eigenvalues for Ax =

lambda Bx , where A is the LCM matrix and B is the GCD matrix.

Returns a list of n for which -1 appears as a generalized

eigenvalue (within a tolerance tol).

24 """

25 n_list = []

26 for n in range(1, max_n +1):

27 A = lcm_matrix(n).astype(float)

28 B = gcd_matrix(n).astype(float)

29 # Compute g-eigenvalues of A to B:

30 eigenvalues , _ = eig(A, B)

31 # Convert real g-eigenvalues to real values:

32 eigenvalues = np.real_if_close(eigenvalues , tol=tol)

33 # Check if some g-eigenvalue is equal to -1:

34 if any(np.isclose(ev , -1, atol=tol) for ev in eigenvalues):

35 n_list.append(n)

36 return n_list

37

38 if __name__ == ’__main__ ’:

39 result = find_n_with_minus_one(tol=1e-5, max_n =1000)

40 print("Dimensions n for which -1 appears as a g-eigenvalue:")

41 print(result)

Listing 1: Python code to examine Conjecture 5.
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