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Abstract

We determine, for every n > 1, the generalized eigenvalues of an n x n MAX matrix
to the corresponding MIN matrix. We also show that a similar result holds for the
generalized eigenvalues of an nxn LCM matrix to the corresponding GCD matrix when
n < 4, but breaks down for n > 4. In addition, we prove Cauchy’s interlacing theorem
for generalized eigenvalues, and we conjecture an unexpected connection between the
OEIS sequence A004754 and the appearance of —1 as a generalized eigenvalue in the
LCM-GCD setting.

1 Introduction

Let A and B be complex Hermitian n X n matrices, and suppose that B is positive definite;
that is, the conjugate transpose A* and A are equal, and x*Bx > 0 whenever 0 # x € C".
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The generalized eigenvalue equation of A to B is
Ax=)Bx, 0#xecC" (1)

Then ) is called a generalized eigenvalue (“g-eigenvalue” for short) of A to B, and x is
a corresponding generalized eigenvector (“g-eigenvector”). For more information, see, for
example, Ghojogh, Karray, and Crowley [5]. They consider real symmetric matrices, yet all
results extend naturally to complex Hermitian matrices.

It is actually enough that B is invertible in (1), and A can be arbitrary. However, the
above assumptions are usually stated. Then all g-eigenvalues are real, and g-eigenvectors
corresponding to distinct g-eigenvalues are orthogonal with respect to the inner product
(x,y) = y"Bx.

The standard eigenvalues (“s-eigenvalues” for short) are widely studied. The g-eigenvalue
equation (1) reduces to the s-eigenvalue equation

B 'Ax = \x.

However, this “quick and dirty solution” [5] does not have significant use. So, g-eigenvalues
must be considered in a different way. This area has not been studied much in the literature.
Let
S={s1,...,8n}, Ss1<-<5Sp,

be a set of positive real numbers. The n x n MAX matrix Mg and MIN matrix Ng on S
are defined by

Mg = (mfj), mfj = max (s;,s;), Ng= (nZS]), nfj = min (s;, ).

Then Ny is positive definite [10, Theorem 8.1]. Also, let

T:{tl,...,tn}, t < - <y,

be a set of positive integers. The n x n LCM matrix Ly and GCD matrix Gy on T are
defined by

Ly = (zfj), zfj =lem(t;, t;), Gr= (gfj), gfj = ged (¢, ).

Also, Gr is positive definite [3, Theorem 2.

We study g-eigenvalues of Mg to Ng in Section 2, and those of Ly to G in Sections 3
and 4. Finally, we complete our paper with discussion in Section 5.

All g-eigenvalues of A to A are trivially equal to one. We can therefore expect that,
also in some nontrivial cases, the g-eigenvalues of A to B may be more accessible than the
s-eigenvalues of A and B. We will see this in the case A = Mg, B = Ng, and also in the
case A = Ly, B = Gy, where T' = {1,...,n}, n < 4. Recently, these matrices have been
studied extensively (e.g., [1, 4, 6, 9, 10, 13]). These works discuss not only new results in
this field but also applications to various other areas of mathematics—and, for instance, to
computing [8], statistics [10], and signal processing [12].
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2 MAX-MIN setting

We want to evaluate the g-eigenvalues of Mg to Ng, i.e., the solutions A to the equation
det(Ms — ANS) =0.
We begin with n = 2. Let S = {a,b}, 0 < a < b. Then

a—Aa b—)a
b—Xa b—MX\b

a

Our aim is to prove Theorem 1 below. However, because the general proof is not easily
readable, we show the details only in the case n = 4. A careful reader will notice that we
can proceed similarly for every integer n > 2.

det (Mg — ANg) = =ab—a))\* —b(b—a)=0

if and only if

Theorem 1. The g-eigenvalues of Mg to Ng, n > 2, are

)\1:1/S—n, )\2:"':)\7171:_17 )\n:_ S_" (2)
S1 S1

Proof. Let S ={a,b,c,d},0<a<b<c<d. Then
d

a b ¢ a a a a
b b ¢ d a b b b
Mg = c c c d |’ Ns = a b ¢ c
d d d d a b c d
The matrix
2¢ a+b atc at+d
M + Ng = a+b 26 b+c b+d

at+c b+ec 2¢ c+d
a+d b+d c+d 2d

has rank 2 and nullity 2. Consequently, —1 is a g-eigenvalue of Mg to Ng with multiplicity 2.
We show that the remaining g-eigenvalues are

a

Regardless of the sign of A, we have (note that d = \a)

a+Xxa b+Xa c+Xa d+ )l
b+Xa b+Xb c+Xb d+ Nb
ct+Xxa c+Ab c+ e d+ e
d+Xa d+Xb d+ e d+ N\

det (MS + )\Ns) =
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a+Xa b+ c+Xa d+ ) \a b c Na

| b—a AXb—a) AMb—a) AMb—a)| |b—a AXb—a) AXb—a) Ab—a)
| c=b  c—=b Mc—=b) Mc=b)| |c=b c—=b Mc=0b) Ac—=0)
d—c d-c d—c MNd—c) d—c d—c d—c Md-c)
a Aa Aa Aa
b—a ANb—a) Ab—a) Ab—a)
Tlecb c=b Me=b) Me—p) | D1+ D2
d—c d—c d— Ad —¢)
Since D1 = Dy = 0, the claim follows. O
Remark 2. Theorem 1 holds also for n = 2. Then the chain Ay = --- = X\, is “empty”.

Remark 3. If the ordering of sy, ..., s, is arbitrary, then (2) reads

Si S;
AM=max,/—, =---=X\,_1=—1, \, = —max,/—. (3)
i\ S; w8

See also [10, Remark 2.1].

Remark 4. Theorem 1 applies also to the g-eigenvalues of Mg to Ng/, where

! !/ / / /
S'={s],...,s,}, S| —s1=-=5,— 5.

3 LCM-GCD settingon T'={1,2,...,n}

3.1 The case n <4

Let T = {1,2,...,n}, let \,;y > --- > A, be the g-eigenvalues of Ly to Gr, and let
pn(A) = det (Ly — AGr) be the g-characteristic polynomial. Then
p1(>\):1—)\, )\11:1,
I—X 2—-2)
p2<)\) = 2 _ )\ 2 _ 2)\ = >\2 - 27 >\21 = \/57 )\22 = _\/57
I—=X 2—=X 3=\
ps(A)=12=X 2=2\ 6-X |==20+1)(A2=6), A3 =6, Az = —1, As3 = —/6,
3—A 6—-XA 3-3\
I—X 2—=X 3—-X 4-2)
Cl2-x 220 6-a 4-2\| 2z
PN =133 6on 3-3x 12— | AT —12),
4—X 4-2\ 12—\ 4—-4\

A = V12, App = Az = —1, Ay = —V12.




3.2 The casen >4

The g-eigenvalues in Section 3.1 suggest that there may also be values of n > 4 such that

>\n1 = \/ﬁa )\nQ == )\n,n—l = _17 )\nn - _m (4)

for some integer m. We examine this hypothesis and begin with the case n = 5. We have

ps(\) = —16A° — 48\" + 528)\% 4 2480\% 4 2880\ + 960
= —16(\ + 1)(A* +2)* — 3502 — 120\ — 60)
= —16(A + 1)g(N).

Because ¢(—1) = 24 # 0, the multiplicity of A = —1 is only one, falsifying (4). The g-
eigenvalues are

As1 = 6.4798, 5o = —0.6118, A53 = —1, A5y = —3.3489, A55 = —4.5191.

(These are approximations to four decimal places, similarly throughout the paper.) Interest-
ingly, v/42 = 6.4807 is near to As;. If their difference were due to rounding errors, then the
first equation in (4) would hold for n = 5, too. But ps(v/42) = —3168v/42 4 20448, showing
that the difference is actual.

Moreover,

Ao1 = 6.8501, Az = 2.5592, Az = —0.7419, Aoy = —1.3749, Az = —3.4396, g5 = —5.8528.

Thus —1 is not a g-eigenvalue when n = 6.

These two cases already suffice to make it fairly clear that A\ = -+ = A\, .01 = —1
does not hold for n > 4. However, we choose to verify this claim thoroughly, as it involves
first proving and then applying Cauchy’s interlacing theorem [7, Theorem 4.3.17] for g-
eigenvalues—a result that is arguably of general interest. To that end, recall that there are
two positive g-eigenvalues for n = 6. By Theorem 6 below, there are at least two positive
g-eigenvalues for n = 7. Continuing in this way confirms the claim.

We conclude this section by exploring in which dimensions —1 occurs as a g-eigenvalue.
Computer experiments covering the range 1 < n < 1000 (with code provided in the Ap-
pendix) show that —1 is a g-eigenvalue if and only if

2 22 23 24 25 26 27

A A A A A\

A~ = - -\ N\ 7 N\ 7 7z N 7 ) AN
n="745,891011,16,...,23,32,...,47,64,...,95,128,...,191,256, ..., 383,512, ...,

where the overbrace indicates the number of terms. This sequence is the same as the
OEIS [11] sequence A004754 without the first term. Its description [11] raises an interesting
conjecture.

Conjecture 5. Let T = {1,...,n}, n > 3. Then —1 is a g-eigenvalue of Ly to Gy if and
only if the binary representation of n begins with 10.
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For example, 4 = (100), 5 = (101)9, 8 = (1000)9, 19 = (10011)s.
This OEIS sequence (a,) satisfies [11]

agmay = 2"k, m >0, 0< k< 2™ (5)

If, for example, m = k = 3, then the left-hand side equals ag, 3 = a;; = 19, and the right-
hand side equals 16 + 3 = 19. An induction proof of Conjecture 5 can perhaps be found by
using (5).

3.3 Cauchy’s interlacing theorem for g-eigenvalues

Theorem 6. Let A and B be as in (1), n > 1, with first leading principal submatrices A’
and respectively B’ (obtained by removing the nth row and column). Let

M > >N, and N >--> )N
be the g-eigenvalues of A to B and, respectively, of A’ to B'. Then
MEZANZX>X > >0 >N >\,

Proof. Let < denote the subspace inclusion. Because the Courant-Fischer theorem [7, The-
orem 4.2.6] extends to g-eigenvalues [2, Theorem 3] (note the wrong ordering of max and
min in its formulation), we have

. X*Ax
A = (r]rﬁgg Ogg(lgUX*Bx, k=1,...,n, (6)
dim U=k
and A/
A, = max min Y y, k=1,....,n—1. (7)
v=cr-! o#yeV y*Bly
dim V=k
Let / , .
04xeC, X:(X ) A:(A* u ) B:(B* v )
Ty u QApn A% bnn
If z, = 0, then

x*Ax  (X)*A’X

x*Bx  (x)*B'x’’

so, fork=1,...,n—1,

. XFAx
A, = max min =: M.
v=Cr-1 0£x'eV X*Bx
dimV=k z,=0
Since
. xX"Ax . . X*Ax .
{ min :Vj(C”_l,dlmV:k}g{ min :UjC”,dlmU:k},
0£x'cV X*Bx 0#£xeU x*Bx
xn=0



it follows that

. x*"Ax
M < max min .
U=C" 0#xeU x*Bx

dim U=k

Now, by (7), (), and (6),
X, < Mg

To find a reverse inequality, we change the ordering of max and min in the generalized
Courant-Fischer theorem:

*

i x*Ax
Api1 = min  max , k=0,...,n—1,

U=<C" 0#xeU x*Bx

dim U=n—k
and "

. y Ay
A, = min  max =, k=1,...,n—1

v=cr-! 0#yeV y*B'y

dim V=n—k

By a simple modification of the previous argument, we obtain
)\;c 2 )‘k-‘rl?

completing the proof. O]

4 LCM-GCD setting on some T # {1,2,...,n}

4.1 The cases n=2,3

First, let T = {u,v}, 0 < v < v. Studying {u/d,v/d} if d = ged (u,v) > 1, we can assume
that ged (u,v) = 1. Then

U— AN Uuv — A

det (L = AGr) = uv—A v—Av

= (uwv — 1N —w), I =Vuv, Ay = —/uw.

Next, let T'= {1, u,v}, where 1 < u < v and ged (u,v) = 1. Then

1— XA u—X v—A\
det (L = AGp)=|u—XA u—2Au ww— A\
V—A U —N Uv— N\

=(w4v—uww— DN+ (u+v—uv— DI+ (v*0? + uv — v?v — )\ + u?v? — v

b = (= (o - DA+ DO —ww), A = vaw, A = —1, Ay = —v/aw.
More generally, let ' = {u,v,w}, where 1 < u < v < w and ged (u,v) = ged (u,w) =

ged (v,w) = 1. Tt seems that we do not get pretty results. If, for example, T = {2,3,5},
then



2-2\ 6-X 10—\
det (Ly —AGp)=| 6—X 3—3\ 15—\ | = —22)% — 38)\% 4+ 420\ + 900,
10—\ 15—X 5—5)
A1 = 4.5128, Ny = —2.3027, A3 = —3.9371.
4.2 The case T ={l,p,...,p" '}, peP

In this case,

1 P p2 p"_l 1 1 1 1
p p P pt 1 pp p

Ly=| »» p» » - p"" | =My, Grp=|10p 9 p | =Ny
pn—l pn—l pn—l pn—l 1 p p2 pn—l

By Theorem 1, the g-eigenvalues of Ly to G are

n—1 n—1

)‘1:p2 y )\2:"':)\n—1:_17 /\n:_p2 .

4.3 Reordering does not matter

We noted in Remark 3 that reordering S in the MAX-MIN setting only changes (2) to (3),
so all g-eigenvalues remain unchanged. We now show that reordering 7" in the LCM-GCD
setting also preserves the g-eigenvalues. More generally, let X = (x;;) be a complex square
matrix of order n. Given a permutation o of (1,...,n), define

Xo‘ = (Jf%), I‘?j = To(3),0(4)>
and let P, denote the permutation matrix corresponding to o. Since
X, =P, XP, and detP, = =*1,

we have
det X, = det X,

implying the claim.



5 Discussion

Above, we first examined the g-eigenvalues of MAX matrices to MIN matrices. The results
reveal distinct structural patterns: the g-eigenvalues are completely characterized and consist
of one positive value, several values —1 (with multiplicity zero when n = 2), and one negative
value. This regularity highlights an underlying symmetry and robustness in the generalized
eigenstructure of these matrices.

We then turned to the g-eigenvalues of LCM matrices to GCD matriceson T' = {1,...,n}.
This case is more intricate. While the above pattern holds for n < 4, it breaks down for
n > 4. In the course of verifying this, we proved a generalization of Cauchy’s interlacing
theorem for eigenvalues—mnamely, the corresponding theorem for g-eigenvalues.

A surprising observation is the emergence of connection to OEIS sequence A004754 in
Conjecture 5. If proven, this would provide a novel bridge between matrix theory and number
theory, offering a new insight into exploring spectral properties of matrices through binary
representations of integers.

We concluded our study by considering sets T' # {1,...,n} to demonstrate that certain
configurations in the LCM-GCD setting exhibit a MAX-MIN structure. We also showed
that, in general, reordering S and T does not affect the g-eigenvalues, thereby reinforcing
the robustness of these matrices under permutations.

From a computational perspective, determining generalized eigenvalues poses significant
challenges, as it typically requires finding the roots of high-degree characteristic polynomials.
As n increases, these polynomials become difficult to construct and numerically unstable to
solve. However, in constructing the sequence in Conjecture 5, these difficulties can largely be
avoided: it is not necessary to form or factorize p,(\) = det(Ly — AGr) explicitly. Instead,
one can directly compute p,(—1) = det(Ly+ Gr). This approach is computationally lighter,
numerically more stable, and sufficient to verify whether —1 is a g-eigenvalue.

Appendix

import numpy as np
import math
from scipy.linalg import eig

def gcd_matrix(n):
"""Construct an n x n matrix with entries gcd(i, j)."""
M = np.zeros((n, n), dtype=int)
for i in range(l, n+1):
for j in range(l, n+1):
M[i-1, j-1] = math.gcd(i, j)
return M

def lcm_matrix(m):
"""Construct an n x n matrix with entries lcm(i, j)."""
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15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

def

M = np.zeros((n, n), dtype=int)
for i in range(l, n+1):
for j in range(l, n+1):
M[i-1, j-1] = math.lcm(i, j)
return M

find_n_with_minus_one (tol=1e-5, max_n=1000) :

For n = 1 to max_n, computes the generalized eigenvalues for Ax

lambda Bx, where A is the LCM matrix and B is the GCD matrix.

Returns a list of n for which -1 appears as a generalized
eigenvalue (within a tolerance tol).
nnn
n_list = []
for n in range(l, max_n+1):
A = lcm_matrix(n).astype(float)
B = gcd_matrix(n).astype(float)
# Compute g-eigenvalues of A to B:
eigenvalues, _ = eig(A, B)
# Convert real g-eigenvalues to real values:
eigenvalues = np.real_if_close(eigenvalues, tol=tol)
# Check if some g-eigenvalue is equal to -1:
if any(np.isclose(ev, -1, atol=tol) for ev in eigenvalues):
n_list.append(n)
return n_list

if __name__ == ’__main__"’:
result = find_n_with_minus_one(tol=1e-5, max_n=1000)
print ("Dimensions n for which -1 appears as a g-eigenvalue:")
print (result)
Listing 1: Python code to examine Conjecture 5.
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