

Integer Values of Generating Functions for a Type of Second-Order Linear Recurrence Sequence

Luu Ba Thang and Nguyen Duy Nguyen
Department of Mathematics and Informatics
Hanoi National University of Education
136 Xuan Thuy
Cau Giay, Hanoi
Vietnam
thanglb@hnue.edu.vn
nguyen05hp@gmail.com

Abstract

Define an integer sequence $(A_n)_{n\geq 0}$ by setting $A_0=a, A_1=b$, and $A_{n+1}=pA_n+qA_{n-1}$ for all n. We consider the case q=1 to explore the problem of finding all rational numbers x such that the generating function of (A_n) yields an integer when evaluated at x. We point out that we can divide the set of all x-values into families and find some families that always exist. Then we provide an algorithm to find all the families through a finite computation. Finally, we apply the algorithm to the special cases that (a,b)=(0,1) and (a,b)=(1,1).

1 Introduction

Consider a second-order linear recurrence sequence $(A_n)_{n\geq 0}$ defined by

$$\begin{cases} A_0 = a, A_1 = b; \\ A_{n+1} = pA_n + qA_{n-1}, \end{cases}$$

where a, b, p, and q are integers and $(a, b) \neq (0, 0), p, q \neq 0$.

The generating function of $(A_n)_{n\geq 0}$ is given by

$$A(x) = \sum_{n=0}^{\infty} A_n x^n.$$

We see that A(x) is a formal power series in the formal power series domain over the rational field, commonly denoted by $\mathbb{Q}[[x]]$. We can calculate that

$$A(x) = \frac{a(1 - px) + bx}{1 - px - qx^2}.$$

Thus we can consider A(x) as a rational function of x.

If (a, b, p, q) = (0, 1, 1, 1) or (a, b, p, q) = (2, 1, 1, 1), then $(A_n)_{n\geq 0}$ becomes the well-known Fibonacci sequence $(F_n)_{n\geq 0}$ ($\underline{A000045}$) or the Lucas sequence $(L_n)_{n\geq 0}$ ($\underline{A000032}$). Then the generating functions of $(F_n)_{n\geq 0}$ and $(L_n)_{n\geq 0}$ are, respectively,

$$F(x) = \frac{x}{1 - x - x^2}$$
 and $L(x) = \frac{2 - x}{1 - x - x^2}$.

Now, for each second-order linear recurrence sequence $(A_n)_{n\geq 0}$, we set

$$\mu(A) = \{ x \in \mathbb{Q} \mid A(x) \in \mathbb{Z} \}.$$

Finding all elements of $\mu(A)$ is an interesting research problem. When $(A_n)_{n\geq 0}$ becomes the Fibonacci sequence or the Lucas sequence, in 2015, Hong [2] showed that

$$\frac{F_n}{F_{n+1}} \in \mu(F) \cap \mu(L) \text{ and } \frac{L_n}{L_{n+1}} \in \mu(L)$$

for all non-negative integers n. He also conjectured whether his results were the only ones that led F(x) and L(x) to integer values. Pongsrijam [6] answered this question in 2017 by proving that

$$\mu(F) = \left\{ \frac{F_n}{F_{n+1}} \mid n \in \mathbb{N} \cup \{0\} \right\} \cup \left\{ -\frac{F_{n+1}}{F_n} \mid n \in \mathbb{N} \right\}$$

and

$$\mu(L) = \left\{ \frac{F_n}{F_{n+1}} \mid n \in \mathbb{N} \cup \{0\} \right\} \cup \left\{ -\frac{F_{n+1}}{F_n} \mid n \in \mathbb{N} \right\}$$
$$\cup \left\{ \frac{L_n}{L_{n+1}} \mid n \in \mathbb{N} \cup \{0\} \right\} \cup \left\{ -\frac{L_{n+1}}{L_n} \mid n \in \mathbb{N} \cup \{0\} \right\}.$$

At the same time, Bulawa and Lee [1] discovered a result for the sequence $(R_n)_{n\geq 0}$ defined by

$$\begin{cases} R_0 = 0, R_1 = 1; \\ R_{n+1} = pR_n + qR_{n-1}, \end{cases}$$

where p, q are positive integers and p is divisible by q. They found all the values of $\mu(R)$ that are in the interval of convergence, where R(x) is the generating function of $(R_n)_{n\geq 0}$. They also extended the results for the Lucas, Pell, and Pell-Lucas sequences.

Another generalization was published by Knapp [3] in 2024 when he constructed an algorithm to find all elements of $\mu(G)$, where G(x) is the generating function of the Gibonacci sequences $(G_n)_{n\geq 0}: G_0 = a, G_1 = b, G_{n+1} = G_n + G_{n-1}$. Afterwards, Knapp et al. [4] also studied the sequence $(a_n)_{n\geq 0}$ of the form:

$$\begin{cases} a_0 = 0, a_1 = 1; \\ a_{n+1} = pa_n + qa_{n-1}, & \text{if } n \ge 1, \end{cases}$$

and indicated the cases of (p,q) in which they could provide a constructive method to find all the elements of $\mu(a)$.

In this article, we study the second-order linear recurrence sequences $(A_n)_{n\geq 0}$ defined by

$$\begin{cases} A_0 = a, A_1 = b; \\ A_{n+1} = pA_n + A_{n-1}, \end{cases}$$

where a, b, p are integers and $(a, b) \neq (0, 0), p \neq 0$. It turns out that the values x that make the generating function of $(A_n)_{n\geq 0}$ an integer come in families. Moreover, the elements of each family are ratios of consecutive terms of a sequence given in the following theorem:

Theorem 1. Let A(x) be the generating function of $(A_n)_{n\geq 0}$, and r,s be relatively prime integers. Assume that A(r/s) is an integer. Define the sequence $(A_n^{(r,s)})_{n\in\mathbb{Z}}$ by setting:

$$\begin{cases} A_0^{(r,s)} = r, A_1^{(r,s)} = s; \\ A_{n+1}^{(r,s)} = pA_n^{(r,s)} + A_{n-1}^{(r,s)}, & if \ n > 1; \\ A_n^{(r,s)} = A_{n+2}^{(r,s)} - pA_{n+1}^{(r,s)}, & if \ n < 0. \end{cases}$$

Then $A(A_n^{(r,s)}/A_{n+1}^{(r,s)})$ is an integer whenever $A_{n+1}^{(r,s)} \neq 0$.

From Theorem 1, we present some families of rational values x that make A(x) an integer.

Theorem 2.

- (i) $A(A_n^{(0,1)}/A_{n+1}^{(0,1)})$ are integers for all $n \neq -1$, where we define $(A_n^{(0,1)})$ as in Theorem 1.
- (ii) $A(A_n^{(-b,a)}/A_{n+1}^{(-b,a)})$ are integers whenever $A_{n+1}^{(-b,a)} \neq 0$, where $(A_n^{(-b,a)})$ is defined as in Theorem 1.

The next theorem shows all the values that make A(x) an integer.

Theorem 3. Set C by

$$C = \begin{cases} \sqrt{(abp^3 + (a^2 - b^2)p^2)/(p^2 + 4)}, & if \ abp^3 + (a^2 - b^2)p^2 \ge 0; \\ \sqrt{-abp + b^2 - a^2}, & if \ abp^3 + (a^2 - b^2)p^2 < 0, \end{cases}$$

and find all integers M such that $|M| \leq C$ and the equation

$$M^{2} + (p^{2} + 2)MN + N^{2} = abp^{3} + (a^{2} - b^{2})p^{2}$$

has an integer solution N. For each value M, let k be a nonzero integer solution of the equation

$$M^{2} = (kp - ap + b)^{2} - 4k(a - k).$$

For each k, set

$$x = \frac{ap - kp - b \pm \sqrt{(kp - ap + b)^2 - 4k(a - k)}}{2k}.$$

Then A(x) is an integer, and by Theorem 1, x generates a family of elements of $\mu(A)$. All families of x can be found by this way, apart from those given in Theorem 2.

After that, we consider some more typical sequences. The former is the case (a, b) = (0, 1), where we give another proof of a special case of Theorem 1.1 in the paper of Bulawa and Lee [1], as well as Theorem 1.7 in the paper of Knapp, Lemos, and Neumann [4]. The latter is the case (a, b) = (1, 1), where we provide our corollary.

2 Proofs of Theorems 1 to Theorem 3

In this section, we consider the sequence $(A_n)_{n\geq 0}$ defined by

$$\begin{cases} A_0 = a, A_1 = b; \\ A_{n+1} = pA_n + A_{n-1}. \end{cases}$$

The generating function of $(A_n)_{n\geq 0}$ is

$$A(x) = \frac{a(1 - px) + bx}{1 - px - x^2}.$$

Lemma 4. Let r, s be integers such that gcd(r, s) = 1. Then the value A(r/s) is an integer if and only if

$$b \equiv -ars^{-1} \pmod{|s^2 - prs - r^2|}.$$

Proof. We have

$$A(r/s) = \frac{a(1 - p\frac{r}{s}) + b\frac{r}{s}}{1 - p\frac{r}{s} - \frac{r^2}{s^2}} = \frac{as^2 - aprs + brs}{s^2 - prs - r^2}.$$

Then A(r/s) is an integer if and only if

$$as^{2} - aprs + brs - a(s^{2} - prs - r^{2}) \equiv 0 \pmod{|s^{2} - prs - r^{2}|}.$$

Because $gcd(r, s^2 - prs - r^2) = gcd(s, s^2 - prs - r^2) = 1$, this is equivalent to

$$bs + ar \equiv 0 \pmod{|s^2 - prs - r^2|}$$

or

$$b \equiv -ars^{-1} \pmod{|s^2 - prs - r^2|}.$$

Remark 5. From Lemma 4, if $A(r/s) \in \mathbb{Z}$, then we have

$$(s^2 - prs - r^2) \mid (as^2 - aprs + brs).$$

Because $gcd(s, s^2 - prs - r^2) = 1$, this is equivalent to

$$(s^2 - prs - r^2) \mid (as - apr + br).$$

Lemma 6. Let r, s be integers such that $r, s \neq 0, r + ps \neq 0, \gcd(r, s) = 1$ and A(r/s) is an integer. Then A(s/(r+ps)) and A((s-pr)/r) are integers.

Proof. We have

$$A(s/(r+ps)) = \frac{(b-ap)s(r+ps) + a(r+ps)^2}{r^2 + prs - s^2} = \frac{(r+ps)(bs+ar)}{r^2 + prs - s^2}$$

and

$$A((s-pr)/r) = \frac{(b-ap)(s-pr)r + ar^2}{r^2 + prs - s^2} = \frac{r(bs + ar - aps - bpr + ap^2r)}{r^2 + prs - s^2}.$$

Applying Lemma 4, we conclude that both A(s/(r+ps)) and A((s-pr)/r) are integers. \square

Proof of Theorem 1. We have that $A(A_0^{(r,s)}/A_1^{(r,s)}) = A(r/s)$ is an integer. By Lemma 6 and the induction, we see that $A(A_n^{(r,s)}/A_{n+1}^{(r,s)})$ is an integer whenever $A_{n+1}^{(r,s)} \neq 0$. Note that if there exists $n_0 > 0$ such that $A_{n_0}^{(r,s)} = 0$, we can still continue the induction from n_0 because A(0) = a is an integer. Also, if there exists $n_0 < 0$ such that $A_{n_0}^{(r,s)} = 0$, then $A(A_{n_0-2}^{(r,s)}/A_{n_0-1}^{(r,s)}) = A(-p)$ is an integer.

Proof of Theorem 2.

(i) We have

$$A(A_0^{(0,1)}/A_1^{(0,1)}) = A(0) = a \in \mathbb{Z}.$$

Then by Theorem 1, $A(A_n^{(0,1)}/A_{n+1}^{(0,1)})$ is an integer for all integers $n \neq -1$.

(ii) We see that $A(A_0^{(-b,a)}/A_1^{(-b,a)}) = A(-b/a) = a$ is an integer. So by Theorem 1, we imply that $A(A_n^{(-b,a)}/A_{n+1}^{(-b,a)})$ is an integer whenever $A_{n+1}^{(-b,a)} \neq 0$.

Remark 7.

(i) By induction, we can prove that

$$A_n = (-1)^{n-1} A_{1-n}^{(-b,a)}$$

for $n \geq 0$. Then

$$\frac{-A_{n+1}}{A_n} = \frac{(-1)^{n+1} A_{-n}^{(-b,a)}}{(-1)^{n-1} A_{-n+1}^{(-b,a)}} = \frac{A_{-n}^{(-b,a)}}{A_{-n+1}^{(-b,a)}}.$$

This implies $A(-A_{n+1}/A_n)$ are integers whenever $A_n \neq 0$.

(ii) From Theorem 1, if we find out $x_0 = r/s$ such that A(x) is an integer, we can construct a family of elements of $\mu(A)$ including x_0 .

The next part of this section presents an algorithm to find all families of values x for which A(x) is an integer.

Following the approach of Knapp [3], we assume that A(x) = k is an integer, which is equivalent to

$$\frac{a(1-px) + bx}{1 - px - x^2} = k. ag{1}$$

If k = 0, we can imply that x = a/(ap - b) is in the family generated by the sequence $(A_n^{(-b,a)})_{n \in \mathbb{Z}}$, which was shown in Theorem 2. So we can assume $k \neq 0$. Then the equation (1) is equivalent to

$$kx^{2} + (kp - ap + b)x + a - k = 0.$$

Solving for x, we see that

$$x = \frac{ap - b - kp \pm \sqrt{(kp + b - ap)^2 - 4k(a - k)}}{2k}.$$

Define $M = \pm \sqrt{(kp+b-ap)^2 - 4k(a-k)}$ and x = r/s, we have

$$k = A(r/s) = \frac{as^2 - aprs + brs}{s^2 - prs - r^2}$$

and

$$M = 2kx - ap + kp + b = \frac{br^2 + bs^2 - apr^2 + 2ars}{s^2 - prs - r^2}.$$

From now on, we write M in the form M(r,s). Note that if there exists an integer n such that $A_n^{(r,s)} = 0$, then the family of values x generated by $(A_n^{(r,s)})$ is identical to the one generated by $(A_n^{(0,1)})$, which is mentioned in Theorem 2. So we can assume that the conditions $r \neq 0$, $s \neq 0$, $r + ps \neq 0$ automatically hold.

Lemma 8. Assume that $r \neq 0, s \neq 0, r + ps \neq 0$. Then

(i)
$$M(s-pr,r) + (p^2+2)M(r,s) + M(s,r+ps) = 0.$$

(ii)
$$M(r,s)^2 + (p^2+2)M(r,s)M(s,r+ps) + M(s,r+ps)^2 = abp^3 + (a^2-b^2)p^2$$

Proof.

(i) We have

$$M(s-pr,r) = \frac{b(s-pr)^2 + br^2 - ap(s-pr)^2 + 2ar(s-pr)}{r^2 + prs - s^2}$$

$$= \frac{br^2 + bs^2 + 2ars - 2bprs + bp^2r^2 - ap^3r^2 - aps^2 - 2apr^2 + 2ap^2rs}{r^2 + prs - s^2}$$

$$M(s,r+ps) = \frac{bs^2 + b(r+ps)^2 - aps^2 + 2as(r+ps)}{r^2 + prs - s^2}$$

$$= \frac{bs^2 + br^2 + 2bprs + bp^2s^2 - aps^2 + 2ars + aps^2}{r^2 + prs - s^2}$$

$$(p^2 + 2)M(r,s) = (p^2 + 2)\frac{br^2 + bs^2 - apr^2 + 2ars}{s^2 - nrs - r^2}$$

By addition, we have

$$M(s - pr, r) + (p^2 + 2)M(r, s) + M(s, r + ps) = 0.$$

(ii) We have

$$\begin{split} M(r,s)^2 &= \frac{(br^2 + bs^2 - apr^2 + 2ars)^2}{(s^2 - prs - r^2)^2} \\ &= \frac{b^2r^4 + b^2s^4 + a^2p^2r^4 + 4a^2r^2s^2 + 2b^2r^2s^2 - 2abpr^4 + 4abr^3s}{(s^2 - prs - r^2)^2} \\ &+ \frac{-2abpr^2s^2 + 4abrs^3 - 4a^2pr^3s}{(s^2 - prs - r^2)^2}; \end{split}$$

$$\begin{split} M(s,r+ps)^2 &= \frac{(bs^2 + b(r+ps)^2 - aps^2 + 2as(r+ps))^2}{(s^2 - prs - r^2)^2} \\ &= \frac{b^2r^4 + b^2s^4 + 6b^2p^2r^2s^2 + b^2p^4s^4 + a^2p^2s^4 + 2b^2p^2s^4 + 4a^2r^2s^2}{(s^2 - prs - r^2)^2} \\ &+ \frac{2b^2r^2s^2 + 4a^2prs^3 + 4b^2prs^3 + 2abps^4 + 4abrs^3}{(s^2 - prs - r^2)^2} \\ &+ \frac{4abr^3s + 4b^2pr^3s + 10abpr^2s^2 + 4b^2p^3rs^3 + 8abp^2rs^3 + 2abp^3s^4}{(s^2 - prs - r^2)^2}; \end{split}$$

$$\begin{split} &(p^2+2)M(r,s)M(s,r+ps)\\ &=-\frac{(p^2+2)(br^2+bs^2-apr^2+2ars)(bs^2+b(r+ps)^2-aps^2+2as(r+ps))}{(s^2-prs-r^2)^2}\\ &=-\frac{b^2p^2r^4+2a^2p^2r^2s^2+4b^2p^2r^2s^2-abp^3r^4+2b^2r^4+2b^2s^4+8a^2r^2s^2+4b^2r^2s^2}{(s^2-prs-r^2)^2}\\ &-\frac{-2abpr^4+3b^2p^2s^4+2abp^3r^2s^2+8abp^2rs^3+8abpr^2s^2+8abrs^3-2abp^4r^3s}{(s^2-prs-r^2)^2}\\ &-\frac{4a^2prs^3+4b^2prs^3+b^2p^4s^4-abp^5r^2s^2+2abp^4rs^3+2abps^4+abp^3s^4+2a^2p^3rs^3}{(s^2-prs-r^2)^2}\\ &-\frac{2b^2p^3rs^3+8abr^3s-2a^2p^3r^3s+2b^2p^3r^3s-a^2p^4r^2s^2+b^2p^4r^2s^2-4a^2pr^3s+4b^2pr^3s}{(s^2-prs-r^2)^2} \end{split}$$

Let T be the left-hand side of the needed-proving assertion. By addition, we obtain

$$T = \frac{(abp^3 + (a^2 - b^2)p^2)(s^2 - prs - r^2)^2}{(s^2 - prs - r^2)^2} = abp^3 + (a^2 - b^2)p^2.$$

Lemma 9. Assume that $abp + a^2 - b^2 < 0$ and that there exists a rational value x such that A(x) is an integer. Construct a family of elements of $\mu(A)$ by Theorem 1. For each x in the family, calculate the corresponding value M. Then, there exists a value $M = M_0$ yielded by some x in the family such that $|M_0| \le \sqrt{-abp - a^2 + b^2}$.

Proof. Let $M_0 = M(r, s)$ be a value of M such that $|M_0|$ is minimal. Define

$$M_1 = M(s, r + ps)$$
 and $M_{-1} = M(s - pr, r)$.

From Lemma 8, we deduce that both M_1 and M_{-1} have opposite signs to M_0 . Without loss of generality, suppose that $M_0 > 0$ and $M_1, M_{-1} < 0$. Since $|M_0|$ is minimal, we have $M_1, M_{-1} \leq -M_0$. By Lemma 8, we have

$$-M_{-1} - (p^2 + 2)M_0 = M_1 \le -M_0.$$

This implies $M_{-1} \ge -(p^2+1)M_0$ or $M_{-1} = tM_0$, where $t \in [-p^2-1, -1] \cap \mathbb{Q}$. On the other hand, we see that

$$M_{-1}^2 + (p^2 + 2)M_{-1}M_0 + M_0^2 = abp^3 + (a^2 - b^2)p^2.$$

This implies

$$M_0^2 = \frac{abp^3 + (a^2 - b^2)p^2}{t^2 + (p^2 + 2)t + 1}.$$

Define $f(t)=(abp^3+(a^2-b^2)p^2)/(t^2+(p^2+2)t+1)$ with $t\in[-p^2-1,-1]$. Some calculations give us

$$f'(t) = \frac{-(abp^3 + (a^2 - b^2)p^2)(2t + p^2 + 2)}{(t^2 + (p^2 + 2)t + 1)^2}.$$

The only root of f'(t) = 0 (which is the minimum point of f(t)) is $t = (-p^2 - 2)/2$. Since $f(-p^2 - 1) = f(-1) = -abp + b^2 - a^2$, we conclude that $M_0^2 \le -abp + b^2 - a^2$. This implies

$$|M_0| \le \sqrt{-abp + b^2 - a^2}.$$

Lemma 10. Assume that $abp + (a^2 - b^2) \ge 0$ and there exists a rational value x such that A(x) is an integer. Construct a family of elements of $\mu(A)$ by Theorem 1. For each x in the family, calculate the corresponding value M. Then there exists a value $M = M_0$ coming from some x in the family such that $|M_0| \le \sqrt{(abp^3 + (a^2 - b^2)p^2)/(p^2 + 4)}$.

Proof. If $M_0 = 0$ then the statement is obvious. So suppose that $M_0 \neq 0$.

If both M_1 and M_{-1} have the opposite sign from M_0 , using the same argument as in Lemma 9, we imply that

$$M_0^2 = \frac{abp^3 + (a^2 - b^2)p^2}{t^2 + (p^2 + 2)t + 1},$$

which is impossible since the right-hand side is negative for all $t \in [-p^2 - 1, -1]$.

Thus either M_1 or M_{-1} has the same sign as M_0 . Assume that M_1 and M_0 have the same sign. Then Lemma 8 gives us

$$abp^{3} + (a^{2} - b^{2})p^{2} = M_{0}^{2} + (p^{2} + 2)M_{0}M_{1} + M_{1}^{2} = |M_{0}|^{2} + (p^{2} + 2)|M_{0}||M_{1}| + |M_{1}|^{2} \ge (p^{2} + 4)|M_{0}|^{2}.$$

This gives us

$$|M_0|^2 \le \frac{abp^3 + (a^2 - b^2)p^2}{p^2 + 4}.$$

This implies

$$|M_0| \le \sqrt{\frac{abp^3 + (a^2 - b^2)p^2}{p^2 + 4}}.$$

Proof of Theorem 3. From the above theorems, we can construct an algorithm to find all families of values x which make A(x) an integer. First, by Theorem 2, we know some trivial families which always make A(x) an integer. Then we can find other families by the following steps:

(i) Find all integer values M such that

$$\begin{cases} |M| \le \sqrt{(abp^3 + (a^2 - b^2)p^2)/(p^2 + 4)}, & \text{if } abp + a^2 - b^2 \ge 0; \\ |M| \le \sqrt{-abp - a^2 + b^2}, & \text{if } abp + a^2 - b^2 < 0, \end{cases}$$

and the equation

$$M^{2} + (p^{2} + 2)MN + N^{2} = abp^{3} + (a^{2} - b^{2})p^{2}$$
(2)

has an integer solution N.

(ii) For each value M, use the relation

$$M^{2} = (kp + b - ap)^{2} - 4k(a - k)$$
(3)

to find the corresponding integer values of k.

(iii) For each $k \neq 0$, use the relation

$$x = \frac{ap - kp - b + M}{2k} \tag{4}$$

where $M = \pm \sqrt{(kp - ap + b)^2 - 4k(a - k)}$ to find the value x.

For k = 0, A(x) = 0 leads to a(1-px) + bx = 0. Thus, we can find that x = a/(ap-b), which generates the second family in Theorem 2.

(iv) For each satisfied x = r/s, define the sequence $(A_n^{(r,s)})$ the same as Theorem 1. Then all the values $A_n^{(r,s)}/A_{n+1}^{(r,s)}$ becomes a family of elements of $\mu(A)$.

By Theorem 1, we know that the family can be constructed. Also by Lemma 9 and Lemma 10, we clearly see that all families of elements of $\mu(A)$ can be found by this way, except the families mentioned in Theorem 2.

Example 11. Given (a, b, p) = (9, 1, 2), we find all families of x. First, we see that Theorem 2 leads to the families

$$\dots, \frac{5}{-2}, \frac{-2}{1}, \frac{0}{1}, \frac{1}{2}, \frac{2}{5}, \dots$$
 (5)

and

$$\dots, \frac{-23}{11}, \frac{11}{-1}, \frac{-1}{9}, \frac{9}{17}, \frac{17}{43}, \dots$$
 (6)

To find other families, the equation (2) becomes

$$M^2 + 6MN + N^2 = 392,$$

and we need to find all integers M such that $|M| \leq \sqrt{392/8} = 7$ and the above equation has an integer solution N. The test gives us $M \in \{-7, -1, 1, 7\}$. For M = -7, the relation (3) becomes

$$49 = (2k - 17)^2 - 36k + 4k^2$$

This leads to k-values of 3 and 10. For k = 3, by (4) we obtain that x = 2/3, which leads to the family

$$\dots, \frac{4}{-1}, \frac{-1}{2}, \frac{2}{3}, \frac{3}{8}, \frac{8}{19}, \dots$$
 (7)

Then k = 10 implies x = -1/2, which is already in the above family. Similarly, the value M = -1 leads to k = 9 and k = 4. For k = 9, we have x = -1/9, which is already in (6). For k = 4, we can see that x = 1 and the satisfied family

$$\dots, \frac{3}{-1}, \frac{-1}{1}, \frac{1}{1}, \frac{1}{3}, \frac{3}{7}, \dots$$
 (8)

For M = 1, we obtain k = 9 or k = 4. The former case leads to x = 0, which is already in (5). The latter leads to x = 5/4 and the family

$$\dots, \frac{17}{-6}, \frac{-6}{5}, \frac{5}{4}, \frac{4}{13}, \frac{13}{30}, \dots$$
 (9)

When M=7 and k=10, it turns out that x=1/5, which yields the family

$$\dots, \frac{-5}{3}, \frac{3}{1}, \frac{1}{5}, \frac{5}{11}, \frac{11}{27}, \dots$$
 (10)

and k = 3 leads to x = 3, which is already in (10). Thus, we have six families of elements of $\mu(A)$.

Example 12. Given (a, b, p) = (1, 1, 2), we can prove that A_n is the *n*-th Pell-Lucas number $(\underline{A001333})$. From Theorem 2, we have two families already

$$\dots, \frac{5}{-2}, \frac{-2}{1}, \frac{0}{1}, \frac{1}{2}, \frac{2}{5}, \dots$$
 (11)

and

$$\dots, \frac{-7}{3}, \frac{3}{-1}, \frac{-1}{1}, \frac{1}{1}, \frac{1}{3}, \dots$$
 (12)

We can see that $abp^3 + (a^2 - b^2)p^2 = 8 > 0$. Then the equation from Theorem 3 becomes

$$M^2 + 6MN + N^2 = 8$$

and we have to find all M satisfying $|M| \leq 1$ and the above equation has an integer solution N. If M = 0, the relation (3) gives no satisfied value k. When M = 1, the relation leads to k = 0 or k = 1. If k = 1, we find that k = 0, which leads to the family (11). The case k = 0 leads to the family (12). When k = 0, by the same arguments, we conclude that (11) and (12) are the only satisfied families.

In the following part, we consider the sequence $(U_n)_{n\geq 0}$ defined by

$$\begin{cases} U_0 = 0, U_1 = 1, \\ U_{n+1} = pU_n + U_{n-1}. \end{cases}$$

Now, by applying Theorem 3, we explain how our results can obtain a special case of Theorem 1.1 of Bulawa and Lee [1] and, also a special case of Theorem 1.7 of Knapp et al. [4].

Corollary 13 ([4]). Let U(x) be the generating function of $(U_n)_{n\geq 0}$. Then

$$\mu(U) = \left\{ \frac{A_n^{(0,1)}}{A_{n+1}^{(0,1)}} \mid n \neq -1 \right\}.$$

Proof. We can easily see that $(U_n)_{n\geq 0}$ is $(A_n)_{n\geq 0}$ when (a,b)=(0,1). Therefore, applying Theorem 2, we have $A_n^{(0,1)}/A_{n+1}^{(0,1)}\in \mu(U)$ for all $n\neq -1$. Applying Theorem 3, we have

$$abp + (a^2 - b^2) = -1 < 0.$$

Then we must find M such that $|M| \le 1$, and the equation $M^2 + (p^2 + 2)MN + N^2 = -p^2$ has an integer solution N. If M = 0, we find out $N^2 = -p^2$, which is impossible for $p \ne 0$. In case $M = \pm 1$, let k_0 and k_0 be the values k and k_0 corresponding to k_0 .

From the definition of M, we have

$$(k_0p+1)^2 + 4k_0^2 = 1,$$

which has $k_0 = 0$ be the only integer solution. It means that the family generated by $(A_n^{(r,s)})$ is identical to the one generated by $(A_n^{(0,1)})$, which was mentioned by Theorem 2. They are also all the elements of $\mu(U)$.

Corollary 14 ([1]). Let U(x) be the generating function of $(U_n)_{n\geq 0}$. Then

- (i) $U(U_n/U_{n+1})$ is an integer for all $n \ge 0$.
- (ii) Assume that U(x) = k is an integer for some rational number x. Then there exists a non-negative integer n such that $U(U_n/U_{n+1}) = k$.

Proof.

(i) Follows easily from Theorem 2.

(ii) Recall that for $(U_n)_{n\geq 0}$, we have

$$U(x) = \frac{x}{1 - px - x^2}.$$

By induction, we can prove that $A_{-n}^{(0,1)} = (-1)^{n+1} A_n^{(0,1)}$ for $n \in \mathbb{Z}$. Then

$$\begin{split} U\left(A_{-n}^{(0,1)}/A_{-n+1}^{(0,1)}\right) &= \frac{A_{-n}^{(0,1)}A_{-n+1}^{(0,1)}}{(A_{-n+1}^{(0,1)})^2 - pA_{-n+1}^{(0,1)}A_{-n}^{(0,1)} - (A_{-n}^{(0,1)})^2} \\ &= \frac{(-1)A_n^{(0,1)}A_{n-1}^{(0,1)}}{(A_{n-1}^{(0,1)})^2 + pA_{n-1}^{(0,1)}A_n^{(0,1)} - (A_n^{(0,1)})^2} \\ &= U\left(A_{n-1}^{(0,1)}/A_n^{(0,1)}\right). \end{split}$$

By Corollary 13, $A_n^{(0,1)}/A_{n+1}^{(0,1)}$ are the precise rational values for which U(x) an integer. Therefore, if U(x) = k is an integer, we can always find $n \ge 0$ such that

$$U(A_n^{(0,1)}/A_{n+1}^{(0,1)}) = U(U_n/U_{n+1}) = k.$$

In the last part, we consider the case (a,b) = (1,1) and prove the following result:

Corollary 15. In case (a,b) = (1,1), there are no other families of $\mu(A)$, apart from those given in Theorem 2.

Proof. Since we suppose that $p \neq 0$ in the beginning of the article, we consider two cases of p: p > 0 and p < 0.

First case: p > 0. Applying Theorem 3, we need to find M such that $M^2 < p$ and the equation

$$N^{2} + (p^{2} + 2)MN + (M^{2} - p^{3}) = 0$$
(13)

has an integer solution N. The discriminant of this equation is $p^2(M^2p^2 + 4p + 4M^2)$.

It is clear that
$$M^2p^2 + 4p + 4M^2 \le M^2p^2 + 8p$$
, so if $|M| \ge 4$, we have

 $(p|M|)^2 < M^2p^2 + 4p + 4M^2 < (p|M| + 1)^2$

which implies that the discriminant cannot be a perfect square. Therefore, there can only possibly be integer solutions for N if $|M| \leq 3$. Note that if k = 0, then x = 1/(p-1), which belongs to the second family in Theorem 2. Thus, in the following part, we suppose that $k \neq 0$.

For M = 0, from (3) we have $(kp - p + 1)^2 = 4k(1 - k)$. Since 4k(1 - k) < 0 for all integers $k \neq 0, 1$, we only have k = 1. This is impossible.

13

For $M = \pm 1$, from (3) we have $(kp - p + 1)^2 = 4k(1 - k) + 1$. Since 4k(1 - k) + 1 < 0 for all integers $k \neq 0, 1$, we have k = 1, which leads to x = (M - 1)/2 by (4). Since $M = \pm 1$, we have x = 0 (which belongs to the first family in Theorem 2) or x = -1 (which belongs to the second family in Theorem 2).

For $M = \pm 2$, from (3) we have $(kp - p + 1)^2 = 4k(1 - k) + 4$. Since 4k(1 - k) + 4 < 0 for all integers $k \neq 0, 1$, we have k = 1. This is impossible.

For $M = \pm 3$, from (3) we have $(kp - p + 1)^2 = 4k(1 - k) + 9$. Since 4k(1 - k) + 9 < 0 for all integers $k \neq -1, 0, 1, 2$, we have $k \in \{-1, 1, 2\}$.

If k = -1, we have $(-2p + 1)^2 = 1$, which implies p = 1 (since $p \neq 0$)). By (4), we obtain $x \in \{-2, 1\}$. The value x = 1 belongs to the first family in Theorem 2, while x = -2 belongs to the second family in Theorem 2.

If k = 1, we imply 1 = 9, which is impossible.

If k = 2, we have p = 0 or p = -2, which contradicts our case p > 0.

Second case: p < 0. Let q = -p, applying Theorem 3, we need to find M such that $M^2 \le q$ and the equation

$$N^{2} + (q^{2} + 2)MN + M^{2} + q^{3} = 0 (14)$$

has integer solutions N.

Suppose that there exists a value of M satisfying $M^2 = q$. Then the equation (14) has an integer solution N = -M. The equation (3) gives us

$$q = (q+1-kq)^2 - 4k(1-k) = (cq+1)^2 - 4(1-c)c,$$

where c = 1 - k. This leads to the equation

$$c^{2}q^{2} + (2c - 1)q + (2c - 1)^{2} = 0. {(15)}$$

If c=0, we have $p=-1, M^2=1$, and k=1, which leads to x=0 or x=-1 by (4). Both of these values belong to families given in Theorem 2. If $c\neq 0$, in (15) we have $\Delta_q=(2c-1)^2(1-4c^2)<0$ for all integers $c\neq 0$, which leads to no solution of q or M.

Therefore, all of the other values M that we need to find satisfy $M^2 < q$ and the equation (14) has integer solutions N. Then the discriminant of (14) is $q^2(M^2q^2 + 4M^2 - 4q)$. We can clearly see that if (14) has integer solutions, $M^2q^2 + 4M^2 - 4q$ must be a perfect square. We prove that $|M| \le 1$. Otherwise, suppose that $|M| \ge 2$. Let $M^2q^2 + 4M^2 - 4q = k^2$ with $k \ge 0$. Then $(|M|q - k)(|M|q + k) = 4(q - M^2)$. Thus, both |M|q - k and |M|q + k are even numbers. Set |M|q - k = 2s and |M|q + k = 2t. Then

$$st = q - M^2$$
 and $s + t = |M|q$,

which implies $s(|M|q-s)=q-M^2 < q$. Besides, since $M^2q^2-k^2=4(q-M^2)>0$, we have s=(|M|q-k)/2>0, thus $s\geq 1$. We also see that $s=|M|q-t\leq |M|q-1$ since $t\geq 1$. Therefore, we have $(s-1)(|M|q-s-1)\geq 0$, which implies $s(|M|q-s)\geq |M|q-1$. So |M|q-1< q. By $|M|\geq 2$, we have 2q-1< q, which is impossible for $q\geq 1$.

For $|M| \leq 1$, by the same arguments as those in the case p > 0, we can prove that there are no other families of $\mu(A)$, except for those in Theorem 2.

3 Acknowledgment

The authors would like to thank the referee for many useful suggestions that helped us improve our paper, especially the suggestion for the proof of Corollary 15.

References

- [1] A. Bulawa and W. K. Lee, Integer values of generating functions for the Fibonacci and related sequences, *Fibonacci Quart.* **55** (2017), 74–81.
- [2] D. S. Hong, When is the generating function of the Fibonacci numbers an integer?, College Math. J. 46 (2015), 110–112.
- [3] M. P. Knapp, Fibonacci generating functions, *J. Integer Sequences* **27** (2024), Article 24.3.1.
- [4] M. P. Knapp, A. Lemos, and V. G. L. Neumann, Integral values of generating functions of recursive sequences, *Discrete Appl. Math.* **350** (2024), 31–43.
- [5] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001.
- [6] P. Pongsriiam, Integral values of the generating functions of Fibonacci and Lucas numbers, *College Math. J.* **48** (2017), 97–101.

2020 Mathematics Subject Classification: Primary 11B39; Secondary 11B37. Keywords: Fibonacci number, generating function, recurrence.

(Concerned with sequences $\underline{A000032}$, $\underline{A000045}$, and $\underline{A001333}$.)

Received September 22 2025; revised versions received September 23 2025; October 31 2025; November 3 2025; November 25 2025; December 7 2025. Published in *Journal of Integer Sequences*, December 11 2025.

Return to Journal of Integer Sequences home page.