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Abstract

We introduce the 2-regular integer sequence A383066 = (s(n))n≥1, which begins
0, 1, 1, 2, 3, 3, 2, . . .. We prove that the number of occurrences of an integer m ≥ 0 in
this sequence is equal to τ(m2+1), the number of divisors of m2+1. Using this fact, we
give a generating function for τ(m2 + 1). We also discuss other interesting properties
of s(n), including its relationship to the Fibonacci sequence.

1 Introduction and proof of the main result

We begin by recalling the definition of k-regular sequences, which were introduced by Al-
louche and Shallit [1] as a generalization of automatic sequences [2].

Definition 1. A sequence s(n) is k-regular if there exists an integer E such that, for all
ej > E and 0 ≤ rj ≤ kej − 1, every subsequence of s of the form s(kejn + rj) is expressible
as an Z-linear combination ∑

i

cijs(k
fijn+ bij),

where fij ≤ E, and 0 ≤ bij ≤ kfij − 1.
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In the previous definition, the integers Z can be replaced by any commutative Noetherian
ring R′, in which case we would say that s(n) is (R′, k)-regular. However, for the purposes
of this paper, we consider only integer sequences. We begin by giving some well-known
examples of 2-regular integer sequences.

Example 2. The 2-adic valuation of a positive integer n A007814, defined by v2(n) :=
sup{k ∈ N0 : 2

k | n} is a 2-regular sequence, since it satisfies the recursions{
v2(2k + 1) = 0

v2(2k) = v2(k) + 1

with initial condition v2(1) = 0.

Example 3. The Cantor sequence A005823 is a 2-regular sequence which consists of integers
whose ternary expansions contain no 1s. The Cantor sequence c(n) satisfies the recursions{

c(2k) = 3c(k) + 2

c(2k + 1) = 3c(k + 1)

with initial condition c(1) = 0.

For more examples of k-regular sequences, see Allouche and Shallit [1, pp. 186–194]. We
now state the main result of this paper.

Theorem 4. We have ∑
m≥0

τ(m2 + 1)xm =
∑
n≥1

xs(n)

where τ is the usual divisor counting function and s(n)n≥1 is a 2-regular sequence defined
recursively by 

s(4k) = 2s(2k)− s(k)

s(4k + 1) = 2s(2k) + s(2k + 1)

s(4k + 2) = 2s(2k + 1) + s(2k)

s(4k + 3) = 2s(2k + 1)− s(k)

with initial conditions s(1) = 0, s(2) = 1, s(3) = 1.

In other words, we prove that

#{n : s(n) = m} = τ(m2 + 1)

for all integers m ≥ 0.
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Figure 1: Integer pair tree.

Proof. Consider the binary tree of integer pairs (d,m) generated in the following way. We
begin with the pair (1, 0). Each pair has two children, left and right, given by the maps

L(d,m) := (d,m + d) and R(d,m) :=
(

(m+d)2+1
d

,m+ m2+1
d

)
. For the first four rows of the

tree, see Figure 1.
The involution map ι(d,m) := (m

2+1
d

,m) sends each pair to its reflection with respect to
the tree’s central line of symmetry, represented by the dotted line in Figure 1. We note that
R(d,m) = (ι ◦ L ◦ ι)(d,m), which can either be checked by direct computation or by fixing
an integer pair (d,m) on the tree and visually seeing that ι ◦L ◦ ι (reflection, left-child map,
reflection) sends (d,m) to the same pair as the right-child map R(d,m).

Lemma 5. If a pair (d,m) appears on the integer pair tree then d ≥ 1, m ≥ 0, and d divides
m2 + 1.

Proof. Suppose an integer pair (d,m) appears on the tree with the properties that d ≥ 1,
m ≥ 0, and d | (m2 + 1). We claim that these properties also hold for the transformed pairs
L(d,m) and R(d,m). It is easy to see that both transformed pairs L(d,m) and R(d,m) are
still integer pairs, that their first components are ≥ 1, and that their second components are
≥ 0. To see that the first component still divides 1+ the square of the second component, it
suffices to check that this property is preserved by L and ι, since we saw that R = ι ◦ L ◦ ι.
Indeed, the property d | (m2 + 1) is preserved by both L and ι, since

d | (m2 + 1) =⇒ d |
(
(m+ d)2 + 1

)
and

m2 + 1

d
| (m2 + 1).

The first integer pair on the tree is (1, 0), which satisfies all three properties. Therefore, all
of its descendants must also satisfy all three properties.
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Lemma 6. Suppose d ≥ 1, m ≥ 0, and d divides m2 + 1. Then the pair (d,m) appears on
the integer pair tree exactly once.

Proof. We begin by restating the lemma so that it can be proved using induction. We let
P (M) denote the statement “If d ≥ 1 divides m2 + 1 with 0 ≤ m ≤ M , then the pair (d,m)
appears on the tree exactly once.”

To prove the lemma, we show that P (M) is true for all integers M ≥ 0 by induction on
M . As our base case, we see that P (0) is true, since the pair (1, 0) appears exactly once on
the tree, in the first row. This is because L and R each increase the second component of a
pair by at least 1, so there are no more pairs on the tree with second component 0.

Now suppose M > 0. Our induction assumption is that P (M − 1) is true. Namely,
we assume that for all d ≥ 1 with d | (m2 + 1) and 0 ≤ m ≤ M − 1 we have (d,m)
appearing on the tree exactly once. We show that this implies P (M) is true by assuming
that some d ≥ 1 divides M2 + 1 and using the induction assumption to prove that (d,M)
must appear on the tree exactly once. The claim that (d,M) appears on the tree exactly
once is equivalent to the statement that there exists a unique path from the root pair (1, 0)
to (d,M) in terms of the maps L and R. It is easy to check that L−1(d,M) = (d,M−d) and

R−1(d,M) =
(

(M−d)2+1
d

,M − M2+1
d

)
. We show that exactly one of the second components

of these inverse mappings {M − d, M − M2+1
d

} is nonnegative (which we showed in the
previous lemma is a necessary condition for pairs to appear on the tree). The nonnegativity
of exactly one of {M − d, M − M2+1

d
} is a result of the inequalities

inf

{
d,

m2 + 1

d

}
≤ m < sup

{
d,

m2 + 1

d

}
,

which hold for all positive integers d andm with d | (m2+1). These inequalities can be proved
by considering the cases d ≤ m and d > m and using the fact thatm2 < m2+1 < (m+1)2 for
all m > 0. Equality occurs in the left inequality when (d,m) ∈ {(1, 1), (2, 1)}. Thus, exactly
one of the pairs {L−1(d,M), R−1(d,M)} has a nonnegative second component. Furthermore,
this component is strictly less than M . The properties d | (m2 + 1) and d ≥ 1 are clearly
preserved by L−1 and R−1. Therefore, by our induction assumption and Lemma 5, exactly
one of the pairs {L−1(d,M), R−1(d,M)} appears on the tree and there exists a unique path
from (1, 0) to this pair in terms of L and R. In other words, the pair (d,M) has exactly one
parent appearing on the tree, which is guaranteed by our induction assumption to have a
unique path back to (1, 0) in terms of L and R.

Finally, this proves that (d,M) has a unique path to (1, 0) in terms of L and R and
therefore appears on the tree exactly once, which shows that P (M) is true.

We now write only the second pair components as they appear on the integer pair tree.
Let us temporarily define s(n) as the sequence one gets by reading the integers on the second
component tree left-to-right or right-to-left, starting from the top. Figure 2 shows the first
four rows of the second component tree. For example, s(1) = 0, s(2) = 1, s(3) = 1, etc. We
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Figure 2: Second component tree.

will show that this agrees with the original definition we gave in Theorem 4. Using the new
definition, and in light of Lemmas 5 and 6, this proves that the number of occurrences of an
integer m ≥ 0 on the second component tree is equal to #{(d,m) : d ≥ 1, d | (m2 + 1)} =
τ(m2 + 1). To see that s(n) satisfies the recursions we gave in Theorem 4, we keep track
of the second components as they are changed by the maps L and R. For example, since

L(d,m) = (d,m+ d) and R(d,m) =
(

(m+d)2+1
d

,m+ m2+1
d

)
, we write mL for m+ d and mR

for m+ m2+1
d

. Figure 3 shows three generations of second pair components. Figure 4 shows
how to write components in the third generation as linear combinations of components from
the previous two generations.

We now rewrite the parent-child relationships in terms of the sequence s(n). Reading a
two-child binary tree left-to-right, we see that for a parent with index k, its left child’s index
is 2k while its right child’s index is 2k+1. Figure 5 relates three generations of components
to the corresponding indices of s(n).

Using the linear dependencies we found, we finally recover the recursions from Theorem 4,
namely 

s(4k) = 2s(2k)− s(k)

s(4k + 1) = 2s(2k) + s(2k + 1)

s(4k + 2) = 2s(2k + 1) + s(2k)

s(4k + 3) = 2s(2k + 1)− s(k).
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Figure 3: Three generations of second pair components.
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Figure 4: Linear dependencies between second pair components.

2 Other properties of the sequence

We discuss some other interesting properties of the sequence s(n). From the recursions for
s(n), it is easy to show that the row sums of the second component tree satisfy the linear
recurrence rn = 5rn−1−2rn−2 with initial conditions r0 = 0, r1 = 2. Here, rn denotes the sum
of integers on row n ≥ 0 of the second component tree, or, equivalently, rn :=

∑
2n≤t<2n+1 s(t).

By diagonalizing the 2 × 2 integer matrix corresponding to this recurrence, we write down
an exact formula for the average value of an integer on row n ≥ 0 of the tree.

Proposition 7.
1

2n

∑
2n≤t<2n+1

s(t) =
(5 +

√
17)n − (5−

√
17)n

22n−1
√
17

Proposition 8. The integer n2 + 1 is a prime number if and only if

{m : s(m) = n} = {2n, 2n+1 − 1}.

Proof. Note that s(2n) = s(2n+1−1) = n for all n ≥ 0. These correspond to the leftmost and
rightmost integers on row n of the second component tree. In other words, {2n, 2n+1 − 1} ⊆
{m : s(m) = n}. Now, if n2 + 1 is a prime number, then τ(n2 + 1) = 2 and it follows
from Theorem 4 that {m : s(m) = n} = {2n, 2n+1 − 1}. Conversely, if n2 + 1 is composite,
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m = s(k)

mL = s(2k)

mL2 = s(4k) mRL = s(4k + 1)

mR = s(2k + 1)

mLR = s(4k + 2) mR2 = s(4k + 3)

Figure 5: Dependencies re-indexed in terms of s(n).

then τ(n2 + 1) > 2 and so Theorem 4 implies there is some m /∈ {2n, 2n+1 − 1} such that
s(m) = n.

Figure 6: Line plot of the sequence s(n) for n ∈ [1, 63]

The Fibonacci sequence also makes an appearance in the second component tree. The
Fibonacci sequence is defined by the recursion Fn+1 = Fn + Fn−1 with initial conditions
F1 = 0, F2 = 1.

Proposition 9. Consider the sequence defined by

a(n) =



1, if n = 1;

2a(n− 1), if n = 4k;

a(n− 1) + 1, if n = 4k + 1;

2a(n− 1) + 1, if n = 4k + 2;

a(n− 1)− 1, if n = 4k + 3.
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Figure 7: Path inside the second component tree that runs over the Fibonacci sequence.

Fn
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· · · · · ·

Fn+2

Fn+4 Fn+3

Figure 8: Fibonacci path in the case where mL = Fn+1 and mR = Fn+2.

Then s(a(n)) = Fn, namely the nth term of the Fibonacci sequence.

Proof. Note that the recursions for a(n) are chosen so that the sequence s(a(n)) sweeps out
the path on the second component tree shown in Figure 7. Starting from the top of the
tree, move to the closest neighbor in a given direction, cycling through these four directions:
south-east, west, south-west, east.

The recursions for s(n) tell us that if we start withm = Fn and {mL,mR} = {Fn+1, Fn+2},
the children of Fn+2 will be 2Fn+2 + Fn+1 and 2Fn+2 − Fn. Using the Fibonacci recursion
we have that 2Fn+2 − Fn = Fn+2 + Fn+1 = Fn+3 and 2Fn+2 + Fn+1 = Fn+2 + Fn+3 = Fn+4.
Therefore, if mL = Fn+1 and mR = Fn+2 we trace out the path given in Figure 8. If
mL = Fn+2 and mR = Fn+1 we trace the path given in Figure 9.

Since Fn = s(a(n)) for 1 ≤ n ≤ 3, we conclude that s(a(n)) = Fn for all n ≥ 1.

Corollary 10. The integer F 2
n + 1 is composite for n > 4.

Proof. This follows from the fact that there exists m /∈ ∪n≥0{2n, 2n+1 − 1} with s(m) = Fn

for all n > 4, as can be seen in Figure 7.
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Figure 9: Fibonacci path in the case where mL = Fn+2 and mR = Fn+1.

Another way to see this fact is to use Cassini’s Identity [5], namely Fn−1Fn+1−F 2
n = (−1)n

in the case where n = 2k, as well as the related identity F2k−1F2k+3 − F 2
2k+1 = 1 in the case

where n = 2k + 1. Both identities can be proved using induction.

Corollary 11. The largest integer on row n ≥ 1 of the second component tree is F2n.

Proof. It can be seen from the recursions for the second component tree that the largest
second component on a particular row n of the integer pair tree is given by either one of the
zigzag paths RLRLRL · · · or LRLRLR · · · . This, together with Proposition 9, proves the
corollary.
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