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Abstract

We apply the multiplicative arithmetic functions strategy to sequences defined by
linear two-term recurrences. We associate Fibonacci numbers with Dirichlet convo-
lution and Lucas numbers with unitary convolution. Some Fibonacci-Lucas sums are
shown as applications by using the Kesava Menon quasi-distributive law (a distributive-
like property of Dirichlet convolution over unitary convolution) and the Fibonacci-
Lucas quotients under the Dirichlet and the unitary convolutions.

1 Introduction and preliminaries

1.1 Brief introduction and motivation

Haukkanen [9], McCarthy, and Sivaramakrishnan [17] were the first to create a bridge be-
tween the two chapters of elementary number theory: arithmetic functions and Fibonacci
numbers. In two recent papers, E. D. Schwab and G. Schwab [19, 21] found new links
between specially multiplicative (quadratic) arithmetic functions and generalized Fibonacci
numbers. These two chapters of number theory have interacted, creating the possibility
to widen the field of action for both. The basic identities of Fibonacci numbers, such as
Cassini’s, d’Ocagne’s, Catalan’s, Vajda’s, and Honsberger’s identities, are all particular cases
of Busche-Ramanujan identities from the theory of specially multiplicative arithmetic func-
tions (see [21, Theorem 3.1]). This relationship leads to interesting paths in the parallel
approach of these two chapters of elementary number theory.
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This paper focuses on some Fibonacci-Lucas-type identities using the Dirichlet con-
volution and the unitary convolution of arithmetic functions. The Kesava Menon quasi-
distributive law of Dirichlet convolution over unitary convolution (see Equation (5) below) is
a new source for Fibonacci-Lucas-type identities. For instance, the following Fibonacci-
Lucas-type identities (Fi, Li, Ji, and ji are the ith Fibonacci, Lucas, Jacobsthal, and
Jacobsthal-Lucas numbers, respectively):

n∑

i=0

Ln−iJi = jn+1 − Ln+1 (Griffiths and Bramham [8, Section 2] ) (1)

and
n∑

i=0

jn−iFi = jn+1 − Ln+1 (Koshy and Griffiths [15,Equation (2.7)]) (2)

are particular cases of a general identity (see Corollary 14) which is proved below using the
Kesava Menon quasi-distributive law.

Essentially, this paper is not only about an alternative technique for proving identities;
but also about the close relationship between arithmetic functions and Fibonacci numbers,
and their effects on each other. Fibonacci numbers are associated with Dirichlet convolution
and Lucas numbers with unitary convolution of two completely multiplicative functions (see
Equation (6) and Theorem 3 (i)). This simple observation motivated us to choose Fibonacci-
Lucas relations for our applications.

The paper is self-contained and the next Subsections 1.2 and 1.3 include all results and
notation used in Sections 2 and 3. Section 2 is devoted to Fibonacci Fa,b and Lucas La,b

multiplicative arithmetic functions; in particular to Dirichlet and unitary quotients
[
Fa,b

La,b

]
D

and
[
La,b

Fa,b

]
U
, respectively. Both quotients are used in Subsections 3.1 and 3.2 as a starting

point to establish some Fibonacci-Lucas sums. Using the Kesava Menon quasi-distributive
law, we prove Theorem 13 and implicitly Corollary 14. Perhaps Subsection 3.4 best illustrates
how the strategy of approaching Fibonacci numbers works using the tools of multiplicative
arithmetic functions.

1.2 Fibonacci-type sequences and their companions

Throughout this paper, the focus of attention is on the Fibonacci and the Lucas sequences
in their general form (i.e., (a, b)-Fibonacci and (a, b)-Lucas sequences).

The companion sequence of the famous Fibonacci sequence {Fm}m≥0 (A000045),

F0 = 0, F1 = 1, Fm+2 = Fm+1 + Fm,

is the Lucas sequence {Lm}m≥0 (A000032) defined by the same recurrence relation but with
different initial conditions

L0 = 2, L1 = 1, Lm+2 = Lm+1 + Lm.
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Some well-known Fibonacci-type numbers modify the recurrence relation slightly, leaving the
initial conditions unchanged. The Pell numbers {Pm}m≥0 (A000129), the Jacobsthal numbers
{Jm}m≥0 (A0001045), the k-Fibonacci numbers {Fk,m}m≥0 ([6, 7]), the k-Jacobsthal numbers
{Jk,m}m≥0 ([12]), are such numbers:

P0 = 0, P1 = 1, Pm+2 = 2Pm+1 + Pm;

J0 = 0, J1 = 1, Jm+2 = Jm+1 + 2Jm;

Fk,0 = 0, Fk,1 = 1, Fk,m+2 = kFk,m+1 + Fk,m;

Jk,0 = 0, Jk,1 = 1, Jk,m+2 = kJk,m+1 + 2Jk,m.

The companion of the Pell sequence (say Pell-Lucas sequence) {Qm}m≥0 ([11, A002203]),
the Jacobsthal-Lucas {jm}m≥0 ([11, A014551]), the k-Lucas {Lk,m}m≥0 ([4, 5]), and the k-
Jacobsthal-Lucas {jk,m}m≥0 ([3, 25]) sequences are defined by

Q0 = 2, Q1 = 2, Qm+2 = 2Qm+1 +Qm;

j0 = 2, j1 = 1, jm+2 = jm+1 + 2jm;

Lk,0 = 2, Lk,1 = k, Lk,m+2 = kLk,m+1 + Lk,m;

and
jk,0 = 2, jk,1 = k, jk,m+2 = kjk,m+1 + 2jk,m,

respectively.
In the mathematical literature, generalizations of Fibonacci numbers have an extensive

place. For fixed real numbers a and b (can also be complex), let R(a, b) denote (see [13]) the
set of all sequences {Am}m≥0 with initial values A0 and A1 for which all succeeding terms
are determined by

Am+2 = aAm+1 + bAm.

The set of sequences R(a, b) is a two-dimensional subspace of R∞. Two distinguished el-
ements of R(a, b) are the (a, b)-Fibonacci sequence, say {F a,b

m }m≥0, and the (a, b)-Lucas
sequence, say {La,b

m }m≥0, defined by

F
a,b
0 = 0, F a,b

1 = 1, F
a,b
m+2 = aF

a,b
m+1 + bF a,b

m

and
L
a,b
0 = 2, La,b

1 = a, L
a,b
m+2 = aL

a,b
m+1 + bLa,b

m ,

respectively. The (a, b)-Fibonacci number Binet formula and the (a, b)-Lucas number Binet
formula are (see [13, Equations (9) and (10)])

F a,b
m =

αm − βm

α− β
and La,b

n = αm + βm, (3)
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respectively, where
α + β = a and αβ = −b.

The Lucas-Fibonacci basic connection is stated by the following equation (see [13, Equation
(5)]):

L
a,b
m+1 = F

a,b
m+2 + bF a,b

m . (4)

The sequence {Ha,b
m (r, s)}m≥0 (extensively studied by Horadam [10]) as an element of

R(a, b) is a second-order linear recurrence sequence depending on four parameters (two
initial values and two in the defining recursion itself):

H
a,b
0 (r, s) = r,H

a,b
1 (r, s) = s and H

a,b
m+2(r, s) = aH

a,b
m+1(r, s) + bHa,b

m (r, s).

Extension of the definition of {Ha,b
m (r, s)}m≥0 to negative subscript is provided by the recur-

rence relation

H
a,b
−n(r, a) =

1

b
(Ha,b

−n+2 + aH
a,b
−n+1).

Now, F a,b
m = Ha,b

m (0, 1), La,b
m = Ha,b

m (2, a), and F
a,b
−1 = 1

b
, L

a,b
−1 = −a

b
, etc.

1.3 Arithmetic functions

For information on arithmetic functions, we refer to McCarthy’s [16] and Sivaramakrishnan’s
[23] books.

An arithmetic function is a complex-valued function defined on the set of positive integers.
The Dirichlet convolution f ∗g and the unitary convolution f ⊔g of two arithmetic functions
f and g are defined by

(f ∗ g)(n) =
∑

d|n

f(d)g
(n
d

)
and (f ⊔ g)(n) =

∑

d′||n

f(d′)g
( n

d′

)
,

respectively, where the summation is over the positive divisors d of n in the first case, and
over the unitary divisors d′ (i.e., d′ | n and gcd(d′, n

d′
) = 1) of n in the second case.

An arithmetic function f is called multiplicative if f(1) = 1 and f(nn′) = f(n)f(n′)
whenever gcd(n, n′) = 1. A multiplicative arithmetic function f is said to be completely
multiplicative if f(nn′) = f(n)f(n′) holds for all positive integers n and n′. The set of
multiplicative arithmetic functions M forms a group (M, ∗) under the Dirichlet convolution
and simultaneously forms a group (M,⊔) under the unitary convolution. These two groups
are isomorphic abelian groups and the multiplicative arithmetic function e defined by e(n) =
0 if n = 1 and e(n) = 0 otherwise is the identity element in both groups. In fact, (M,⊔, ∗)
is a quasi-field in the sense of Kesava Menon [14] with the following quasi-distributive law:

f ∗ (g ⊔ h) ⊔ f = (f ∗ g) ⊔ (f ∗ h), (5)

that we call the Kesava Menon quasi-distributive law.
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Note that a multiplicative arithmetic function is completely determined by its values at
the prime powers.

If f and g are two multiplicative arithmetic functions, then the quotients
[
f

g

]
D
and

[
f

g

]
U

denote the multiplicative arithmetic functions for which f =
[
f

g

]
D
∗ g and f =

[
f

g

]
U
⊔ g,

respectively. In other words,
[
f

g

]

D

= f ∗ g−1 and

[
f

g

]

U

= f ⊔ g<,

where g−1 and g< are the inverse elements of g in the groups (M, ∗) and (M,⊔), respectively.

2 Fibonacci-Lucas quotients under the Dirichlet and

the unitary convolutions

For any positive integer n, let Ω(n) be the number of prime factors of n counted with
multiplicity. If c is a non-zero complex number then the arithmetic function cΩ(n) (in short
cΩ) is completely multiplicative.

Definition 1. Given two complex numbers a and b, b 6= 0, we define the (a, b)-Fibonacci
Fa,b, and the (a, b)-Lucas La,b multiplicative arithmetic functions as

Fa,b = αΩ ∗ βΩ and La,b = αΩ ⊔ βΩ, (6)

respectively, where

α =
a+

√
a2 + 4b

2
and β =

a−
√
a2 + 4b

2
. (7)

Definition 2. We define the H(s)
a,b multiplicative arithmetic function as

H(s)
a,b(p

m) = Ha,b
m (1, s),

where p is a prime number and m is a non-negative integer.

In [21, Section 2], the authors highlighted the relationship between the multiplicative
function Fa,b and (a, b)-Fibonacci numbers, and on the other hand in [20, Section 5] the
relationship between the multiplicative function La,b and (a, b)-Lucas numbers.

Theorem 3. For complex numbers a, b and integers m, p (m non-negative and p prime) the
following identities hold:

(i) ([21, 20])

Fa,b(p
m) = F

a,b
m+1 and La,b(p

m) =

{
1, if m = 0;

La,b
m , if m > 0.
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(ii) [Fa,b

La,b

]

D

= F0,−b and

[La,b

Fa,b

]

U

= H(0)
a,b = µa ∗ Fa,b,

where µa is the multiplicative arithmetic function defined by

µa(p
m) =





1, if m = 0;

−a, if m = 1;

0, if m > 1.

(µ1 is the classical Möbius function, denoted by µ in the proof of Theorem 15.)

Proof.
(i) Since Fa,b and La,b are multiplicative, it is clear that

Fa,b(p
0) = La,b(p

0) = 1 = F
a,b
1 .

For m > 0, using the Binet formulas (see (3)) we get

Fa,b(p
m) = (αΩ ∗ βΩ)(pm) =

m∑

k=0

αkβm−k =
αm+1 − βm+1

α− β
= F

a,b
m+1,

and
La,b(p

m) = (αΩ ⊔ βΩ)(pm) = αm + βm = La,b
m .

(ii) It is straightforward to check that the inverse F−1
a,b of Fa,b in the group (M, ∗) is given

by (see also [21])

F−1
a,b (p

m) =





1, if m = 0;

−a, if m = 1;

−b, if m = 2;

0, if m > 2.

(8)

Obviously, if m = 0 and m = 1, then we have

Fa,b ∗ F−1
0,−b(p

m) = Fa,b(p
m) = La,b(p

m).

Invoking Equation (4) it follows that if m > 1 then

(Fa,b ∗ F−1
0,−b)(p

m) = Fa,b(p
m) + bFa,b(p

m−2) = F
a,b
m+1 + bF

a,b
m−1 = La,b

m = La,b(p
m).

We conclude that Fa,b = La,b ∗ F0,−b.

Now, it is clear that Ha,b(1, 0)(p
0) = H

a,b
0 (1, 0) = 1, Ha,b(1, 0)(p) = H

a,b
1 (1, 0) = 0, and

by induction we get

Ha,b(1, 0)(p
m) = Ha,b

m (1, 0) =

{
1, if m = 0;

bF
a,b
m−1, if m > 0.

(9)
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while
H

a,b
m+1(1, 0) = aHa,b

m (1, 0) + bH
a,b
m−1(1, 0) = abF

a,b
m−1 + b2F

a,b
m−2 = bF a,b

m

if m > 1. Invoking Equations (9) and (4), we may conclud that

(Fa,b ⊔Ha,b(1, 0))(p
m) = F

a,b
m+1 + bF

a,b
m−1 = La,b

m (m > 0),

and therefore La,b = Fa,b ⊔Ha,b(1, 0).
Finally, since (µa ∗ Fa,b)(p

0) = 1 and

(µa ∗ Fa,b)(p
m) =

m∑

i=0

µa(p
i)Fa,b(p

m−i) = F
a,b
m+1 − aF a,b

m = bF
a,b
m−1

if m > 0, the proof is complete.

Also taking into account the quasi-distributive law (5), we arrive at the next well-known
Fibonacci-Lucas identity.

Corollary 4. For (a, b)-Fibonacci and (a, b)-Lucas numbers, and ∆ = a2 + 4b 6= 0, the
following identity holds:

∆F
a,b
m+1 = L

a,b
m+2 + bLa,b

m . (10)

Proof. Since F−1
0,−b ∗ La,b = F−1

0,−b ∗ (Fa,b ⊔ H0
a,b), and F−1

0,−b(p
m) = 0 if m > 2, by the quasi-

distributive law (5) we have

(F−1
0,−b ∗ La,b)(p

m+2) = (F−1
0,−b ∗ Fa,b)(p

m+2) + (F−1
0,−b ∗ H0

a,b)(p
m+2) if m > 0.

Thus,

L
a,b
m+2 + bLa,b

m = F
a,b
m+3 + bF

a,b
m+1 + bF

a,b
m+1 + b2F

a,b
m−1

= aF
a,b
m+2 + 4bF a,b

m+1 − abF a,b
m

= a2F
a,b
m+1 + 4bF a,b

m+1 = ∆F
a,b
m+1.

The proof is complete.

In the special case of k-Fibonacci numbers we have

(k2 + 4)Fk,m+1 = Lk,m+2 + Lk,m. (11)

3 Applications to Fibonacci-Lucas relations

3.1 Sums involving consecutive even and odd subscript (a, b)-Lucas
numbers

As an initial application, in Theorem 5 (a) we use the convolution tool of arithmetic functions
to prove two sums that involve the first n consecutive odd and even subscript (a, b)-Lucas
numbers. Then we extend these sums in part (b).

7



Theorem 5. For any non-negative integers m and n, and b 6= 0 we have the following:

(a) (i)
∑n

i=0(−b)n−iL
a,b
2i+1 = F

a,b
2n+2;

(ii)
∑n

i=0(−b)n−iL
a,b
2i = F

a,b
2n+1 + (−b)n;

(b) (i)

n∑

i=0

(−b)n−iL
a,b

2(i+m)+1 = F
a,b

2(n+m)+2 +H
a,b
2m+1((−b)n, 0)

= F
a,b

2(n+m)+2 + (−1)nbn+1F
a,b
2m

= F
a,b
n+m+1L

a,b
n+m+1 + (−1)nbn+1F a,b

m La,b
m ;

(ii)

n∑

i=0

(−b)n−iL
a,b

2(i+m) = F
a,b

2(n+m)+1 +H
a,b
2m((−b)n, 0)

= F
a,b

2(n+m)+1 + (−1)nbn+1F
a,b
2m−1

= F
a,b
n+m+1L

a,b
n+m + (−1)nbn+1F a,b

m L
a,b
m−1.

Proof.

(a) We use the first quotient
[
Fa,b

La,b

]
D
= F0,−b, that is Fa,b = La,b ∗F0,−b. It is straightfor-

ward to check that F0,−b is given by

F0,−b(p
m) =

{
(−b)

m
2 , if m is an even integer;

0, if m is an odd integer.

(i) Let ℓ = 2n+ 1. Then

F
a,b
2n+2 = Fa,b(p

ℓ) =
ℓ∑

i=0

La,b(p
i)F0,−b(p

ℓ−i) =
n∑

i=0

(−b)n−iL
a,b
2i+1.

(ii) If ℓ = 2n then

F
a,b
2n+1 + (−b)n = Fa,b(p

ℓ) + (−b)n

=
ℓ∑

i=0

La,b(p
i)F0,−b(p

ℓ−i) + (−b)n

= F0,−b(p
ℓ) +

n∑

i=1

L
a,b
2i F0,−b(p

2n−2i) + (−b)n

=
n∑

i=0

(−b)n−iL
a,b
2i .
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(b) We prove the first part of b(i) and b(ii) by induction on m. For m = 0 see (a). For
m = 1 we get

n∑

i=0

(−b)n−iL
a,b

2(i+1)+1 =
n∑

i=0

(−b)n−i(aLa,b

2(i+1) + bL
a,b
2i+1)

= aF
a,b
2n+3 + aH

a,b
2 ((−b)n, 0) + bF

a,b
2n+2

= F
a,b
2n+4 +H

a,b
3 ((−b)n, 0).

and

n∑

i=0

(−b)n−iL
a,b

2(i+1) =
n∑

i=0

(−b)n−i(aLa,b
2i+1 + bL

a,b
2i )

= aF
a,b
2n+2 + bF

a,b
2n+1 + (−1)nbn+1

= F
a,b
2n+3 +H

a,b
2 ((−b)n, 0),

Thus we can proceed to the second step of induction (m > 1). We have

n∑

i=0

(−b)n−iL
a,b

2(i+m)+1 =
n∑

i=0

(−b)n−i(aLa,b

2(i+m) + bL
a,b

2(i+m)−1)

= aF
a,b

2(n+m)+1 + aH
a,b
2m((−b)n, 0) + bF

a,b

2(n+m) + bH
a,b
2m−1((−b)n, 0)

= F
a,b

2(n+m)+2 +H
a,b
2m+1((−b)n, 0).

and

n∑

i=0

(−b)n−iL
a,b

2(i+m) =
n∑

i=0

(−b)n−i(aLa,b

2(i+m)−1 + bL
a,b

2(i+m)−2)

= aF
a,b

2(n+m) + aH
a,b
2m−1((−b)n, 0) + bF

a,b

2(n+m)−1 + bH
a,b
2m−2((−b)n, 0)

= F
a,b

2(n+m)+1 +H
a,b
2m((−b)n, 0),

The proof of the first part of (b) (i) and (b) (ii) is complete. By applying the following
lemma, the second part of our proof is also solved.

Lemma 6. For all non-negative integer m, the following identity holds:

Ha,b
m ((−b)n, 0) = (−1)nbn+1F

a,b
m−1.

The proof of this lemma is by induction on m and is omitted.
Now, before proceeding to the proof of the last part we make the following remark.
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Remark 7. Bitim and Topal [1, Corollary 2] established the following Fibonacci-Lucas rela-
tion:

n∑

i=0

(−b)iLa,b
2i = (−b)−nF

a,b
n+1L

a,b
n .

This relation together with Part (a) (ii) of Theorem 5, gives the following formula for odd
subscript (a, b)-Fibonacci numbers:

F
a,b
2n+1 = F

a,b
n+1L

a,b
n + (−1)n+1bn. (12)

The identity (12) is missing from the fairly comprehensive list of connected formulas (2.1)-
(2.13) inserted in [1], but the twin formula (with even subscript),

F
a,b
2n = F a,b

n La,b
n , (13)

appears in [1, (2.3)].

Now, using these two Fibonacci-Lucas identities (12) and (13), the last part of the theo-
rem becomes an immediate consequence.

Remark 8. Perhaps the simplest proof of Theorem 5(a) is the one below, using (4) and then
rearranging the parentheses.

n∑

i=0

(−b)n−iL
a,b
2i+1 =

n∑

i=0

(−b)n−i(F a,b
2i+2 + bF

a,b
2i )

= (−b)nbF a,b
0 +

n−1∑

i=0

((−b)n−iF
a,b
2i+2 + (−b)n−i−1bF

a,b
2i+2) + (−b)0F a,b

2n+2 = F
a,b
2n+2.

This procedure proves the Jacobsthal version of Theorem 5(a) in [22]. The perspective offered
by the initial proof in Theorem 5(a) is broader and highlights the interdependence of the
two chapters of number theory: multiplicative arithmetic functions and Fibonacci numbers
(in this regard, see also [21, Section 2]).

Corollary 9. The k-Fibonacci version of Theorem 5(b)(ii) is the following:

n∑

i=0

(−1)iLk,2(i+m) = (−1)nFk,2(n+m)+1 + Fk,2m−1.

This identity is fully consistent with the following formula given in [18, Theorem 3.4]:

n∑

i=0

(−1)iLk,2(i+m) =
1

k2 + 4
(Lk,2m−2 − Lk,2(n+m) + Lk,2m − Lk,2(n+m+1)),

only if n is odd, since Lk,u+Lk,u+2 = (k2+4)Fk,u+1 (see Equation (11)). If the non-negative
integer n is even then the two minus signs before Lk,2(n+m) and Lk,2(n+m+1) should have been
plus.
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3.2 Regarding even and odd subscript (a, b)-Fibonacci numbers

In this subsection, the (a, b)-Lucas numbers from Theorem 5 (a) are replaced by the (a, b)-
Fibonacci numbers; and the new Fibonacci-Lucas relations are proven directly using Equa-
tion (10). Taking into consideration Corollary 4, we can observe that the origin of these
relations is the Fibonacci-Lucas quotients (ii) of Theorem 3 and the quasi-distributive law
(5). Then we consider particular cases referring to ordinary Fibonacci, Pell and Jacobsthal
numbers.

Theorem 10. For all non-negative integers n, and ∆ = a2 + 4b 6= 0, we have

(a) (i)
∑n

i=0(−b)n−iF
a,b
2i = 1

∆
(La,b

2n+1 + (−1)n+1abn);

(ii)
∑n

i=0(−b)n−iF
a,b
2i+1 =

1
∆
(La,b

2n+2 + (−1)n2bn+1);

(b) (i)
∑n

i=0(−1)iF2i =
1
5
((−1)nL2n+1 − 1);

∑n

i=0(−1)iL2i = (−1)nF2n+1 + 1;

(ii)
∑n

i=0(−1)iF2i+1 =
1
5
((−1)nL2n+2 + 2);

∑n

i=0(−1)iL2i+1 = (−1)nF2n+2;

(c) (i)
∑n

i=0(−1)iP2i =
1
8
((−1)nQ2n+1 − 2);

∑n

i=0(−1)iQ2i = (−1)nP2n+1 + 1;

(ii)
∑n

i=0(−1)iP2i+1 =
1
8
((−1)nQ2n+2 + 2);

∑n

i=0(−1)iQ2i+1 = (−1)nP2n+2;

(d) (i)
∑n

i=0(−1)i2n−iJ2i =
1
9
((−1)nj2n+1 − 2n);∑n

i=0(−1)i2n−ij2i = (−1)nJ2n+1 + 2n;

(ii)
∑n

i=0(−1)i2n−iJ2i+1 =
1
9
((−1)nj2n+2 + 2n+2);∑n

i=0(−1)i2n−ij2i+1 = (−1)nJ2n+2;
(for the alternating Jacobsthal-Lucas sums see [22]).

Proof.
(a) Using the formula ∆F a,b

n = L
a,b
n+1 + bL

a,b
n−1 (see Equation (10)), where ∆ = a2+4b, we

get
(i)

n∑

i=0

(−b)n−iL
a,b
2i+1 = ∆

n∑

i=0

(−b)n−iF
a,b
2i − b

n∑

i=0

(−b)n−iL
a,b
2i−1

= ∆
n∑

i=0

(−b)n−iF
a,b
2i + (−b)n+1(−a

b
) +

n∑

i=0

(−b)n−iL
a,b
2i+1 − L

a,b
2n+1.

Hence

∆
n∑

i=0

(−b)n−iF
a,b
2i = L

a,b
2n+1 + (−1)n+1abn,

which is the desired identity.
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(ii)

n∑

i=0

(−b)n−iL
a,b
2i =

∆

b

n∑

i=0

(−b)n−iF
a,b
2i+1 −

1

b

n∑

i=0

(−b)n−iL
a,b
2i+2

=
∆

b

n∑

i=0

(−b)n−iF
a,b
2i+1 +

n∑

i=0

(−b)n−iL
a,b
2i + (−1)n+12bn − 1

b
L
a,b
2n+2

=
∆

b

n∑

i=0

(−b)n−iF
a,b
2i+1 − (−b)nLa,b

0 +
n∑

i=0

(−b)n−iL
a,b
2i − 1

b
L
a,b
2n+2.

Hence
∆

b

n∑

i=0

(−b)n−iF
a,b
2i+1 =

1

b
L
a,b
2n+2 + (−b)n2.

The proof of (a) is now complete.
The formulas (b), (c), and (d) are special cases of Theorems 10(a) and 5(a) for the

Fibonacci (Lucas), Pell (Pell-Lucas), and Jacobsthal (Jacobsthal-Lucas) numbers, respec-
tively.

The established formulas are of Fibonacci-Lucas type in the sense that both numbers
(Fibonacci and Lucas) are present in the formula. Of course, we can find more friendly
formulas by giving up this restriction . For instance, by eliminating the (a, b)-Lucas number
L
a,b
2n+1 from Theorem 10 (a)(i), we get the next corollary.

Corollary 11. For (a, b)-Fibonacci numbers the following identity holds:

n∑

i=0

(−b)n−iF
a,b
2i = F a,b

n F
a,b
n+1.

Proof. Using Equations (4), (10), (12), and (13) we get

∆F a,b
n F

a,b
n+1 = (La,b

n+1 + bL
a,b
n−1)F

a,b
n+1

= F
a,b
2n+2 + (La,b

n+1 − aLa,b
n )F a,b

n+1

= F
a,b
2n+2 + F

a,b
2n+2 − aLa,b

n F
a,b
n+1

= F
a,b
2n+2 + F

a,b
2n+2 − a(F a,b

2n+1 + (−b)n)

= F
a,b
2n+2 + bF

a,b
2n + (−1)n+1abn

= L
a,b
2n+1 + (−1)n+1abn.

The proof is complete by Theorem 10 (a)(i).
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3.3 Convolution sums involving (a, b)-Fibonacci and (a, b)-Lucas
numbers

As a new application of our approach, we start with a proof of a theorem using the Dirichlet
inverse of the multiplicative arithmetic function Fa,b. Then Kesava Menon quasi-distributive
law leads to the Fibonacci-Lucas convolution sum. A specific case reveals the identities (1)
and (2) mentioned in Section 1.

Theorem 12. Let c be a non-zero complex number such that c2 − ac− b 6= 0 and let n be a
positive integer. We have

n∑

i=1

cn−iF
a,b
i =

cn+1 − cF
a,b
n+1 − bF a,b

n

c2 − ac− b
(14)

Proof. If f = Fa,b ∗ cΩ then f(pn−1) =
∑n−1

i=0 Fa,b(p
i)cΩ(pn−i) =

∑n

i=1 c
n−iF

a,b
i , and cΩ =

F−1
a,b ∗ f.
Now, Equation (14) holds for n = 1. We assume that n > 1. Invoking Equation (8) we

have

cn = cΩ(pn) = (F−1
a,b ∗ f)(pn) =

n+1∑

i=1

cn+1−iF
a,b
i − a

n∑

i=1

cn−iF
a,b
i − b

n−1∑

i=1

cn−1−iF
a,b
i

= c

n∑

i=1

cn−iF
a,b
i + F

a,b
n+1 − a

n∑

i=1

cn−iF
a,b
i − b

c

n∑

i=1

cn−iF
a,b
i +

b

c
F a,b
n ,

and the proof is finished.

In what follows, a fundamental role is played by the Kesava Menon quasi-distributive law
(5).

Theorem 13. We have

n∑

i=1

L
a,b
n−iF

c,d
i =

αn+1 − αF
c,d
n+1 − dF c,d

n

α2 − cα− d
+

βn+1 − βF
c,d
n+1 − dF c,d

n

β2 − cβ − d
, (15)

if any of the roots α, β of the quadratic equation x2 − ax − b = 0 (see (7)) are not zeros of
x2 − cx− d.

Proof. Using the quasi-distributive law (5) we get

(Fc,d ∗ La,b) ⊔ Fc,d = (Fc,d ∗ αΩ) ⊔ (Fc,d ∗ βΩ).

Since (Fc,d ∗ La,b)(p
n−1) =

∑n

i=1 L
a,b
n−iF

c,d
i − F c,d

n we have

[(Fc,d ∗ La,b) ⊔ Fc,d](p
n−1) =

n∑

i=1

L
a,b
n−iF

c,d
i .
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Invoking Equation (14), it follows that

[(Fc,d ∗ αΩ) ⊔ (Fc,d ∗ βΩ)](pn−1) =
n∑

i=1

αn−iF
c,d
i +

n∑

i=1

βn−iF
c,d
i

=
αn+1 − αF

c,d
n+1 − dF c,d

n

α2 − cα− d
+

βn+1 − βF
c,d
n+1 − dF c,d

n

β2 − cβ − d
,

and the proof is finished.

In the case of a = c and b 6= d, Equation (15) is significantly simplified. We thus arrive
(via the Kesava Menon quasi-distributive law) to the Equations (1) and (2) mentioned at
the beginning of the paper.

Corollary 14. If b 6= d, then

(a)
n∑

i=1

L
a,b
n−iF

a,d
i =

L
a,b
n+1 − L

a,d
n+1

b− d
=

n∑

i=1

L
a,d
n−iF

a,b
i ; (16)

(b) (i) ([8, Section 2], [2,Theorem 1.1] and [15, (2.6), (2.7)]—see also (1) and (2))

n∑

i=1

Ln−iJi = jn+1 − Ln+1 =
n∑

i=1

jn−iFi;

(ii)

2
n∑

i=1

Pi =
1

2
(Qn+1 − 2) =

n∑

i=1

iQn−i;

(iii)
n∑

i=1

L2(n−i)(2
i − 1) = L2n+2 − 2n+1 − 1 =

n∑

i=1

(2n−i + 1)F2i.

Proof. (a) Using Equation (15), we get

n∑

i=1

L
a,b
n−iF

a,d
i =

αn+1 − αF
a,d
n+1 − dF a,d

n

α2 − aα− d
+

βn+1 − βF
a,d
n+1 − dF a,d

n

β2 − aβ − d

=
αn+1 + βn+1 − aF

a,d
n+1 − 2dF a,d

n

b− d
=

L
a,b
n+1 − L

a,d
n+1

b− d

=
L
a,d
n+1 − L

a,b
n+1

d− b
=

n∑

i=1

L
a,d
n−iF

a,b
i .

(b) It is straightforward to see that (i), (ii), and (iii) follow immediately from (a).
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(i) The ordinary Fibonacci and Lucas sequences {Fn}n≥0 and {Ln}n≥0, respectively, are
recovered when a = b = 1, and the Jacobsthal and Jacobsthal-Lucas sequences {Jn}n≥0 and
{jn}n≥0, respectively, are recovered when a = 1 and b = 2.

(ii) The sequence of non-negative integers and the constant sequence 2, 2, 2, . . . are the
(2,−1)-Fibonacci and the (2,−1)-Lucas sequences, respectively. The Pell and Pell-Lucas
sequences are the (2, 1)-Fibonacci and the (2, 1)-Lucas sequences, respectively.

(iii). The sequences (2n − 1) and (2n + 1) are the Mersenne sequence (which is the
(3,−2)-Fibonacci sequence) and the Mersenne-Lucas sequence (the (3,−2)-Lucas sequence),
respectively. The even-numbered Fibonacci and Lucas sequences are the (3,−1)-Fibonacci
and the (3,−1)-Lucas sequences, respectively.

3.4 The Kesava Menon quasi-distributive law again

As a final application to our approach, we prove the (a, b)-Fibonacci convolution sum using
again the quasi-distributive law (5).

Theorem 15. ([24, Theorem 4]) For (a, b)-Fibonacci and (a, b)-Lucas numbers, and ∆ =
a2 + 4b 6= 0, we have

∆
n∑

i=0

F
a,b
i F

a,b
n−i = (n+ 1)La,b

n − 2F a,b
n+1. (17)

Proof. Let F̃a,b be the multiplicative arithmetic function defined by

F̃a,b = (αΩ ∗ βΩµ) ⊔ (βΩ ∗ αΩµ).

Note that if f is a completely multiplicative arithmetic function then the usual product fµ is
the inverse element of f in the commutative group (M, ∗). Thus, using the quasi-distributive
law (5) we get

Fa,b ∗ F̃a,b ⊔ Fa,b = (αΩ ∗ αΩ) ⊔ (βΩ ∗ βΩ). (18)

We observe that if p is a prime number then F̃a,b(p) = 0, and if n > 1 then

F̃a,b(p
n) = αn − αn−1β + βn − βn−1α = αn + βn − αβ(αn−2 + βn−2) = La,b

n + bL
a,b
n−2.

So, by Equation (10), we have

F̃a,b(p
n) =

{
1, if n = 0;

∆F
a,b
n−1, if n > 0.

Now, since

[(Fa,b ∗ F̃a,b) ⊔ Fa,b](p
n) =

n∑

i=0

Fa,b(p
n−i)F̃a,b(p

i) + Fa,b(p
n)

= F
a,b
n+1 +∆

n∑

i=0

F
a,b
i F

a,b
n−i + F

a,b
n+1,
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and
[(αΩ ∗ αΩ) ⊔ (βΩ ∗ βΩ)](pn) = (n+ 1)αn + (n+ 1)βn = (n+ 1)La,b

n ,

the proof is complete by (18).
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