
23 11

Article 25.4.1
Journal of Integer Sequences, Vol. 28 (2025),2

3

6

1

47

Rigged Horse Numbers and their Modular Periodicity

Benjamin Schreyer
Departments of Computer Science and Physics

University of Maryland
College Park, Maryland 20742

USA
and

Plasma Physics Division
U.S. Naval Research Laboratory

Washington, D.C. 20375
USA

benontheplanet@gmail.com

Abstract

The Fubini numbers count the permutations of horse racing where ties are possible.

The closely related r-horse numbers count the finishes of a horse race where some subset

of r horses agree to finish the race in a specific relative strong ordering. We express the

r-Fubini numbers as a sum of r index-shifted sequences of Fubini numbers weighted

with the signed Stirling numbers of the first kind. We use a novel shift operator

counting argument. Further, we demonstrate the eventual modular periodicity of r-

Fubini numbers. Their maximum period is determined to be the Carmichael function

of the modulus. The maximum period occurs in the case of an odd modulus for Fubini

numbers.

1 Introduction

1.1 Orderings weak and strong

The notation N denotes the set of positive integers. The symbol N0 = N ∪ {0} represents
the set of nonnegative integers.

1

mailto: benontheplanet@gmail.com


Definition 1. Fubini numbers, denoted F (n), count weak orderings of n elements, with
n ∈ N0.

In the case of a horse race, the ordering is weak, an equivalence determines a tie, and strict
less-than or greater-than relations determine a clear succession of horses. The horse numbers
or ordered Bell numbers are other common names for the number of weak orderings. When
ties are impossible, these orderings become regular (strong) permutations. Velleman and Call
[12] gave another intuitive example for Fubini number counting: the number of combinations
for a combination lock in which all buttons are used exactly once, and multiple buttons can
be pressed simultaneously.

1.2 Rigged weak orderings

Definition 2. The constraint of relative strong ordering applies to a subset X ′ of a weakly
ordered set X. The constraint demands that relations between elements of X ′ are only strict
less-than or greater-than relations. An element x′ ∈ X ′ can be set equivalent to another x
only if x /∈ X ′.

Definition 3. The r-Fubini numbers, Fr(n), count weak orderings of a set with cardinality
n such that r elements are distinguished and constrained to follow relative strong ordering.

Definition 4. The r-horse numbers, Hr(n), count weak orderings such that r elements of a
set of cardinality n are distinguished and constrained to follow a specified strong permutation
relative to each other.

Every permutation counted by Hr(n) has r! rearrangements of the specified permutation
x1 < x2 < · · · < xr. The rearrangements cover all cases where the r elements are mutually
inequivalent. We can write this as the equation

r!Hr(n) = Fr(n). (1)

The r-horse numbers count a nontrivial restriction on weakly ordered permutations. A
restriction where two or more elements must be tied is the same as reducing the effective
number of elements in the counting. The equivalent elements act as a single unit in every
permutation.

1.3 The Stirling numbers of the first and second kind

Definition 5. The signed Stirling numbers of the first kind, s(n, k), count partitions of n
elements into k cycles. The sign gives the parity of n − k. For combinatorics, we have
n, k ∈ N0. The two-index sequence s(n, k) can be arranged into a matrix. We index rows
with n and columns with k. Let ŝ denote the infinite matrix of s(n, k).

Definition 6. The Stirling numbers of the second kind, S(n, k), count ways to partition a
set of n elements into k subsets. The matrix of S(n, k), labeled Ŝ, uses the same indexing
as ŝ.
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We introduce the Stirling numbers with the addition of three useful properties. The
notation I is the identity operation. Advanced Combinatorics [4, Eqn. 6f, p. 144] gives the
first proposition.

Proposition 1. The matrices ŝ and Ŝ are inverses of each other, so

ŝŜ = Ŝŝ = I. (2)

Both ŝ and Ŝ are lower triangular.

Concrete Mathematics [6, Eqn. 6.13, p. 263] provides the second important property.

Proposition 2. The Stirling numbers of the first kind give the coefficients for powers of the

argument of the falling factorial, so

x(x− 1) · · · (x− n+ 1) =
n
∑

k=0

s(n, k)xk. (3)

The falling factorial of x with n multiplicative terms, x(x− 1) · · · (x− n+ 1), is written
more succinctly as (x)n

¯
. We give a definition needed to discuss eventual modular periodicity.

Definition 7. A sequence f(n) is eventually periodic modulo K, with K ∈ N, if there exists
a q ∈ N such that for large enough a ∈ N0:

f(a) ≡ f(a+ q) (mod K). (4)

Finally, S(n, k), with fixed k, is eventually modular periodic in n under any modulus.
The periodicity property can be shown using the following formula from the paper Stirling
matrix via Pascal matrix [3, p. 55].

Lemma 3. The Stirling numbers of the second kind have the explicit form

S(n, k) =
1

k!

k
∑

t=0

(−1)k−t

(

k

t

)

tn. (5)

The periodicity of modular exponentiation determines eventual modular periodicity for
S(n, k) for fixed k.

1.4 The Carmichael function

Definition 8. The function λ(K) is the Carmichael function. The Carmichael function
gives the least common multiple of all periods of integer exponentiation modulo K ∈ N. It
is often useful in the context of the multiplicative group of integers modulo K.
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The Carmichael function has the following recurrence [5] using Euler’s totient function

ϕ(n):

λ(K) =











ϕ(K), if K ∈ {1, 2, 4} or n is an odd prime power;
1
2
ϕ(K), if K = 2r, r ≥ 3;

lcm(λ(p1), λ(p2), . . .), if K = pa11 pa22 · · · paRR .

(6)

We state two properties of modular exponentiation [11, p. 190].

Proposition 4. For all a, a ∈ {0, 1, . . . , K − 1}, we have

aR ≡ aλ(K)+R (mod K). (7)

Here R = max(R1, R2, . . . , RN) given K = pR1

1 pR2

2 · · · pRN

N .

For integers coprime to K a stronger statement holds.

Proposition 5. For all b coprime to K

bλ(K) ≡ 1 (mod K). (8)

1.5 Operations preserving eventual periodicity

Scaling by an integer, addition with another modular periodic sequence, and index shifting
preserve the eventual modular periodicity of a sequence. Upper bounds for the period do
not change under scaling and shifting. The least common multiple of the sequences’ periods
must be considered to include the addition of sequences.

1.6 Shift operators

We use shift operators to formally show that r-Fubini numbers are expressible using the
signed Stirling numbers of the first kind.

Definition 9. Operators E and E−1 are the left and right shift operators, respectively. We
abbreviate repeated shift operations as Em with m ∈ Z. A zero shift E0 is also the identity
operation I.

Computation of the r-Fubini numbers uses the left and right shift operators on the
sequence F (0), F (1), . . . , F (n + r). We only consider one-sided sequences. Shift operators
are linear when applied to a sequence. Importantly, sequences also distribute over addition
of shift operators, which means (AEa+BEb)C(n) = AC(n+a)+BC(n+b). If a sequence of
numbers occupies the entries of a vector, a shift operator has a matrix representation. Zero
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is placed in the first index of the vector sequence when E−1 is applied. We introduce vector
notation with the upper arrow, indexing by subscript, and provide explicit definitions:

(E ~C)n = ~Cn+1 (9)

(E−1 ~C)n =

{

0, if n = 0;
~Cn−1, if n 6= 0.

(10)

1.7 Related works

In this text, the r-horse and r-Fubini counted permutations are indexed by denoting the
total number of ordered elements n and the size of the subset that must follow a fixed or
arbitrary strong ordering r. Other authors [10] consider a total of n + r elements. Rácz
[10] studied related orderings and r-Fubini numbers, referencing an expression in terms of
the r-Stirling numbers of the second kind and factorials for Fr(n). Broder [2] characterized
the r-Stirling numbers and explored related orthogonality relations. Mező gave a proof of
periodicity for Fr(n) (mod 10) in a paper on last digit periodicity [9], extending a proof by
Gross [7]. Further, Asgari and Jahangiri [1] showed the eventual periodicity of the r-Fubini
numbers modulo an arbitrary natural number. Asgari and Jahangiri also gave a formula for
the period.

1.8 Contributions

We present a new counting proof. The proof shows that a linear composition of shifted Fubini
number sequences is the r-Fubini numbers for fixed r. The resulting formula is identical in
structure to a formula for the r-Bell numbers, which count r-partitions, derived by Nyul
and Kereskényi-Balogh [8, Thm. 4.2]. We further formulate proofs for the eventual modular
periodicity of Fubini and r-Fubini numbers, which give an upper bound for their modular
eventual period. The upper bound is the Carmichael function λ(K). The natural number
K is the modulus. When K is odd, we show that λ(K) is the period. The results apply to
the combinatorial problem of r-horse numbers under a division by r!.

2 General rigged orderings of r ≤ n elements

Let G(n) be the number of orderings of a set that contains n elements. The orderings
counted observe the restriction of no ties (relative strong ordering) on some subset of m of
the n elements. We first establish a lemma required to prove a weighted sum expression for
Fr(n).

Lemma 6. Consider a set of n elements with G(n) allowed orderings. Including a new

element that is inequivalent with some subset of m elements following relative strong ordering

gives G(n+ 1)−mG(n) = (E −mI)G(n) orderings.
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Proof. Consider adding the new element with no restriction. The new number of orderings
is G(n + 1), since the new element has no constraint upon it. The number of elements is
simply increased. Restricting the counting to permutations with x′ inequivalent to any of
the m elements requires the multiplication principle.

When we introduce x′ it can be set equivalent to one of m elements to form a disallowed
permutation. The choices of the permutation of the original set, counted by G(n), and which
equivalence is made on x′, counted by m, are independent. Independence is clear since all
pairs of elements in the relatively strongly ordered subset are inequivalent. Therefore, the
multiplication principle determines that mG(n) new disallowed permutations exist. The
lemma follows from the complement principle.

The counting above is repeatable for an increasingly large subset that follows a rela-
tive strong ordering. The application of each counting step yields a new counting that is
compatible with the lemma.

2.1 The r-Fubini counting with shift operators

Theorem 7. For indices n and r, with n, r ∈ N0 and r ≤ n:

Hr(n) =
1

r!

r
∑

j=0

s(r, r − j)F (n− j). (11)

Proof. The proof first counts the case where the subset {x1, x2, x3, . . . , xr} follows relative
strong ordering, which gives the r-Fubini numbers. We divide by r! to specify a permutation
of the r elements to get the r-horse numbers. To begin counting, we first remove the counting
of the r elements to be re-added following relative strong ordering. This leaves weak per-
mutations of n− r elements, which is E−rF (n). Elements of the distinguished subset rejoin
the ordered set, with no ties within the subset {x1, x2, x3, . . . , xr}. The result is subtractions
of ascending integer multiples of the identity operation from E by Lemma 6. We make the
following r steps, adding back each element of {x1, x2, x3, . . . , xr}.

• Add x1 inequivalent to any x ∈ ∅. The count is EE−rF (n).

• Add x2 inequivalent to any x ∈ {x1}. The count is (E − 1I)EE−rF (n).

• Add x3 inequivalent to any x ∈ {x1, x2}. The count is (E − 2I)(E − 1I)EE−rF (n).

• · · ·

• Add xr inequivalent to any x ∈ {x1, x2, . . . , xr−1}. The count is (E− (r− 1)I) · · · (E−
2I)(E − 1I)EE−rF (n).
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All elements are included with their desired ordering with those from {x1, x2, . . . , xr} inequiv-
alent. All counted orderings have {x1, x2, . . . , xr} relatively strongly ordered. The falling
factorial appears with argument E and r terms, so

Fr(n) = (E)r
¯
E−rF (n). (12)

The falling factorial expands as a sum according to Proposition 2, giving the equation

Fr(n) =

(

r
∑

j=0

s(r, j)Ej

)

E−rF (n). (13)

The proposition applies because the multiplication of operators acts the same as multiplying
polynomial variables. The effect of the shift operators is now trivial upon F (n), so Fr(n)
can be written without operators as

Fr(n) =
r
∑

j=0

s(r, j)F (n− r + j). (14)

One can re-index the sequences to

Fr(n) =
r
∑

j=0

s(r, r − j)F (n− j). (15)

Given Fr(n), dividing by r! gives Hr(n) the form

Hr(n) =
1

r!

r
∑

j=0

s(r, r − j)F (n− j).

An interesting notation can be defined. We place a shift operator in the binomial coeffi-
cient. Combining this notation, Equation 1, and Equation 12 gives

Hr(n) =

(

E

r

)

F (n− r). (16)

It is interesting to consider the implications of applying such an operator multiple times to
a sequence.

2.2 A useful alternating recurrence

Corollary 8. For n ∈ N0, Fubini numbers have the recurrence

F (n) = n!−
n
∑

j=1

s(n, n− j)F (n− j). (17)
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Proof. If the weakly ordered set is {x1, x2, . . . , xn} is constrained such that {x1, x2, . . . , xn}
are relatively strongly ordered, the number of arrangements is Fn(n) = n!. It then follows
from Theorem 7 that

n! =
n
∑

j=0

s(n, n− j)F (n− j). (18)

We rearrange after the substitution s(0, 0) = 1 to the result

F (n) = n!−
n
∑

j=1

s(n, n− j)F (n− j).

3 Linear transformation between strong and weak or-

derings

Corollary 9. Let ~f and ~F be infinite vectors with entries n! and F (n), respectively. Vectors
~f and ~F obey the following relations involving Stirling matrices ŝ and Ŝ:

Ŝ ~f = ~F (19)

ŝ ~F = ~f. (20)

Proof. We rewrite Equation 18 by re-indexing the last indices of both sequences. We now
have that

n
∑

j=0

s(n, j)F (j) = n!. (21)

The infinite lower triangular matrix of s(n, k) multiplied on vector ~F is exactly the sum

derived. The equations ŝ ~F = ~f and ~F = Ŝ ~f immediately follow, using the inverse of ŝ being
Ŝ (2).

Corollaries 8 and 9 show that Equation 15 provides intermediate transformations between
strong and weak ordering. The intermediate sequences have combinatorial interpretation.
Matrices Ŝ and ŝ are lower triangular. Therefore, the relations of Corollary 9 hold for finite
cases, specifically for truncations of ~f , ~F , ŝ, and Ŝ.

4 Modular periodicity

Below, we determine eventual modular periodicity for F (n) and Fr(n) via the perspective of
exponentially generated sequences and transformations of such sequences that preserve their
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structure. In addition, we set an upper bound for the period. The bound is the Carmichael
function of the modulus. The case of odd modulus K has a period λ(K), which we prove
directly by Asgari and Jahangiri’s period formula [1].

4.1 Fubini numbers modulo K

Corollary 10. The Fubini numbers are eventually periodic modulo K = pR1

1 pR2

2 · · · pRN

N , with

maximum possible period λ(K). Periodicity holds for n ≥ max(R1, R2, . . . RN).

Proof. Consider the first relation of Corollary 9, which is

~F = Ŝ ~f

The entries of ~f are n!. Clearly, n! (mod K) is zero for n ≥ K. The relation stands in a
simplified form modulo K as

F (n) ≡
K−1
∑

k=0

S(n, k)k! (mod K). (22)

Fubini numbers moduloK are written as a finite sum of S(n, k) with coefficients independent
of n. Each S(n, k) (mod K) term contributes sums of exponential dependence in n via
Lemma 3. The weighted sum of modular exponentiations jn, with j ∈ N0, is eventually
modular periodic. Let R = max(R1, R2, . . . RN) given K = pR1

1 pR2

2 · · · pRN

N . The Carmichael
function bounds the period of modular exponentiation since

jR+λ(K) ≡ jR (mod K). (23)

All the exponentials jn, each with fixed coefficients, must enter periodicity by n = R.
Therefore, their sum is modular periodic for n ≥ R. The longest possible period of F (n)
(mod K) is λ(K) because λ(K) is the lcm of all periods of exponentiation modulo K.

4.2 Exact Carmichael periodicity for odd K

Corollary 11. For F (n) (mod K), if K is odd, then the eventual modular period of the

sequence is λ(K).

Proof. According to Asgari and Jahangiri [1, Thm. 10], the period for this case is lcm(ϕ(pR1

1 ),
ϕ(pR2

2 ), . . . , ϕ(pRN

N )) where pRi

i are the prime power factors of K. When m is an odd prime
power, we have ϕ(m) = λ(m). The result is the following expression for the eventual period
q:

q = lcm(λ(pR1

1 ), λ(pR2

2 ), . . . , λ(pRN

N )). (24)

Finally, we apply the recurrence for λ(n) (6) to find that

q = λ(K). (25)
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4.3 Extension to r-Fubini numbers

Corollary 12. The r-Fubini numbers are eventually periodic modulo K for fixed r, with

maximum period λ(K). The sequence’s periodicity holds when n ≥ r − 1 + R. Here R =
max(R1, R2, . . . RN) given K = pR1

1 pR2

2 · · · pRN

N .

Proof. The Fubini numbers F (n) are eventually modular periodic by Theorem 10. Next,
observe the operation r!

(

E

r

)

E−r on F (n) to generate Fr(n) = r!
(

E

r

)

E−rF (n), per Equation
16. The operation preserves the structure of F (n) as a weighted sum of exponentials of n.
The sum modulo K has a maximum period of λ(K). Shift operators might delay the periodic
onset for some terms, so we add r−1 to the onset index. Consider that Fr(n) includes terms
with argument shifts of F (n). Some F (n − a) term in Fr(n) only has argument R (ending
its initial aperiodic procession) when n = a + R. The largest such a is r − 1 according to
Equation 15. Note s(b, 0) = 0 when b > 0.

5 Remarks

5.1 Analogy between ordered and unordered Bell numbers

Remark 13. Consider the formula for r-Bell numbers given by Nyul and Kereskényi-Balogh
[8, Thm. 4.2], rewritten with n, r in our notation it reads

Br(n) =
r
∑

j=0

s(r, r − j)B(n− j).

The formula for r-Fubini numbers given in this work (15) is remarkably similar. The proof
given here should apply to r-Bell numbers with some adjustment. Explaining this similarity
could yield insight into other problems susceptible to operator counting.
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[5] P. Erdős, C. Pomerance, and E. Schmutz, Carmichael’s lambda function, Acta Arith.

58 (1991), 363–385.

[6] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics (2nd Ed.), Pear-
son Education, 1994.

[7] O. A. Gross, Preferential arrangements, Amer. Math. Monthly 69 (1962), 4–8.
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