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Abstract

In this paper, we study the excedance distribution over permutations while consid-
ering the parameters of cycle length and the number of cycles. We refer to the number
of such permutations as the associated Stirling Eulerian number. Moreover, if we con-
sider the permutations in which the first s integers are in different cycles, we denote
their count as the associated s-Stirling Eulerian number. We provide a formula defining
these numbers, along with their generating functions. We establish q-analogues and
offer extensions of the results.

1 Introduction

The Stirling numbers of the first kind, denoted Sn,k, count the permutations with k cycles
over n objects. These are classical numbers. Appell [1], Carlitz [5, 6], Comtet [7], Foata
[8], Riordan [13], Tricomi [15] have defined the associated Stirling numbers of the first kind,
denoted d(n, k), which count the numbers of permutations over n objects having exactly k
cycles, where each cycle has a length 2 or greater. These numbers are defined as follows:

d(n+ 1, k) = n
(

d(n, k) + d(n− 1, k − 1)
)

, (1)

with d(n, 1) = (n− 1)! and d(n, k) = 0 for n ≤ 2k − 1.
The generating function D(q, u) =

∑

k

∑

n d(n, k)q
k un

n!
has the closed form

D(q, u) = (exp(−u)/(1− u))q. (2)
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Belbachir and Bousbaa [2], as well as Broder [4] have conducted in-depth studies of these
numbers.

Definition 1. An r-cycle is a cycle in a permutation of length r. A circular permutation
over [n] is a permutation consisting of an n-cycle. An r-cycle permutation is a permutation
in which each cycle has length r.

An r−-cycle (respectively, r+-cycle) permutation is a permutation where each cycle length
is at most r (respectively, greater than r). An involution is a 2−-cycle permutation. Fol-
lowing Broder’s definitions [4], we define the number of r−-cycle (respectively, r+-cycle)
permutations as the r−-associated (respectively, r+-associated) Stirling number of the first
kind.

An (r−, k)-cycle (respectively, (r+, k)-cycle) permutation is an r−-cycle (respectively,
r+-cycle) permutation consisting of k cycles. If each cycle has length r, we refer to it
as an ((r), k)-cycle permutation. Furthermore, if the first s integers lie in distinct cycles,
we define an (r−, k, s)-cycle (respectively, (r+, k, s)-cycle) permutation as an (r−, k)-cycle
(respectively, (r+, k)-cycle) permutation. The r−-associated s-Stirling number of the first
kind (respectively, r+-associated s-Stirling number of the first kind) counts the number of
such permutations. If the length of each cycle is equal to r, we call it an ((r), k, s)-cycle
permutation.

An (r−, ⋆, s)-cycle permutation (respectively, (r+, ⋆, s)-cycle permutation) is an r−-cycle
(respectively, r+-cycle) permutation where the first s integers are in distinct cycles.

We can generalize this by considering an (r1) · · · (rℓ)-cycle permutation consisting of cycles
of lengths 1 < r1 < · · · < rℓ, and r1 · · · rs-cycle permutations, where the first s integers are
in distinct cycles of lengths ri > 1 for i = 1, . . . , s.

An ((r1) · · · (rℓ), k)-cycle permutation is an (r1) · · · (rℓ)-cycle permutation with k cycles,
and an ((r1) · · · (rℓ), k, s)-cycle permutation has the first s integers in distinct cycles. An
r1 · · · rs(rs+1) · · · (rℓ)-cycle permutation is a permutation where the first s integers belong to
different cycles, each of length ri > 1 for i = 1, . . . , s, and the remaining cycles have lengths
1 < rs+1 < · · · < rℓ.

An r⋆1 · · · r
⋆
ℓ -cycle permutation is a permutation that does not contain any cycles of length

ri for 1 ≤ i ≤ ℓ.

Definition 2. An integer i is a fixed point of a permutation σ if σ(i) = i.

A derangement is a permutation without fixed points. We can also define a derangement
as a 1+-cycle permutation.

Definition 3 (Rakotondrajao [12]). An s-fixed-points-permutation is a permutation whose
set of fixed points is a subset of the set [s], and the first s integers lie in different cycles.

For example, the permutation (1 4)(2)(3)(5 7)(6) is a (0+, 5, 3)-cycle permutation and
not a 3-fixed-points-permutation.

Definition 4. An integer i is an excedance for a permutation σ if σ(i) > i.
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The number of permutations of n objects with exactly m excedances is the classical
Eulerian number An,m. They satisfy the following relation:

An,m = (n−m)An−1,m−1 + (m+ 1)An−1,m, (3)

with A0,0 = 1 and A0,1 = 0. The egf of the Eulerian polynomial

An(x) =
∑

σ∈Sn

xe(σ) =
∑

m

An,mx
m (4)

has the closed form

A(x, u) =
∑

n

An(x)
un

n!
=

x− 1

x− exp ((x− 1)u)
. (5)

Many works on Eulerian numbers can be easily found in the literature, including those
by Foata and Schützenberger [8], Mantaci and Rakotondrajao [11], Riordan [13], Stanley
[14]. The function P(x, u) defined by

P(x, u) =
ln(A(x, u)) + u(x− 1)

x
, (6)

is the primitive of A(x, u) and is computed combinatorially in Sec. 3.
Note that a permutation is a 0+-cycle permutation, and a derangement a 1+-cycle per-

mutation. The length of an r-cycle permutation is a multiple of r and the length of an
((r), k)-cycle permutation is equal to kr. We are interested in the study of associated Stir-
ling Eulerian numbers. More precisely, we consider the parameter of the number of cycles
with the constraint on the length of cycles in the study of excedance distribution over permu-
tations. We also study the same distribution by adding the placement of the first s integers.
Recurrence relations, formulas, exponential generating functions, and their q-analogues are
provided. We extend Brenti’s results [3, Sec. 7] on his study of a q-analogue of the Eulerian
polynomials, as well as general identities. A general identity extends the result on derange-
ment numbers established by Ksavrelof and Zeng [9], along with new identities. We provide
generalizations of our results by specifying the lengths of cycles. Note that the associated
Stirling numbers of the first kind d(n, k) in Equation (1) enumerate the (1+, k)-cycle permu-
tations, while D(q, x) in Equation (2) is a q-analogue of the exponential generating function
(egf) of the derangement numbers. We denote by e(σ) the number of excedances of the
permutation σ and by c(σ) the number of cycles of σ. The parameter q associated with the
number of cycles defines the q-analogue in our study. We use the expression Stirling number
to refer to the Stirling number of the first kind and introduce the notation in each section
throughout this paper.
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2 Circular permutations

Cn the set of circular permutations over [n]

Cn,m |{σ ∈ Cn : e(σ) = m}| Th. 5 Eq. (7)

Cn(x)
∑

m Cn,mx
m =

∑

σ∈Cn
xe(σ) Th. 5 Eq. (8)

C(x, u)
∑

n

∑

σ∈Cn
xe(σ)u

n

n!
=
∑

n Cn(x)
un

n!
Th. 6 Eq. (9)

Cr− the set of r−-cycle circular permutations

Cr−(x, u)
∑r

n=0

∑

σ∈Cn
xe(σ)u

n

n!
=
∑r

n=0 Cn(x)
un

n!
Th. 7 Eq. (10)

Cor. 12 Eq. (15)

Cr+ the set of r+-cycle circular permutations

C(r)(x, u)
∑

σ∈Cr
xe(σ)u

r

r!
= Cr(x)

ur

r!
Th. 8 Eq. (11)

Cr+(x, u)
∑

n≥r+1

∑

σ∈Cn
xe(σ)u

n

n!
=
∑

n≥r+1Cn(x)
un

n!
Th. 9 Eq. (12)

Cor. 33 Eq. (33)

Table 1: Notation.

Theorem 5. For all integers n ≥ 2 and 1 ≤ m ≤ n, we have

Cn,m = An−1,m−1 with C1,0 = 1 (7)

and
Cn(x) = xAn−1(x). (8)

Proof. Let n ≥ 2 and m ≥ 1. Let π ∈ Cn be a permutation such that e(π) = m. It is
common to put the smallest letter at the beginning of the cycle. The integer 1 is always an
excedance for a circular permutation. The remaining permutation after this integer, which
is an ordinary permutation over the set {2, . . . , n}, has m − 1 excedances. Multiplying by
xm and summing over m in Equation (7), we get

Cn(x) = xAn−1(x).

Theorem 6. The exponential generating function of the excedance distribution over circular
permutations has the closed form

C(x, u) =
∑

n≥0

∑

π∈Cn

xe(π)u
n

n!
= lnA(x, u). (9)
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Proof. Since Cn(x) = xAn−1(x), we get

∑

n≥2

Cn(x)
un

n!
=
∑

n≥2

xAn−1(x)
un

n!
,

= x(P(x, u))− xu.

Then, we obtain

u+
∑

n≥2

Cn(x)
un

n!
= u+ x

ln(A(x, u)) + u(x− 1)

x
− xu.

Therefore, we have
C(x, u) = ln(A(x, u)).

Theorem 7. For a fixed integer r ≥ 1, the exponential generating function of the excedance
distribution over circular r−-cycle permutations has the closed form

Cr−(x, u) =
r
∑

n=1

Cn(x)
un

n!
= u+ x

r−1
∑

n=1

An(x)
un+1

(n+ 1)!
. (10)

Proof. From Equation (8), we have

r
∑

n=2

Cn(x)
un

n!
= x

r
∑

n=2

An−1(x)
un

n!
.

r
∑

n=1

Cn(x)
un

n!
= u+ x

r−1
∑

n=1

An(x)
un+1

(n+ 1)!
.

Theorem 8. For a fixed integer r ≥ 2, the exponential generating function of the excedance
distribution over circular r-cycle permutations has the closed form

C(r)(x, u) = xAr−1(x)
ur

r!
. (11)

Theorem 9. For a fixed integer r ≥ 2, the exponential generating function of the excedance
distribution over circular r+-cycle permutations has the closed form

Cr+(x, u) =
∑

n≥r+1

Cn(x)
un

n!
= ln

(

A(x, u) exp
(

−u− x
r−1
∑

i=1

Ai(x)
ui+1

(i+ 1)!

)

)

. (12)
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Proof. We have

Cr+(x, u) = C(x, u)− Cr−(x, u),

= lnA(x, u)− u− x
r−1
∑

i=1

Ai(x)
ui+1

(i+ 1)!
,

= ln

(

A(x, u) exp
(

−u− x
r−1
∑

i=1

Ai(x)
ui+1

(i+ 1)!

)

)

.

3 r−-cycle permutations

(n1, . . . , nk)!
n1 + · · ·+ nk

n1! · · ·nk!
Sr−

n the set of r−-cycle permutations

Ar−

n,m |{σ ∈ Sr−

n : e(σ) = m}| Th. 10 Eq. (13)

r−-associated Stirling Eulerian number

Ar−

n (x)
∑

m Ar−

n,mx
m =

∑

σ∈Sr−
n

xe(σ)

Ar−(x, u)
∑

n

∑

σ∈Sr−
n

xe(σ)u
n

n!
=
∑

nA
r−

n (x)
un

n!
Th. 11 Eq. (14)

P(x, u) the primitive of A(x, u) with respect to u Cor. 13 Eq. (16)

Sr−,k
n the set of (r−, k)-cycle permutations

Ar−

n,m,k |{σ ∈ Sr−,k
n : e(σ) = m}|

Ar−

n,k(x)
∑

m Ar−

n,m,kx
m =

∑

σ∈Sr−,k
n

xe(σ)

Ar−

k (x, u)
∑

n

∑

σ∈Sr−,k
n

xe(σ)u
n

n!
=
∑

nA
r−

n,k(x)
un

n!
Th. 14 Eq. (17)

Ar−(q, x, u)
∑

n

∑

σ∈Sr−,k
n

xe(σ)qc(σ)
un

n!
q-analogue of Ar

−

(x, u) Th. 15 Eq. (18)

Cor. 16 Eq. (19)

Sr−,⋆,s
n the set of (r−, ⋆, s)-cycle permutations

[Ar−

n,m]s |{σ ∈ Sr−,⋆,s
n : e(σ) = m}|

[Ar−

n (x)]s
∑

m[A
r−

n,m]sx
m =

∑

σ∈Sr−,⋆,s
n

xe(σ)

[Ar−(x, u)]s
∑

n

∑

σ∈Sr−,⋆,s
n

xe(σ)u
n

n!
=
∑

n[A
r−

n (x)]s
un

n!
Th. 17 Eq. (20)

[Ar−

n,m,k]s |{σ ∈ Sr−,k,s
n : e(σ) = m}|

[Ar−

n,k(x)]s
∑

m[A
r−

n,m,k]sx
m =

∑

σ∈Sr−,k,s
n

xe(σ)
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[Ar−

k (x, u)]s
∑

n

∑

σ∈Sr−,k,s
n

xe(σ)u
n

n!
=
∑

n[A
r−

n,k(x)]s
un

n!
Th. 18 Eq. (21)

[

Ar−(q, x, u)
]

s

∑

n

∑

σ∈Sr−,⋆,s
n

xe(σ)qc(σ)
un

n!
q-analogue of [Ar

−

(x, u)]s Th. 19 Eq. (22)

Table 2: Notation.

Theorem 10. For a fixed integer r ≥ 2, for all integers n and m such that 0 ≤ m ≤ n, we
have

Ar−

n+1,m =
r−1
∑

j=1

(

n

j

)

∑

i≥0

Cj+1,iA
r−

n−j,m−i + Ar−

n,m. (13)

Proof. Consider the integer n+ 1 in an r−-cycle permutation of Sr−

n+1.

1. If n + 1 is a fixed point, the remaining elements form a permutation of [n] with m
excedances, where the lengths of the cycles are at most r. Therefore, there are Ar−

n,m

possibilities.

2. Otherwise, we have
(

n
j

)

Cj+1,i ways to form a cycle of length j + 1 with i excedances

that contains the integer n + 1, for 1 ≤ j ≤ n. The remaining elements of [n] form a
permutation with m − i excedances, whose cycle lengths are at most r. Thus, we get
∑r−1

j=1

(

n
j

)
∑

i≥0 Cj+1,iA
r−

n−j,m−i possibilities.

Theorem 11. For a fixed integer r ≥ 2, the exponential generating function of the r−-
associated Stirling Eulerian numbers has the closed form

Ar−(x, u) = exp

(

u+ x

r−1
∑

j=1

Aj(x)
uj+1

(j + 1)!

)

. (14)

Proof. Since

Ar−

n+1,m =
r−1
∑

j=1

(

n

j

)

∑

i≥0

Cj+1,iA
r−

n−j,m−i + Ar−

n,m,

we have

Ar−

n+1(x) =
r−1
∑

j=1

(

n

j

)

Cj+1(x)A
r−

n−j(x) + Ar−

n (x).
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We get

∂

∂u
Ar−(x, u) =

∑

n≥0

r−1
∑

j=1

(

n

j

)

Cj+1(x)A
r−

n−j(x)
un

n!
+ Ar−(x, u),

=
r−1
∑

j=1

Cj+1(x)
uj

j!
Ar−

n−j(x)
un−j

(n− j)!
+ Ar−(x, u),

=
r−1
∑

j=1

Cj+1(x)
uj

j!
Ar−(x, u) + Ar−(x, u).

Hence,

ln (Ar−(x, u)) =
r−1
∑

j=1

Cj+1(x)
uj+1

(j + 1)!
+ u.

Finally, we have

Ar−(x, u) = exp
(

u+
r−1
∑

j=1

Cj+1(x)
uj+1

(j + 1)!

)

= exp
(

u+ x
r−1
∑

j=1

Aj(x)
uj+1

(j + 1)!

)

.

Corollary 12. For all integers r ≥ 2, we have

Cr−(x, u) = lnAr−(x, u). (15)

Corollary 13. The primitive of the exponential generating function of the Eulerian numbers
has the closed form

P(x, u) =
ln(A(x, u)) + u(x− 1)

x
. (16)

Proof. A permutation without restrictions on the cycle length can be considered an ordinary
permutation. From Equation (14), we deduce

exp(u+ x
∑

n≥1

An(x)
un+1

(n+ 1)!
) = A(x, u),

u+ x
∑

n≥1

An(x)
un+1

(n+ 1)!
= lnA(x, u),

u+ x(P(x, u)− u) = lnA(x, u).

Thus, we have

P(x, u) =
lnA(x, u) + u(x− 1)

x
.
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Theorem 14. For fixed integers r ≥ 2 and k, the exponential generating function of the
excedance distribution over (r−, k)-cycle permutations has the closed form

Ar−

k (x, u) =
(lnAr−(x, u))k

k!
=

(

u+ x
r−1
∑

n=1

An(x)
un+1

(n+ 1)!

)k

k!
. (17)

Proof. A permutation of Sr−,k
n is a product of k disjoint circular permutations of length

smaller or equal than r, hence

Ar−

n,m,k =
1

k!

∑

i1,...,ik≤r
i1+···+ik=n

∑

j1+···+jk=m

(i1, . . . , ik)! Ci1,j1 · · ·Cik,jk .

We get

Ar−

n,k(x) =
1

k!

∑

i1,...,ik≤r
i1+···+ik=n

(i1, . . . , ik)! Ci1(x) · · ·Cik(x),

and

Ar−

k (x, u) =
1

k!
(

r
∑

n=1

Cn(x)
un

n!
)k =

(Cr−(x, u))k

k!
,

=
(lnAr−(x, u))k

k!
, from Equation (15),

=
1

k!

(

u+ x

r−1
∑

n=1

An(x)
un+1

(n+ 1)!

)k

, from Equation (14).

Theorem 15. For a fixed integer r ≥ 2, a q-analogue exponential generating function of the
r−-associated Stirling Eulerian numbers has the closed form

Ar−(q, x, u) = exp

(

q
(

u+ x

r−1
∑

j=1

Aj(x)
uj+1

(j + 1)!

)

)

. (18)

Proof. From equation (17), we get

∑

k≥0

Ar−

k (x, u)qk =
∑

k≥0

(

u+ x
r−1
∑

j=1

Aj(x)
uj+1

(j + 1)!

)k

k!
qk,

= exp

(

q
(

u+ x

r−1
∑

j=1

Aj(x)
uj+1

(j + 1)!

)

)

.
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Corollary 16. For all integer r ≥ 2, we have

Ar−(q, x, u) =
(

Ar−(x, u)
)q

. (19)

Theorem 17. For a fixed integer r ≥ 2, the partial differential exponential generating func-
tion of the r−-associated s-Stirling Eulerian numbers has the closed form

∂s[Ar−(x, u)]s
∂us

=

(

1 + x
r−1
∑

i=1

Ai(x)
ui

i!

)s

Ar−(x, u). (20)

Proof. Considering the first s− 1 integers and their cycles, we have

[Ar−

n+s,m]s =
∑

i1+···+is−1=n
0≤i1,...,is−1≤r−1

(i1, . . . , is−1)!
∑

j1+···+js=m

Ci1+1,j1 · · ·Cis−1+1,js−1A
r−

n+1−
∑s−1

ℓ=1 iℓ,js
.

We get

[Ar−

n+s(x)]s =
∑

i1+···+is−1=n
0≤i1,...,is−1≤r−1

(i1, . . . , is−1)! Ci1+1(x) · · ·Cis−1+1(x)A
r−

n+1−
∑s−1

ℓ=1 iℓ
(x),

and

∂s[Ar−(x, u)]s
∂us

=
(

r−1
∑

i=0

Ci+1(x)
ui

i!

)s−1∂Ar−(x, u)

∂u
,

=
(

1 +
r−1
∑

i=1

Ci+1(x)
ui

i!

)s−1(

1 + x
r−1
∑

i=1

Ai(x)
ui

i!

)

Ar−(x, u),

=
(

1 + x
r−1
∑

i=1

Ai(x)
ui

i!

)s

Ar−(x, u).

Theorem 18. For fixed integers r, k and s, the partial differential exponential generating
function of the excedance distribution over (r−, k, s)−cycle permutations has the closed form

∂s[Ar−

k (x, u)]s
∂us

=

(

1 + x
r−1
∑

i=1

Ai(x)
ui

i!

)s (
lnAr−(x, u)

)k−s

(k − s)!
. (21)

Proof. Considering the first s integers and their cycles, we have

[Ar−

n+s,m,k]s =
∑

i1+···+is=n
0≤i1,...,is≤r−1

(i1, . . . , is)!
∑

m1+···+ms+mt=m

Ci1+1,m1 · · ·Cis+1,ms
Ar−

n−
∑s

l=1 il,mt,k−s.
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We get

[Ar−

n+s,k(x)]s =
∑

i1+···+is=n
0≤i1,...,is≤r−1

(i1, . . . , is)! Ci1+1(x) · · ·Cis+1(x)A
r−

n−
∑s

l=1 il,k−s(x),

and

∂s[Ar−

k (x, u)]s
∂us

=

(

r−1
∑

i=0

Ci+1(x)
ui

i!

)s

Ar−

k−s(x, u) = (1 +
r−1
∑

i=1

Ci+1(x)
ui

i!
)s
(lnAr−(x, u))k−s

(k − s)!
,

=

(

1 + x
r−1
∑

i=1

Ai(x)
ui

i!

)s
(lnAr−(x, u))k−s

(k − s)!
.

Theorem 19. For fixed integers r and s, a partial differential q-analogue exponential gener-
ating function of the excedance distribution over (r−, ⋆, s)-cycle permutations has the closed
form

∂s[Ar−(q, x, u)]s
∂us

= qs

(

1 + x

r−1
∑

i=1

Ai(x)
ui

i!

)s
(

Ar−(x, u)
)q

. (22)

Proof. We immediately have the result by multiplying by qk the right member of Equa-
tion (21) and summing over k.

4 r-cycle permutations

S
(r)
n the set of r-cycle permutations

A
(r)
n,m |{σ ∈ S

(r)
n : e(σ) = m}| Th. 20 Eq. (23)

A
(r)
n (x)

∑

m A
(r)
n,mxm =

∑

σ∈S
(r)
n

xe(σ)

A(r)(x, u)
∑

nA
(r)
n (x)

un

n!
the egf Th. 21 Eq. (24)

S
(r),k
n the set of ((r), k)-cycle permutations

A
(r)
n,m,k |{σ ∈ S

(r),k
n : e(σ) = m}|

A
(r)
n,k(x)

∑

m A
(r)
n,m,kx

m =
∑

σ∈S
(r),k
n

xe(σ)

A
(r)
k (x, u)

∑

n

∑

σ∈S
(r),k
n

xe(σ)u
n

n!
=
∑

n A
(r)
n,k(x)

un

n!
Th. 22 Eq. (25)

A(r)(q, x, u)
∑

n

∑

σ∈S
(r),k
n

xe(σ)qc(σ)
un

n!
q-analogue of A(r)(x, u) Th. 23 Eq. (26)

S
(r),⋆,s
n the set of ((r), ⋆, s)-cycle permutations

11



[A
(r)
n,m]s |{σ ∈ S

(r),⋆,s
n : e(σ) = m}|

[A
(r)
n (x)]s

∑

m[A
(r)
n,m]sx

m =
∑

σ∈S
(r),⋆,s
n

xe(σ)

[A(r)(x, u)]s
∑

n[A
(r)
n (x)]s

un

n!
its egf Th. 27 Eq. (27)

[A
(r)
k (x, u)]s

∑

n

∑

σ∈S
(r),⋆,s
n

xe(σ)u
n

n!
Th. 28 Eq. (28)

[A(r)(q, x, u)]s
∑

n

∑

σ∈S
(r),k,s
n

xe(σ)qc(σ)
un

n!
q-analogue of [A(r)(x, u)]s Th. 29 Eq. (29)

Table 3: Notation.

Theorem 20. For a fixed integer r ≥ 2, for all integers n ≥ m ≥ 0, we have the following
formula

A
(r)
n+1,m =

(

n

r − 1

)

∑

k≥1

Cr,kA
(r)
n−(r−1),m−k. (23)

Proof. First, consider the integer n+ 1 and construct the cycle that contains it in a permu-
tation of Sr

n+1. To do this, we choose r−1 integers from [n] and form a circular permutation
with n + 1 that has k excedances, where 1 ≤ k ≤ m − 1. There are

(

n−1
k

)

Cr,k possibilities
for this step. Next, to obtain a permutation of [n+ 1] with m excedances, where each cycle
length is equal to r, we consider the remaining n− (r− 1) integers and form a permutation
of [n − (r − 1)] with m − k excedances, ensuring that each cycle length is also equal to r.
This construction gives us the desired result.

Theorem 21. For a fixed integer r ≥ 2, the exponential generating function of the numbers
A

(r)
n,m has the closed form

A(r)(x, u) = exp
(

xAr−1(x)
ur

r!

)

. (24)

Proof. From Equation (23), we get

A
(r)
n+1(x) =

(

n

r − 1

)

Cr(x)A
(r)
n−r+1(x).

Let us consider the following variable change r − 1 = r′, we have

A
(r)
n+1(x) =

(

n

r′

)

Cr′+1(x)A
(r)
n−r′(x).

We deduce

∂

∂u
A(r)(x, u) =

∑

n≥0

(

n

r′

)

Cr′+1(x)A
(r)
n−r′(x)

un

n!
=
∑

n≥0

Cr′+1(x)
ur′

r′!
A

(r)
n−r′(x)

un−r′

(n− r′)!
,

= Cr′+1(x)
ur′

r′!
A(r)(x, u).

12



Thus,
(Ar(x, u))′u
A(r)(x, u)

= Cr′+1(x)
ur′

r′!
.

Integrating with respect to u, we have

A(r)(x, u) = exp
(

Cr′+1(x)
ur′+1

(r′ + 1)!

)

= exp
(

xAr′(x)
ur′+1

(r′ + 1)!

)

.

Thus,

A(r)(x, u) = exp
(

xAr−1(x)
ur

r!

)

.

Theorem 22. For fixed integers r ≥ 2 and k, the exponential generating function of the
excedance distribution over ((r), k)−cycle permutations has the closed form

A
(r)
k (x, u) =

1

k!

(

xAr−1(x)
ur

r!

)k

=

(

lnA(r)(x, u)
)k

k!
. (25)

Proof. A permutation of S
(r),k
n is a product of k disjoints circular permutation of lenght r,

hence

A
(r)
n,m,k =

1

k!

(

n

r

)

· · ·

(

n− (k − 1)r

r

)

∑

m1+···+mk=m

Cr,m1 × · · · × Cr,mk
.

We get

A
(r)
n,k(x) =

1

k!

n!

(r!)k
(Cr(x))

k.

We deduce

A
(r)
k (x, u) =

1

k!

(Cr(x))
kukr

(r!)k
=

1

k!

(

xAr−1(x)
ur

r!

)k

.

Theorem 23. For a fixed integer r ≥ 2, a q-analogue exponential generating function of the
number A

(r)
n,m,k has the closed form

A(r)(q, x, u) = exp
(

qxAr−1(x)
ur

r!

)

. (26)

Proof. We immediately have the result by multiplying by qk the Equation (25) and summing
over k.

Corollary 24. For fixed integers r ≥ 2 and n, we have

∑

π∈Sr,k
n

xe(π)qc(π) =







(rk)!

(r!)k k!
xkqkAr−1(x)

k, if n = kr ;

0 otherwise.

13



Corollary 25. For fixed integers r ≥ 2 and n, we have

|Sr
n| =







n!

rn/r (n/r)!
, if r | n ;

0 otherwise.

Corollary 26. For a fixed integer r ≥ 2, we have

∑

n≥0

|Sr
n|
un

n!
= exp (ur/r).

Theorem 27. For fixed integers r ≥ 2 and s, we have

∂s[A(r)(x, u)]s
∂us

= xs

(

Ar−1(x)
ur−1

(r − 1)!

)s

A(r)(x, u). (27)

Proof. Since

[A
(r)
n+s,m]s =

(

n

r − 1

)

· · ·

(

n− (s− 1)(r − 1)

r − 1

)

∑

m1+···+ms+mt=m

Cr,m1 · · ·Cr,ms
A

(r)
n−s(r−1),mt

,

we get

[A
(r)
n+s(x)]s =

(

n

r − 1

)

· · ·

(

n− (s− 1)(r − 1)

r − 1

)

(Cr(x))
sA

(r)
n−s(r−1)(x).

We deduce

∂s[A(r)(x, u)]s
∂us

=
(

Cr(x)
ur−1

(r − 1)!

)s

A(r)(x, u) = xs
(

Ar−1(x)
ur−1

(r − 1)!

)s

A(r)(x, u).

Theorem 28. For fixed integers r ≥ 2, k and s, the partial differential exponential gener-
ating function of the excedance distribution over ((r), k, s)-cycle permutations has the closed
form

∂s[A
(r)
k (x, u)]s
∂us

= xs

(

Ar−1(x)
ur−1

(r − 1)!

)s (
lnA(r)(x, u)

)k−s

(k − s)!
. (28)

Proof. Let us consider the first s integers and their cycles

[A
(r)
n+s,m,k]s =

(

n

r − 1

)

· · ·

(

n− (s− 1)(r − 1)

r − 1

)

×

∑

m1+···+ms+mt=m

Cr,m1 · · ·Cr,ms
A

(r)
n−s(r−1),mt,k−s.

14



We get

∂s[A
(r)
k (x, u)]s
∂us

=
(

Cr(x)
ur−1

(r − 1)!

)s

A
(r)
k−s(x, u) =

(

xAr−1(x)
ur−1

(r − 1)!

)s
(lnA(r)(x, u))k−s

(k − s)!
.

Theorem 29. For fixed integers r ≥ 2 and s, a partial differential q-analogue exponential
generating function of the excedance distribution over ((r), ⋆, s)-cycle permutations has the
closed form

∂s[A(r)(q, x, u)]s
∂us

= qsxs

(

Ar−1(x)
ur−1

(r − 1)!

)s
(

A(r)(x, u)
)q

. (29)

Proof. From Equation (28), we get

∂s[A(r)(q, x, u)]s
∂us

=
∑

k≥0

xs

(

Ar−1(x)
ur−1

(r − 1)!

)s
(lnA(r)(x, u))k−s

(k − s)!
qk−sqs,

= qsxs

(

Ar−1(x)
ur−1

(r − 1)!

)s

exp (q lnA(r)(x, u)).

Hence, the result follows.

5 r+-cycle permutations

Sr+

n the set of r+-cycle permutations

Ar
n,m |{σ ∈ Sr+

n : e(σ) = m}| Th. 30 Eq. (30)

r-associated Stirling Eulerian number Th. 31 Eq. (31)

Ar
n(x)

∑

m Ar
n,mx

m =
∑

σ∈Sr+
n

xe(σ)

Ar(x, u)
∑

n A
r
n(x)

un

n!
the egf Th. 32 Eq. (32)

Sr+,k
n the set of (r+, k)-cycle permutations

Ar
n,m,k |{σ ∈ Sr+,k

n : e(σ) = m}|

Ar
n,k(x)

∑

m Ar
n,m,kx

m =
∑

σ∈Sr+,k
n

xe(σ)

Ar
k(x, u)

∑

n A
r
n,k(x)

un

n!
Th. 34 Eq. (34)

Ar(q, x, u)
∑

k

∑

n A
r
n,k(x)q

ku
n

n!
q-analogue of Ar(x, u) Th. 35 Eq. (35)

Sr+,⋆,s
n the set of (r+, ⋆, s)-cycle permutations

15



[Ar
n,m]s |{σ ∈ Sr+,⋆,s

n : e(σ) = m}|
[Ar

n(x)]s
∑

m[A
r
n,m]sx

m =
∑

σ∈Sr+,⋆,s
n

xe(σ)

[Ar(x, u)]s
∑

n

∑

σ∈Sr+,⋆,s
n

xe(σ)u
n

n!
Th. 36 Eq. (36)

[Ar
k(x, u)]s

∑

n

∑

σ∈Sr+,k,s
n

xe(σ)u
n

n!
Th. 37 Eq. (37)

[Ar(q, x, u)]s
∑

k[A
r
k(x, u)]sq

k q-analogue of [Ar(x, u)]s Th. 38 Eq. (38)

Table 4: Notation.

Theorem 30. For a fixed integer r, for all integers n and m such that 0 ≤ m ≤ n and
n ≥ r + 1, the r-associated Stirling Eulerian numbers satisfy the following formula

Ar
n,m = mAr

n−1,m + (n−m)Ar
n−1,m−1 +

(

n− 1

r

)

∑

s

Cr+1,sA
r
n−r−1,m−s. (30)

Proof. Let n > r. Consider the integer n in an r+-cycle permutation of Sr+

n .

1. If n belongs to a cycle of length r + 1 with s excedances (1 ≤ s < m), there are
(

n−1
r

)

ways to choose the remaining r elements and Cr+1,s ways to form the specified
cycle. We then create a permutation with m − s excedances, where the cycle lengths
are greater than r using the remaining n − r − 1 elements, which gives Ar

n−r−1,m−s

possibilities. Thus, the total number of possibilities is
(

n−1
r

)
∑

s Cr+1,sA
r
n−r−1,m−s.

2. Otherwise, we consider τ as an r+-cycle permutation in Sr+

n−1:

(a) If τ has m excedances, we insert n after an excedance. There are mAr
n−1,m possi-

bilities.

(b) If τ has m − 1 excedances, we insert n after an anti-excedance. There are
(n−m)Ar

n−1,m−1 possibilities.

Theorem 31. For a fixed integer r, for all integers n and m such that 0 ≤ m ≤ n and
n ≥ r + 1, we have

Ar
n+1,m =

n
∑

j=r

(

n

j

) m
∑

i=1

Cj+1,iA
r
n−j,m−i. (31)

Proof. Let r be a fixed integer with n ≥ r. Consider the integer n + 1, which belongs to a
cycle of length j + 1 (r ≤ j) with i (1 ≤ i ≤ m) excedances. There are

(

n
j

)

ways to choose
these j elements and Cj+1,i ways to form that cycle. We then form a permutation with m− i
excedances, where the cycle lengths are greater than r, using the remaining n− j elements,
resulting in Ar

n−j,m−i possibilities. Hence, we obtain the result.
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Theorem 32. For a fixed integer r ≥ 1, the exponential generating function of the r-
associated Stirling Eulerian numbers has the closed form

Ar(x, u) = A(x, u) exp

(

−u− x

r−1
∑

j=1

Aj(x)
uj+1

(j + 1)!

)

. (32)

Proof. From Equation (31), we get

Ar
n+1(x) =

n
∑

j=r

(

n

j

)

Cj+1(x)A
r
n−j(x) =

n
∑

j=0

Cj+1(x)A
r
n(x)−

r−1
∑

j=0

Cj+1(x)A
r
n(x),

=
n
∑

j=0

Cj+1(x)A
r
n(x)− An(x)−

r−1
∑

j=1

Cj+1(x)A
r
n(x).

We deduce

(Ar(x, u))′u =

(

A(x, u)
)′

u

A(x, u)
Ar(x, u)− Ar(x, u)−

r−1
∑

j=1

Cj+1(x)
uj

j!
Ar(x, u).

Thus,

(Ar(x, u))′u
Ar(x, u)

=

(

A(x, u)
)′

u

A(x, u)
− 1−

r−1
∑

j=1

Cj+1(x)
uj

j!
.

Integrating by u, we have

lnAr(x, u) = lnA(x, u)− u−
r−1
∑

j=1

Cj+1(x)
uj+1

(j + 1)!
.

Hence

Ar(x, u) = A(x, u) exp
(

−u−
r−1
∑

j=1

Cj+1(x)
uj+1

(j + 1)!

)

,

= A(x, u) exp
(

−u− x

r−1
∑

j=1

Aj(x)
uj+1

(j + 1)!

)

.

Corollary 33. For a fixed integer r, the exponential generating function of the excedance
distribution over circular r+-cycle permutations has the closed form

Cr+(x, u) = ln(Ar(x, u)). (33)
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Proof. It follows directly from Equation (12).

Theorem 34. For fixed integers r and k, the exponential generating function of the excedance
distribution over (r+, k)-cycle permutations has the closed form

Ar
k(x, u) =

(

ln(Ar(x, u))
)k

k!
. (34)

Proof. A permutation of Sr+,k
n is a product of k disjoint circular r+-cycle permutations.

Hence,

Ar
n,m,k =

1

k!

∑

i1,...,ik>r
i1+···+ik=n

∑

m1+···+mk=m

(i1, . . . , ik)! Ci1,m1 · · ·Cik,mk
.

The result follows directly.

Theorem 35. For a fixed integer r, a q-analogue exponential generating function of the
r-associated Stirling Eulerian numbers has the closed form

Ar(q, x, u) =
(

Ar(x, u)
)q

. (35)

Proof. From Equation (34), we get

∑

k

Ar
k(x, u)q

k =
∑

k

(ln(Ar(x, u)))k

k!
qk = exp(lnAr(x, u)q),

=
(

Ar(x, u)
)q

.

Theorem 36. For a fixed integer r ≥ 1, the partial differential exponential generating func-
tion of the excedance distribution over (r+, ⋆, s)-cycle permutations has the closed form

∂s[Ar(x, u)]s
∂us

= xs

(

A(x, u)−
r−1
∑

n=0

An(x)
un

n!

)s

Ar(x, u). (36)

Proof. Let us consider the first s integers and their cycles

[Ar
n+s,m]s =

∑

i1,...,is≥r
i1+···+is=n

∑

m1+···+mt=m

(i1, . . . , is)! Ci1+1,m1 · · ·Cis+1,ms
Ar

n−
∑s

ℓ=1 iℓ,mt
.

We get

[Ar
n+s(x)]s =

∑

i1,...,is≥r
i1+···+is=n

(i1, . . . , is)! x
sAi1(x) · · ·Ais(x)A

r
n−

∑s
ℓ≥1 iℓ

(x).

We deduce
∂sAr(x, u)

∂us
= xs

(

A(x, u)−
r−1
∑

n=0

An(x)
un

n!

)s

Ar(x, u).

18



Theorem 37. For fixed integers r ≥ 1, k and s, the partial differential exponential gener-
ating function of the excedance distribution over (r+, k, s)-cycle permutations has the closed
form

∂s[Ar
k(x, u)]s
∂us

= xs

(

A(x, u)−
r−1
∑

n=0

An(x)
un

n!

)s (
lnAr(x, u)

)k−s

(k − s)!
. (37)

Proof. A permutation of Sr+,k,s
n+s is a product of k disjoint circular r+-cycle permutations.

Considering the first s integers and their cycles, we have

[Ar
n+s,m,k]s =

∑

i1,...,is≥r
i1+···+is=n

∑

m1+···+mt=m

(i1, . . . , is)! Ci1+1,m1 · · ·Cis+1,ms
Ar

n−
∑s

ℓ=1 iℓ,mt,k−s.

The result follows directly.

Theorem 38. For fixed integers r ≥ 1 and s, a partial differential q-analogue exponential
generating function of the excedance distribution over (r+, ⋆, s)-cycle permutations has the
closed form

∂s[Ar(q, x, u)]s
∂us

= qsxs

(

A(x, u)−
r−1
∑

n=0

An(x)
un

n!

)s
(

Ar(x, u)
)q

. (38)

Proof. The result follows directly from Equation (37).

The following section contains the corollaries of the previous sections, obtained by setting
different values for r and s in the q-analogues. Extensive results are provided for Brenti’s
work [3] and for the results of Ksavrelof and Zeng [9]. Various identities are formulated.

6 Excedance distribution by cycle over involutions, per-

mutations and derangements

S0+,k
n the set of (0+, k)-cycle permutations

An,m,k |{σ ∈ S0+,k
n : e(σ) = m}|

An,k(x)
∑

m An,m,kx
m =

∑

σ∈S0+,k
n

xe(σ)

Ak(x, u)
∑

n An,k(x)
un

n!
Cor. 43 Eq. (40)

A(q, x, u)
∑

n

∑

σ∈Sn
xe(σ)qc(σ)

un

n!
q-analogue of A(x, u) Cor. 44 Eq. (41)

[A(x, u)]s
∑

n

∑

σ∈S0+,⋆,s
n

xe(σ)u
n

n!
Cor. 45 Eq. (42)
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[Ak(x, u)]s
∑

n

∑

σ∈S0+,k,s
n

xe(σ)u
n

n!
Cor. 46 Eq. (43)

[A(q, x, u)]s
∑

k[Ak(x, u)]sq
k q-analogue of [A(x, u)]s Cor. 47 Eq. (44)

Table 5: Notation.

Corollary 39. A q-analogue exponential generating function of the excedance distribution
over 2−-cycle permutations (involutions) has the closed form

A2−(q, x, u) = exp(q(u+ xu2/2)). (39)

Corollary 40. For a fixed integer n, we have

∑

π∈I2n

xe(π)(q)c(π) =
n
∑

j=0

(2n)!

2n−k(2k)! (n− k)!
qn+kxn−k,

∑

π∈I2n+1

xe(π)(q)c(π) =
n
∑

j=0

(2n+ 1)!

2n−k(2k + 1)! (n− k)!
qn+k+1xn−k.

Corollary 41. A q-analogue exponential generating function of the excedance distribution
over 2-cycle permutations (involution derangements) has the closed form

A(2)(q, x, u) = exp(qxu2/2).

Corollary 42. For a fixed integer n, we have

∑

π∈I2n∩D2n

xe(π)qc(π) =
n
∑

j=0

(2n)!

2nn!
qnxn.

Corollary 43. For a fixed integer k, the exponential generating function of the excedance
distribution over (0+, k)-cycle permutations has the closed form

Ak(x, u) =
∑

n≥0

∑

σ∈S0+,k
n

xe(σ)u
n

n!
=

(

ln(A(x, u))
)k

k!
. (40)

Proof. The proof follows from Theorem 34.

Corollary 44 (Brenti). A q-analogue exponential generating function of the excedance dis-
tribution by cycle over permutations has the closed form

A(q, x, u) =
(

A(x, u)
)q

. (41)

(See [3, Proposition 7.3])
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Proof. The proof follows from Theorem 35.

Corollary 45. For a fixed integer s, the partial differential exponential generating function
of the excedance distribution over (0+, ⋆, s)-cycle permutations has the closed form

∂s[A(x, u)]s
∂us

=
(

A(x, u) exp(u(x− 1))
)s

A(x, u). (42)

Proof. The proof follows from Theorem 36.

Corollary 46. For fixed integers k and s, the partial differential exponential generating
function of the excedance distribution over (0+, k, s)-cycle permutations has the closed form

∂s[Ak(x, u)]s
∂us

=
(

A(x, u) exp(u(x− 1))
)s
(

lnA(x, u)
)k−s

(k − s)!
. (43)

Proof. It comes from Theorem 37.

Corollary 47. A partial differential q-analogue exponential generating function of the ex-
cedance distribution over (0+, ⋆, s)-cycle permutations has the closed form

∂s[A(q, x, u)]s
∂us

= qs
(

A(x, u) exp(u(x− 1))
)s(

A(x, u)
)q

. (44)

Proof. We immediately have the result by multiplying the equation (43) by qk and summing
over k.

Corollary 48.
∑

σ∈S0+,⋆,s
n+s

xe(σ)(−s)c(σ) = (−1)ssn+s(x− 1)n.

Proof. From Corollary 47, we have that

∂s[A(q, x, u)]s
∂us

= qs
(

A(x, u) exp(u(x− 1))
)s(

A(x, u)
)q

,

setting q = −s, gives

∂A(−s, x, u)

∂u
= (−s)s

(

A(x, u) exp(u(x− 1))
)s(

A(x, u)
)−s

.

Hence,
∂s[A(q, x, u)]s

∂us
= (−s)s exp(su(x− 1)). (45)

Identifying the coefficients of
un

n!
in Equation (45) gives the desired proof.
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Corollary 49.

∑

σ∈S0+,⋆,s
n+s

xe(σ)(−s− 1)c(σ) = (−1)s(s+ 1)s
(

xsn − (s+ 1)n
)

(x− 1)n−1.

Proof. From Corollary 47, we have

∂s[A(q, x, u)]s
∂us

= qs
(

A(x, u) exp(u(x− 1))
)s(

A(x, u)
)q

.

Setting q = −s− 1, we have

∂s[A(−s− 1, x, u)]s
∂us

= (−s− 1)s[A(x, u) exp(u(x− 1))]s(A(x, u))−s−1,

= (−s− 1)s
exp(su(x− 1))

A(x, u)
,

= (−s− 1)s
exp(su(x− 1))(x− exp(u(x− 1)))

x− 1
,

=
(−s− 1)s

x− 1

(

x exp(su(x− 1))− exp((s+ 1)u(x− 1))
)

.

Hence,

∂s[A(−s− 1, x, u)]s
∂us

=
(−s− 1)s

(x− 1)

(

x exp(su(x− 1))− exp((s+ 1)u(x− 1))
)

. (46)

Identifying the coefficients of
un

n!
in Equation (46) gives the desired proof.

Remark 50. If we set s = 1 in Corollary 48 and Corollary 49, we get Brenti’s results [3,
Corollary 7.4].

∑

π∈Sn

xe(π)(−1)c(π) = −(x− 1)n−1,

∑

π∈Sn

xe(π)(−2)c(π) = 2(2n−1 − x)(x− 1)n−2.

Corollary 51. A partial differential q-analogue exponential generating function of the ex-
cedance distribution over (1+, ⋆, s)-cycle permutations (derangements) has the closed form

∂s[A1(q, x, u)]s
∂us

= qsxs
(

A(x, u)− 1
)s(

A(x, u) exp(−u)
)q

. (47)

Proof. We immediately have the result by setting r = 1 in equation (38).
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Corollary 52. For fixed integers n and s, we have

∑

σ∈S1+,⋆,s
n+s

xe(σ)(−s)c(σ) = (−1)s
( sx

x− 1

)s ∑

i1≥1,...,is≥1
i1+···+is=n

(i1, . . . , is)!
s
∏

j=1

(xij − 1). (48)

Proof. From Corollary 51 Equation (47), setting q = −s, we have

∂s[A1(−s, x, u)]s
∂us

= (−s)sxs(A(x, u)− 1)s(A1(x, u))−s,

= (−s)sxs
(A(x, u)− 1

A(x, u)

)s

exp(su),

= (−s)sxs(1− 1/A(x, u))s exp(su),

= (−s)sxs
(

1−
x− exp((x− 1)u)

x− 1

)s

exp(su),

=
( −sx

x− 1

)s

(− exp(u) + exp(xu))s,

=
( −sx

x− 1

)s(∑

n≥1

(−1 + xn)
un

n!

)s

.

Hence,

∂s[A1(−s, x, u)]s
∂us

= (−1)s
( sx

x− 1

)s
∑

i1≥1,...,is≥1
i1+···+is=n

(i1, . . . , is)!
s
∏

j=1

(xij − 1)
un

n!
. (49)

Identifying the coefficients of
un

n!
in Equation (49) gives the desired result.

Remark 53. If we set s = 1 in Equation (48), we get Ksavrelof and Zeng’s result [9]

∑

σ∈Dn

xe(σ)(−1)c(σ) = −x− x2 − · · · − xn−1. (50)

Corollary 54. For fixed integers n and s, we have

∑

σ∈S1+,⋆,s
n+s

xe(σ)(−s− 1)c(σ) = (−1)s
(s+ 1)sxs

(x− 1)s

n
∑

ℓ=0

(

x− xℓ

x− 1

∑

i1≥1,...,is≥1
i1+···+is=n−ℓ

(i1, . . . , is)!
s
∏

j=1

(xij − 1)

)

.
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Proof. From Corollary 51 Equation (47), setting q = −s− 1, we have

∂s[A1(−s− 1, x, u)]s
∂us

= (−s− 1)sxs(A(x, u)− 1)s(A1(x, u))−s−1,

= (−s− 1)sxs
(A(x, u)− 1

A(x, u)

)s

exp((s+ 1)u)A(x, u)−1,

= (−s− 1)sxs(1− 1/A(x, u))s exp(su)A(x, u)−1 exp(u),

= (−s− 1)sxs
(

1−
x− exp((x− 1)u)

x− 1

)s

exp(su)
x− exp((x− 1)u)

x− 1
eu,

=
(−(s+ 1)x)s

(x− 1)s+1
(− exp(u) + exp(xu))s(x exp(u)− exp(xu)),

=
(−(s+ 1)x)s

(x− 1)s

(

∑

n≥1

(−1 + xn)
un

n!

)s(∑

n≥0

(x− xn)

x− 1

un

n!

)

.

Hence,

∂s[A1(−s− 1, x, u)]s
∂us

= (−1)s
(s+ 1)sxs

(x− 1)s
(

∑

i1≥1,...,is≥1
i1+···+is=n

(i1, . . . , is)!

s
∏

j=1

(xij − 1)
un

n!
)

(1 +
∑

n≥1

(x− xn)

x− 1

un

n!
),

= (−1)s
(s+ 1)sxs

(x− 1)s

∑

n≥0

(

n
∑

ℓ=0

(x− xℓ)

x− 1
(51)

(

∑

i1≥1,...,is≥1
i1+···+is=n−ℓ

(i1, . . . , is)!
s
∏

j=1

(xij − 1)
))un

n!
. (52)

Identifying the coefficients of
un

n!
in Equation (52) gives the desired result.

Corollary 55. For all integer n ≥ 1, we have

∑

σ∈Dn

xe(σ)(−2)c(σ) =
−2x(−2n−1x− 2n−1xn−1 + (x+ 1)n)

(x− 1)2
. (53)

Proof. From Corollary 51 Equation (47), setting s = 1 and q = −2, we get

∂A1(−2, x, u)

∂u
= −2x(A(x, u)− 1)(A1(x, u))−2,

= −2x(A(x, u)− 1) (A(x, u) exp(−u))−2 ,

= −2x
(

1/A(x, u)− 1/A(x, u)2
)

exp(2u),

= −2x

(

x− exp((x− 1)u)

x− 1
−

(x− exp((x− 1)u))2

(x− 1)2

)

exp(2u).

24



That is,

∂A1(−2, x, u)

∂u
=

−2x

(x− 1)2

(

−x exp(2u)− exp (2xu) + (x+ 1) exp((x+ 1)u)
)

. (54)

Identifying the coefficients of
un

n!
in Equation (54) gives the desired proof.

Remark 56. Note that
−2x(−2n−1x− 2n−1xn−1 + (x+ 1)n)

(x− 1)2
∈ Z[x]. Below we find a few

values of Equation (53).

1.
∑

σ∈D2
xe(σ)(−2)c(σ) = −2x.

2.
∑

σ∈D3
xe(σ)(−2)c(σ) = −2x(x+ 1).

3.
∑

σ∈D4
xe(σ)(−2)c(σ) = −2x(x− 1)2.

4.
∑

σ∈D5
xe(σ)(−2)c(σ) = −2x(x+ 1)(x2 − 10x+ 1).

7 s-fixed-points-permutations

F s
n the set of s-fixed-points-permutations

Fk,s
n the set of s-fixed-points-permutations with k cycles

[F (x, u)]s
∑

n

∑

σ∈Fs
n
xe(σ)u

n

n!
Th. 57 Eq. (55)

[Fk(x, u)]s
∑

n

∑

σ∈Fk,s
n

xe(σ)u
n

n!
Th. 58 Eq. (56)

[F (q, x, u)]s
∑

k[Fk(x, u)]sq
k q-analogue of [F (x, u)]s Th. 59 Eq. (57)

Table 6: Notation.

Theorem 57. A partial differential exponential generating function of the excedance distri-
bution over s-fixed-points-permutations has the closed form

∂s[F (x, u)]s
∂us

=
(

A(x, u) exp(u(x− 1))
)s

A(x, u) exp (−u). (55)

Proof. Since

[Fn+s,m]s =
∑

i1,...,is≥0
i1+···+is=n

(i1, . . . , is)!
∑

m1+···+ms+mt=m

Ci1+1,m1 · · ·Cis+1,ms
A1

n−
∑s

j=1 ij ,mt
,
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we get

[Fn+s(x)]s =
∑

i1,...,is≥0
i1+···+is=n

(i1, . . . , is)! Ci1+1(x) · · ·Cis+1(x)A
1
n−

∑s
j=1 ij

(x).

We deduce

∂s[F (x, u)]s
∂us

=
( ∂

∂u
C(x, u)

)s

A1(x, u),

=
(

A(x, u) exp (u(x− 1))
)s

A(x, u) exp(−u).

Theorem 58. Let k ≥ s be fixed integers. The partial differential exponential generating
function of the excedance distribution over s-fixed-points-permutations having k cycles has
the closed form

∂s[Fk(x, u)]s
∂us

=
(

A(x, u) exp(u(x− 1))
)s
(

ln (A(x, u) exp (−u))
)k−s

(k − s)!
. (56)

Proof. Let us consider the first s integers, we have

[Fn+s,m,k]s =
∑

i1,...,is≥0
i1+···+is=n

(i1, . . . , is)!
∑

m1+···+ms+mt=m

Ci1+1,m1 · · ·Cis+1,ms
A1

n−
∑s

l=1 il,mt,k−s.

We get

[Fn+s,m(x)]s =
∑

i1,...,is≥0
i1+···+is=n

(i1, . . . , is)! Ci1+1(x) · · ·Cis+1(x)A
1
n−

∑s
l=1 il,k−s(x).

Hence,

∂s[Fk(x, u)]s
∂us

=

(

∂C(x, u)

∂u

)s

A1
k−s(x, u),

=
(

A(x, u) exp(u(x− 1))
)s
(

ln (A(x, u) exp (−u))
)k−s

(k − s)!
.

Theorem 59. A partial differential q-analogue exponential generating function of the ex-
cedance distribution over s-fixed-points-permutations has the closed form

∂s[F (q, x, u)]s
∂us

= qs
(

A(x, u) exp(u(x− 1))
)s(

A(x, u)
)q

exp(−qu). (57)
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Proof. We immediately have the result by multiplying by qk and summing over k the right
member of Equation (56) .

Corollary 60. For fixed integers n and s, we have

∑

π∈Fs
n

xe(π)(−s)c(π) = (−1)ssnxn−s.

Corollary 61. For fixed integers n and s, we have

∑

π∈Fs
n

xe(π)(−s− 1)c(π) = (−1)s(s+ 1)s
x(sx+ 1)n−s − (s+ 1)n−sxn−s

x− 1
.

8 Generalizations

S
(r1)···(rs)
n the set of (r1) · · · (rs)-cycle permutations

Sr1···rs
n the set of r1 · · · rs-cycle permutations

S
r1···rs(rs+1)···(rℓ)
n the set of r1 · · · rs(rs+1) · · · (rℓ)-cycle permutations

S
r1···rs(rs+1)···(rℓ),k
n {σ ∈ S

r1···rs(rs+1)···(rℓ)
n : c(σ) = k}

S
r∗1 ···r

∗
ℓ

n the set of r∗1 · · · r
∗

ℓ
-cycle permutations

[Ar1···rs
n+s,m,k]s |{σ ∈ Sr1···rs,⋆,s

n+s : e(σ) = m}|

[Ar1···rs
n+s,k(x)]s

∑

σ∈S
r1···rs,k,s
n+s

xe(σ)

[Ar1···rs(x, u)]s
∑

n

∑

σ∈S
r1···rs
n

xe(σ)u
n

n!
Th. 62 Eq. (58)

[Ar1···rs
k (x, u)]s

∑

n

∑

σ∈S
r1···rs
n ,k x

e(σ)u
n

n!
Th. 63 Eq. (59)

[Ar1···rs(q, x, u)]s q-analogue of [Ar1···rs(x, u)]s Th. 64 Eq. (60)

A(r1)···(rℓ)(x, u)
∑

n

∑

σ∈S
(r1)···(rℓ)
n

xe(σ)qc(σ)
un

n!
Th. 65 Eq. (61)

[Ar1···rs(rs+1)···(rℓ)(q, x, u)]s
∑

n

∑

σ∈S
r1···rs(rs+1)···(rℓ),⋆,s
n

xe(σ)qc(σ)
un

n!
Th. 66 Eq. (62)

Ar∗1 ···r
∗
ℓ (q, x, u)

∑

n

∑

σ∈S
r∗1 ···r∗

ℓ
n

xe(σ)qc(σ)
un

n!
Cor. 67 Eq. (63)

Table 7: Notation.

Theorem 62. For a fixed integer s, the exponential generating function of the excedance
distribution over (r1 · · · rs, ⋆, s)-cycle permutations has the differential closed form

∂s[Ar1···rs(x, u)]s
∂us

= xs

(

Ar1−1(x)
ur1−1

(r1 − 1)!
· · ·Ars−1(x)

urs−1

(rs − 1)!

)

A(x, u). (58)
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Proof. Consider the first s integers in a permutation in Sr1···rs,⋆,s
n+s and their cycles. We have

[Ar1···rs
n+s,m]s =

(

n

r1 − 1, . . . , rs − 1

)

∑

m1+···+ms+mt=m

Cr1,m1 · · ·Crs,ms
An−

∑s
ℓ=1(rℓ−1),mt

.

The result follows directly.

Theorem 63. The partial differential exponential generating function of the excedance dis-
tribution over (r1 · · · rs, k, s)-cycle permutations has the differential closed form

∂s[Ar1···rs
k (x, u)]s
∂us

= xs

(

Ar1−1(x)
ur1−1

(r1 − 1)!
· · ·Ars−1(x)

urs−1

(rs − 1)!

)

(

lnA(x, u)
)k−s

(k − s)!
. (59)

Proof. Let us consider again the first s integers in permutations of Sr1···rs,k
n+s , we have

[Ar1···rs
n+s,m,k]s =

(

n

r1 − 1, . . . , rs − 1

)

∑

m1+···+ms+mt=m

Cr1,m1 · · ·Crs,ms
An−

∑s
ℓ=1(rℓ−1),mt,k−s.

The result follows directly.

Theorem 64. For a fixed integer s, a partial differential q−analogue exponential generating
function of the excedance distribution over r1 · · · rs-cycle permutations has the closed form

∂s[Ar1···rs(q, x, u)]s
∂us

= qsxs

(

Ar1−1(x)
ur1−1

(r1 − 1)!
· · ·Ars−1(x)

urs−1

(rs − 1)!

)

(

A(x, u)
)q

. (60)

Proof. We immediately get the result by multiplying by qk and summing over k the right
member of Equation (59).

Theorem 65. Let ℓ be a fixed integer. A q-analogue exponential generating function of the
excedance distribution over (r1) · · · (rℓ)-cycle permutations has the closed form

A(r1)···(rℓ)(q, x, u) = exp

(

qx
(

Ar1−1(x)
ur1

r1!
+ · · ·+ Arℓ−1(x)

urℓ

rℓ!

)

)

. (61)

Proof. A permutation σ in S
(r1)···(rℓ),k
n is the product of (rj, kj)-cycle permutations (j =

1, · · · , ℓ) such that
∑

j kj = k. Thus,

A
(r1)···(rℓ)
n,m,k =

∑

i1+···+iℓ=n

∑

m1+···+mℓ=m

∑

k1+···+kℓ=k

(i1, . . . , iℓ)! A
(r1)
i1,m1,k1

· · ·A
(rℓ)
iℓ,mℓ,kℓ

.

It follows that,

A(r1)···(rℓ)(q, x, u) = A(r1)(q, x, u) · · ·A(rℓ)(q, x, u),

= exp
(

qxAr1−1(x)
ur1

r1!

)

· · · exp
(

qxArℓ−1(x)
urℓ

rℓ!

)

.

This gives the result.
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Theorem 66. Let ℓ be a fixed integer. Let (r1, . . . , rℓ) be the sequence such that ri > 1, i =
1, . . . , s and 1 < rs+1 < · · · < rℓ. A partial differential q-analogue exponential generating
function of the excedance distribution over r1 · · · rs(rs+1) · · · (rℓ)-cycle permutations has the
closed form

∂s[Ar1···rs(rs+1)···(rℓ)(q, x, u)]s
∂us

= qsxs(Ar1−1(x)
ur1−1

(r1 − 1)!
· · ·

Ars−1(x)
urs−1

(rs − 1)!
)
(

A(rs+1)···(rℓ)(x, u)
)q

. (62)

Proof. Consider the first s integers.

[A
r1···rs(rs+1)···(rℓ)
n+s,m,k ]s =

(

n

r1 − 1, . . . , rs−1

)

∑

m1+···+ms+mt=m

Cr1,m1 · · ·Crs,ms
×

A
(rs+1)···(rℓ)

n−
∑s

i=1 ri−1,mt,k−s.

Therefore, we obtain

∂s[Ar1···rs(rs+1)···(rℓ)(q, x, u)]s
∂us

= qsCr1(x)
ur1−1

(r1 − 1)!
· · ·Crs(x)

urs−1

(rs − 1)!
×

(

A(rs+1)···(rℓ)(x, u)
)q

,

= qsxs
(

Ar1−1(x)
ur1−1

(r1 − 1)!
· · ·Ars−1(x)

urs−1

(rs − 1)!

)

×

(

A(rs+1)···(rℓ)(x, u)
)q

.

Corollary 67. For a fixed integer ℓ, let (r1, . . . , rℓ) be a sequence such that 1 < r1 < · · · < rℓ.
A q-analogue exponential generating function of the excedance distribution over r⋆1 · · · r

⋆
ℓ -cycle

permutations has the closed form

Ar⋆1 ···r
⋆
ℓ (q, x, u) = A(q, x, u) exp

(

−qx

ℓ
∑

i=1

Ari−1
uri

ri!

)

. (63)
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