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Abstract

Prunescu and Sauras-Altuzarra showed that all C-recursive sequences of natural
numbers have an arithmetic div-mod representation that can be derived from their
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generating function. This representation consists of computing the quotient of two
exponential polynomials and taking the remainder of the result modulo a third ex-
ponential polynomial, and works for all integers n ≥ 1. Using a different approach,
Prunescu proved the existence of two other representations, one of which is the mod-
mod representation, consisting of two successive remainder computations. This result
has two weaknesses: the representation works only ultimately, and a correction term
must be added to the first exponential polynomial. We show that a mod-mod represen-
tation without inner correction term holds for all integers n ≥ 1. This follows directly
from the div-mod representation by an arithmetic short-cut from outside.

1 Introduction

The C-recursive sequences of order d are sequences t : N → C satisfying a relation of
recurrence with constant coefficients

t(n+ d) + α1t(n+ d− 1) + · · ·+ αd−1t(n+ 1) + αdt(n) = 0

for all n ∈ N, with αd 6= 0. With the recurrence rule, we associate the polynomial

B(X) := 1 + α1X + · · ·+ αdX
d.

Observe that degB = d. We let B̃(X) denote the reciprocal polynomial

B̃(X) = XdB(X−1) = Xd + α1X
d−1 + · · ·+ αd.

According to [6, Theorem 4.1.1] and [3, Theorem 1], the C-recursive sequences are exactly
the sequences (s(n)) such that the generating function

f(X) =
∑

n≥0

t(n)Xn

is a rational function A(X)/B(X) with deg(A) := k < deg(B) = d. We define Ã(X) =
XkA(X−1) to be the reciprocal polynomial of A(X). We observe that

f(X−1) =
Xd−kXkA(X−1)

XdB(X−1)
= Xd−k ·

Ã(X)

B̃(X)
.

Prunescu and Sauras-Altuzarra proved [5] that if f is the generating function of a sequence
consisting of natural numbers only, then there exists c ∈ N such that for all n ∈ Z+, we have

t(n) =
⌊

cn
2

f(c−n)
⌋

mod cn.

The exact statement will be given below (see Theorem 2). In brief, if the sequence is C-
recurrent, its generating function f is a rational function A(X)/B(X) with A(X), B(X) ∈

2



Z[X], deg(A(X)) = k < deg(B(X)) = d, and such that both polynomials A(X) and B(X)
take positive values for real positive X inside the disk of convergence around 0. Then we
have a div-mod representation

t(n) =

⌊

cn
2+dnA(c−n)

cdnB(c−n)

⌋

mod cn =

⌊

cn
2

cn(d−k)Ã(cn)

B̃(cn)

⌋

mod cn.

We note that “div-mod” refers to the successive application of an integer division and a
modular reduction.

Prunescu proved in [4] the following mod-mod representation. Let αd 6= 0 be the constant
term of the recurrence rule for a C-recursive sequence, i.e., the constant term of B̃(X). Then
there are c, n0 ∈ N such that for n ≥ n0 we have

t(n) =

((

cn(d−1)+⌈n/2⌉ − sgn(αd) · c
n2

cn(d−k)Ã(cn)
)

mod B̃(cn)
)

mod cn

|αd|
.

This representation has the advantage that

(cn(d−1)+⌈n/2⌉ − sgn(αd) · c
n2

cn(d−k)Ã(cn)) mod B̃(cn)

can be computed faster by modular arithmetic, but it has two disadvantages:

(i) It needs in general a correction term cn(d−1)+⌈n/2⌉ in the innermost exponential poly-
nomial.

(ii) It holds only ultimately, for n greater than or equal to some a priori undetermined
n0 ∈ N. In fact, such an n0 can be determined by conditions used in the proof, but it
is not clear that one can always take n0 = 1.

In the following we show that this result can be improved. If the constant term of B̃(X) is
αd 6= 0, there exists an integer r ≥ c such that the following holds for all n ≥ 1:

t(n) =
−1− sgn(αd)

2
+

1

|αd|

((

(− sgn(αd) · r
n2

rn(d−k)Ã(rn)) mod B̃(rn)
)

mod rn
)

.

Observe that this representation does not contain any correction term and works for n ≥ 1.
The proof, done by a short-cut of modular arithmetic, uses only the div-mod representation
given above.

Other possibilities and methods to represent C-recursive sequences can be found in the
monograph of Kauers and Paule [2].
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2 Technical preparations

We define N as the set of natural numbers with 0 included.
The first three useful results refer to C-recursive sequences. The next lemma can also be

found in Everest et al. [1].

Lemma 1. [Prunescu & Sauras-Altuzarra, [5, Lemma 4]] If t : N → C is C-recursive, then
there is an integer g ≥ 1 such that |t(n)| < gn+1 for every integer n ≥ 0.

Theorem 2. [Prunescu & Sauras-Altuzarra, [5, Theorems 1 and 2]] If t : N → N, f(X)
is its generating function, R is the radius of convergence of f(X) at zero, and c, m, and n
are three integers such that c ≥ 2, n ≥ m ≥ 2, c−m < R, and t(n) < cn−2 for every integer
n ≥ m, then

t(n) =
⌊

cn
2

f(c−n)
⌋

mod cn.

Also, if c ≥ 8, c−1 < R, and t(n) < cn/3 for every n ≥ 1, then the representation works for
every n ≥ 1.

The following corollary follows easily from Theorem 2.

Corollary 3. If the representation stated in Theorem 2 holds for some c ∈ N for all n ≥ m,
then it holds also if we replace c with any integer r ≥ c for all n ≥ m.

The next three lemmas are easy remarks of modular arithmetic.

Lemma 4. If B ≥ 2, A ≥ 1, B ∤ A, then −⌊−A/B⌋ = ⌊A/B⌋+ 1.

Lemma 5. If a, y, C ∈ N and 0 ≤ (ay) < C, then ((ay) mod C) = a(y mod C).

Lemma 6. If x, C ∈ N, C ≥ 2, x 6≡ (C−1) (mod C), then (x+1) mod C = (x mod C)+1.

The next lemma is the principal tool of this note.

Lemma 7. Let a, A, B, C ∈ Z such that A, B > 0, C ≥ 2, C |A, B ∤ A, B mod C ≡
a mod C, a 6= 0, and |a|(⌊A/B⌋ mod C) < C if a < 0 (respectively, a+ a(⌊A/B⌋ mod C) <
C if a > 0).

(i) If a < 0, then

(A mod B) mod C = |a|(⌊A/B⌋ mod C).

(ii) If a > 0, then

((−A) mod B) mod C = a(1 + ⌊A/B⌋ mod C).

Proof. For both cases below we apply Lemmas 4 and 5. For the second case we apply also
Lemma 6. We proceed with the cases.
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(i) a < 0:

(A mod B) mod C = (A mod C − (B mod C)(⌊A/B⌋ mod C)) mod C

= (0− (−|a|)(⌊A/B⌋ mod C)) mod C

= (|a|(⌊A/B⌋ mod C)) mod C

= |a|(⌊A/B⌋ mod C).

(ii) a > 0:

((−A) mod B) mod C = ((−A) mod C − (B mod C)(⌊A/B⌋ mod C)) mod C

= (0− a(⌊(−A)/B⌋ mod C)) mod C

= (a · (−⌊(−A)/B⌋ mod C)) mod C

= (a · (1 + ⌊A/B⌋ mod C)) mod C

= (a+ a ⌊A/B⌋ mod C) mod C

= a(1 + ⌊A/B⌋ mod C).

3 Applications to C-recursive sequences

Theorem 8. Suppose that for all natural numbers n ≥ 1, a sequence t : N → N has the
div-mod representation

t(n) =

⌊

cn
2

cn(d−k)Ã(cn)

B̃(cn)

⌋

mod cn.

If the constant term of B̃(X) is αd < 0, then there is some natural number r such that for
all n ≥ 1 we have

t(n) =
1

|αd|

((

(rn
2

rn(d−k)Ã(rn)) mod B̃(rn)
)

mod rn
)

.

If the constant term of B̃(X) is αd > 0, then there is some natural number r such that for
all n ≥ 1 we have

t(n) = −1 +
1

αd

((

(−rn
2

rn(d−k)Ã(rn)) mod B̃(rn)
)

mod rn
)

.

Proof. In order to apply Lemma 7, we recall that according to Corollary 3 there is a c0 ∈ N
such that for all r ≥ c0 and for all n ≥ 1 we have

t(n) =

⌊

rn
2

rn(d−k)Ã(rn)

B̃(rn)

⌋

mod rn.
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Let r ≥ c0 be a natural number to fulfill also other conditions, which will be stated below.
We introduce the notations A = rn

2

rn(d−k)Ã(rn), B = B̃(rn), and C = rn and we prove that
for a good choice of r, which has to be sufficiently large, these numbers fulfill the conditions
of Lemma 7.

The conditions C |A and B ∤ A are always fulfilled. The conditions A,B > 0 and C ≥ 2
are fulfilled for all n ≥ 1 if r is sufficiently large, as the main coefficients of Ã(X) and B̃(X)
are positive. Let αd be the constant term of the polynomial B̃(X) = XdB( 1

X
), meaning

that a = αd. For r sufficiently large, we have B ≡ αd (mod C). By definition, we have
αd 6= 0 because deg(B) = deg(B̃) = d. We have to show that for r sufficiently large,
|αd|(⌊A/B⌋ mod C) < C if αd < 0 respectively αd + αd(⌊A/B⌋ mod C) < C if αd > 0, for
all n ≥ 1. We recall that ⌊A/B⌋ mod C = t(n).

If αd < 0, the inequality |αd|(⌊A/B⌋ mod C) < C means that |αd|t(n) < rn and must be
true for n ≥ 1.

If αd > 0, the inequality αd + αd(⌊A/B⌋ mod C) < C means that αd(t(n) + 1) < rn and
must be true for n ≥ 1.

But we know from 1 that if s : N → C is a C-recursive sequence, then there exists a
g ∈ N such that for all n ∈ N we have |s(n)| < gn+1. As s(n) = 2|αd|t(n) is itself a C-
recursive sequence and its values are natural numbers, there is some positive g ∈ N such
that 2|αd|t(n) < gn+1 for all n ≥ 1. We can always find an r ∈ N such that gn+1 < rn for all
n ≥ 1.

If t(n) ≥ 1, as 2|αd|t(n) > |αd|t(n) in the first case, respectively 2|αd|t(n) ≥ |αd|(1+ t(n))
in the second case, the conditions of Lemma 7 are fulfilled. If t(n) = 0, the conditions are
fulfilled for every r ≥ 1 in the first case and for every r > αd in the second case.

Finally we choose r sufficiently large such that r ≥ c0 and all the conditions above are
fulfilled.

Below we put both cases in only one formula.

Corollary 9. Suppose that for all natural numbers n ≥ 1, a sequence t : N → N has the
representation

t(n) =

⌊

cn
2

cn(d−k)Ã(cn)

B̃(cn)

⌋

mod cn.

If the constant term of B̃(X) is αd 6= 0, there exists an integer r ≥ c such that, for all n ≥ 1,
one has

t(n) =
−1− sgn(αd)

2
+

1

|αd|

((

(− sgn(αd) · r
n2

rn(d−k)Ã(rn)) mod B̃(rn)
)

mod rn
)

.

Remark 10. In [4] there is also an application to C-recursive sequences t : N → Z. According
to Lemma 1, for such a sequence there is an h ∈ N such that for all n ≥ 0 we have
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|t(n)| < hn+1. The sequence s(n) = t(n) + hn+1 has values in N and is also C-recursive.
Indeed, the generating function of s is a rational function and can be computed by

f(X) +
h

1− hX
,

where f(X) is the generating function of the sequence t. Consequently, the sequence s
has a representation according to Corollary 9, while the sequence t has the representation
t(n) = s(n)− hn+1.

In [4], also the following mod-div representation is proved: There exist c, n0 ∈ N such
that for all n ≥ n0 we have

t(n) =









(

cn(d−2)+⌈n/2⌉ + cn
2

cn(d−k)Ã(cn)
)

mod B̃(cn)

cn(d−1)







 .

Open Problem 11. Is it possible to find a purely arithmetic trick which shows that the
mod-div representation (or even an improved version) is only a corollary of the div-mod
representation, in a similar way as the short-cut shown here?

4 Examples

In this section, all representations are derived from the respective representations in [5]. In
some cases a larger exponentiation base e > c is needed in order to keep the representation
true for all natural numbers n ≥ 1.

4.1 Degree 2, natural numbers, negative constant term

The first group of examples consists of sequences of order 2 with a < 0. As in [4] it was shown
that this kind of sequence does not need any inner correction term, these representations are
not different from the representations displayed there. In what follows, OEIS refers to the
On-Line Encyclopedia of Integer Sequences.

Example 12. [Fibonacci numbers, OEIS A000045] For all n ∈ Z+, we have

s(n) =
(

3n
2+n mod (32n − 3n − 1)

)

mod 3n.

Example 13. [Lucas numbers, OEIS A000032] The div-mod representation works for c = 3
(see Prunescu and Sauras-Altuzarra [5]). The mod-mod representation works for r = 5: For
all n ∈ Z+, we have

s(n) =
(

(2 · 5n
2+2n − 5n

2+n) mod (52n − 5n − 1)
)

mod 5n.
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Example 14. [Pell numbers, OEIS A000129] For all n ∈ Z+, we have

s(n) =
(

3n
2+n mod (32n − 2 · 3n − 1)

)

mod 3n.

Example 15. [Pell-Lucas numbers, OEIS A002203] For all n ∈ Z+, we have

s(n) =
(

(2 · 9n
2+2n − 2 · 9n

2+n) mod (92n − 2 · 9n − 1)
)

mod 9n.

4.2 Degree 2, natural numbers, positive constant term

Example 16. [Natural numbers, OEIS A001477] For all n ∈ Z+, we have
((

(−4n
2+n) mod (42n − 2 · 4n + 1)

)

mod 4n
)

− 1 = n.

Example 17. [All-twos, OEIS A007395] For all n ∈ Z+, we have
((

(−2 · 4n
2+2n + 2 · 4n

2+n) mod (42n − 2 · 4n + 1)
)

mod 4n
)

− 1 = 2.

Example 18. [Mersenne numbers, OEIS A000225] For all n ∈ Z+, we have

1

2
·
((

(−6n
2+n) mod (62n − 3 · 6n + 2)

)

mod 6n
)

− 1 = 2n − 1.

Example 19. [2n + 1, OEIS A000051] The div-mod representation works for c = 6 (see
Prunescu and Sauras-Altuzarra [5]). The mod-mod representation works for r = 9: For all
n ∈ Z+, we have

1

2
·
(

(−2 · 9n
2+2n + 3 · 9n

2+n) mod (92n − 3 · 9n + 2) mod 9n
)

− 1 = 2n + 1.

Example 20. [OEIS A001081, OEIS A001080] Consider Pell’s equation

X2 − kY 2 = 1. (1)

The sequence of solutions (x(n), y(n)) with (x(0), y(0)) = (1, 0) are known to be C-recursive
sequences (see [5]). It is proved there that the sequences (x(n)) and (y(n)) are C-recursive
and can be represented as

x(n) =

⌊

bn
2+2n − x(1)bn

2+n

b2n − 2x(1)bn + 1

⌋

mod bn,

y(n) =

⌊

y(1)bn
2+n

b2n − 2x(1)bn + 1

⌋

mod bn.

For k = 7, the fundamental solution is (x(1), y(1)) = (8, 3). If n ∈ Z+, then

x(n) =
((

(−143n
2+2n + 8 · 143n

2+n) mod (1432n − 16 · 143n + 1)
)

mod 143n
)

− 1,

y(n) =
((

(−3 · 64n
2+n) mod (642n − 16 · 64n + 1)

)

mod 64n
)

− 1.
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4.3 Degree 2, integers, negative constant term

In this subsection, we obtain formulas for two Lucas sequences that take positive and negative
values. They are computed according to Remark 10.

Example 21. [Generalized Gaussian Fibonacci integers, OEIS A088137] If n ∈ Z+, then

t(n) =
1

9

((

3 · 91n
2+3n − 5 · 91n

2+2n + 6 · 91n
2+n) mod (913n − 5 · 912n + 9 · 91n − 9)

)

mod 91n
)

− 3n+1
.

The div-mod representation works for c = 32 (see Prunescu and Sauras-Altuzarra [5]). The
mod-mod representation works for r = 91, which is a spectacular difference.

Example 22. [OEIS A002249] If n ∈ Z+, then

s(n) =
1

4

((

(4 · 21n
2+3n − 7 · 21n

2+2n + 6 · 21n
2+n) mod (213n − 3 · 212n + 4 · 21n − 4)

)

mod 21n
)

− 2n+1
.

The div-mod representation works for c = 8 (see Prunescu and Sauras-Altuzarra [5]).
The mod-mod representation works for r = 21, so we remark again a big difference.

4.4 Degree 3, natural numbers, negative constant term

We finally apply the theory to some C-recursive natural sequences of degree three, whose
recursions do not contain positive coefficients. Consequently, these representations do not
need correction terms.

Example 23. [Tribonacci numbers, OEIS A000073] If n ∈ Z+, then

s(n) =
(

2n
2+n mod (23n − 22n − 2n − 1)

)

mod 2n.

Example 24. [Padovan numbers, OEIS A000931] If n ∈ Z+, then

s(n) =
(

(2n
2+3n − 2n

2+n) mod (23n − 2n − 1)
)

mod 2n.

Example 25. [Narayana’s cows sequence, OEIS A000930] If n ∈ Z+, then

s(n) =
(

2n
2+3n mod (23n − 22n − 1)

)

mod 2n.
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