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Abstract

We consider families Pn of plane lattice paths enumerated by Guy, Krattenthaler,
and Sagan. We show by explicit bijection that these families are equinumerous with
the set SYT(n+ 2, 2, 1n) of standard Young tableaux.

1 Introduction

We consider the set Pn of lattice paths from (0, 0) to (n, n) that
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• only use the steps N = (0, 1), S = (0,−1),E = (1, 0), and W = (−1, 0);

• stay weakly inside the first quadrant of the plane;

• have length 2n+ 2.

For a picture of such a path, see (3). It was shown by Guy, Krattenthaler, and Sagan [6]
that

|Pn| =

(

2n

n

)

(4n+ 4)(2n+ 1)

n+ 2
. (1)

This integer sequence appears as A253487 in the On-Line Encyclopedia of Integer Sequences

(OEIS) [11]. The same enumerations also appear in the context of integrals of incomplete
beta functions [1].

What appears not to have been previously noticed is that (1) is also the enumeration
of standard Young tableaux (see Section 2 for precise definitions and examples) of shape
θ(n) = (n+2, 2, 1n), an easy consequence of the hook-length formula [2] for counting standard
Young tableaux of any fixed shape. (The shape θ(n) is an instance of the near-hook shapes

studied by Langley and Remmel [10].) That is, we have

∣

∣SYT
(

θ(n)
)∣

∣ =

(

2n

n

)

(4n+ 4)(2n+ 1)

n+ 2
. (2)

Here we give a direct proof of this equinumerosity by exhibiting an explicit bijection between
the sets Pn of lattice paths and SYT(θ(n)) of standard tableaux.

Special enumerations of families of standard Young tableaux are often a sign of deeper
algebraic structure, which can often be revealed by finding bijections between tableaux of
these families and other combinatorial objects. A famous example is the set SYT(k, k) of
2-row rectangular tableaux, which is enumerated by the Catalan numbers; an equivariant
bijection to noncrossing matchings yields a cyclic sieving formula for the orbit structure of
Schützenberger’s [18] promotion operator on SYT(k, k) (see [14–16] for discussion). Similarly,
the orbit structure of promotion on SYT(k, k, k) and SYT(k, k, k, k) may be understood via
exceptional bijections to Kuperberg’s SL3-webs [7, 9, 14] and 4-hourglass plabic graphs [5].

Another class of standard tableaux with a special enumeration is SYT(n− k, n− k, 1k),
which was shown by Stanley [20] to be in bijection with polygon dissections of an (n+2)-gon
by n− k− 1 diagonals. Here, the bijection does not explain the promotion action on the set
SYT(n−k, n−k, 1k). Instead, there are further bijections to rectangular increasing tableaux
and to noncrossing matchings without singleton blocks and it is theK-theoretic promotion on
these increasing tableaux that is explicated through these bijections [13]. These perspectives
lead to a surprising diagrammatic basis for the Specht module [19] for the partition shape
(n− k, n− k, 1k) [3, 8, 12, 17].

We do not know such an application to representation theory of the bijection for SYT(θ(n))
given here, but in light of this bijection and the above results, we would suggest that the
Specht module for shape θ(n) receive further combinatorial study. An interesting feature of
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the correspondence between SYT(θ(n)) and Pn is that the number of entries in each tableau
does not match the number of steps in the corresponding lattice path; the lattice paths each
have length 2n + 2, while the tableaux each have 2n + 4 boxes. This mismatch makes the
correspondence rather subtle.

2 Notation

To fix notation and conventions, we recall some standard notions in tableau combinatorics.
For further background, see, for example, the textbooks [4, 21]. The only non-standard
content in this section is Definition 1.

We write θ(n) for the integer partition (n+2, 2, 1n) of the number 2n+4 into n+2 parts.
We conflate θ(n) with its Young diagram in English orientation, so that the row of length

n+ 2 is at the top. For example, we draw θ(3) as .

Definition 1. We refer to the first row of θ(n) as its arm, the first column as its leg, and the
unique box that is in neither its first row nor its first column as its heart.

A standard Young tableau T ∈ SYT(θ(n)) is a bijective filling of the boxes of the Young
diagram with the integers 1, . . . , 2n+4 such that the entries increase along rows left to right

and increase down columns top to bottom. For example, 1 2 4 5
3 7
6
8

∈ SYT(θ(2)). Here, the

entries of the arm are 1, 2, 4, 5, the entries of the leg are 1, 3, 6, 8, and the heart entry is 7.
For conciseness, we write our lattice paths P ∈ Pn as words in the alphabet {N, S,E,W}

instead of drawing the paths in the plane. For example, NNES ∈ P1 denotes the lattice path
that looks like

N

N

E

S

(3)

We refer to the steps N and E as forward steps and refer to the steps S and W as backwards
steps. Note that the length and endpoint conditions for Pn force that each P ∈ Pn must
have exactly one backwards step.
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3 First bijection

In this section, we describe and prove the correctness of an explicit bijection

ψ : SYT(θ(n)) → Pn.

Let T ∈ SYT(θ(n)). We construct the corresponding path ψ(T ) = P = p1p2 · · · p2n+2 ∈ Pn

by noting the positions of the entries of T in increasing order. The entry 1 appears in the
same position in all tableaux; hence, it carries no information and we ignore it entirely.

As mentioned at the end of Section 2, a path in Pn must have exactly one backwards
step, either W or S. We construct the path P to explicitly have exactly one backwards step.
If the value 2 appears in the arm of T , the backwards step in P is S. If instead 2 appears in
the leg of T , the backwards step is W.

Now, for each 3 ≤ i ≤ 2n + 4, we construct a step of the lattice path P . If i lies in the
arm, then set pi−2 = E. If i lies in the leg, then set pi−2 = N. If i is in the heart, then
pi−2 ∈ {S,W} is the backwards step, with the type of this backwards step determined earlier
by observing the position of the entry 2.

In summary, ψ(T ) = p1p2 · · · p2n+2 is given by

pi =



















E, if i+ 2 ∈ arm(T );

N, if i+ 2 ∈ leg(T );

S, if i+ 2 ∈ heart(T ) and 2 ∈ arm(T );

W, if i+ 2 ∈ heart(T ) and 2 ∈ leg(T ).

(4)

For an example of the map ψ applied to all 16 tableaux in SYT(θ1), see Figure 1.

Theorem 2. The map ψ : SYT(θ(n)) → Pn given in (4) is a bijection.

Before proceeding with the proof of Theorem 2, we note that the definition of ψ is rather
delicate. For example, the reader may enjoy verifying that swapping the conditions for the
steps S and W would generate lattice paths that leave the first quadrant of the plane and
hence are not in Pn.

Proof of Theorem 2. The primary aspect that needs proof is the well-definedness of the map
ψ. Let T ∈ SYT(θ(n)). Note that a word in {N, S,E,W} of length 2n + 2 giving a lattice
path from (0, 0) to (n, n) must contain exactly one instance of either S or W; moreover, if
it contains S, then the other letters must be n + 1 copies of N and n copies of E, while if it
contains W, then the other letters must be n copies of N and n+ 1 copies of E.

By construction, ψ(T ) has exactly one instance of S if 2 is in the arm and exactly one
instance of W if 2 is in the leg. (Note that by the increasingness conditions on tableaux that
2 cannot appear in the heart nor in the intersection of the leg and arm.) In the case where
2 is in the arm of T so that S is in ψ(T ), there are n numbers from {3, . . . , 2n + 4} in the
arm and n+ 1 numbers from {3, . . . , 2n+ 4} in the leg, so that ψ(T ) has n copies of E and
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1 2 3
4 5
6
E N S N

1 2 3
4 6
5
E N N S

1 2 4
3 5
6
N E S N

1 2 4
3 6
5
N E N S

1 2 5
3 4
6
N S E N

1 2 6
3 4
5
N S N E

1 2 5
3 6
4
N N E S

1 2 6
3 5
4
N N S E

1 3 4
2 5
6
E E W N

1 3 4
2 6
5
E E NW

1 3 5
2 4
6
E W E N

1 3 6
2 4
5
E W N E

1 3 5
2 6
4
E N E W

1 3 6
2 5
4
E NW E

1 4 5
2 6
3
N E E W

1 4 6
2 5
3
N E W E

Figure 1: The 16 standard Young tableaux in SYT(θ(1)). Below each tableau T appears the
corresponding lattice path ψ(T ) ∈ P1.

n + 1 copies of N, as desired. In the case where 2 is in the leg of T so that W is in ψ(T ),
there are n numbers from {3, . . . , 2n+4} in the leg and n+1 numbers from {3, . . . , 2n+4}
in the arm, so that ψ(T ) has n + 1 copies of E and n copies of N, again as desired. Thus,
ψ(T ) gives a lattice path of the correct length, ending at the correct position.

We now verify that these lattice paths remain inside the first quadrant. We must show
that, if S appears, it appears after an instance of N, while, if W appears, it appears after an
instance of E. Suppose pi = S. Then i + 2 ∈ heart(T ) and 2 ∈ arm(T ). Since the second
row of T is increasing, the entry j appearing directly left of the i + 2 in the heart must
satisfy j < i + 2. Moreover, we know the locations of 1 and 2 in T , so j ≥ 3. It follows
that pj−2 = N is a letter of ψ(T ) appearing before pi, as required. Similarly if pi = W, then
i + 2 ∈ heart(T ) and 2 ∈ leg(T ), so that the entry k directly above the i + 2 in the heart
satisfies 3 ≤ k < i + 2. We conclude that pk−2 = E is a letter of ψ(T ) appearing before pi.
This completes the proof that ψ is well-defined.

The injectivity of ψ is clear. Surjectivity follows from the existence of an inverse map
φ. Given P = p1 · · · p2n+2 ∈ Pn, we produce T = φ(P ) as follows. Place value 1 in the
intersection of the arm and leg of θ(n). The elements of {i+ 2 : pi = E} go in the arm of T ,
while the elements of {i + 2 : pi = N} go in the leg of T . For pj the unique backwards step
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of P , place j + 2 in the heart of T . If pj = S, include 2 in the arm of T , while if pj = W,
include 2 in the leg of T . It is straightforward to check that this produces a valid standard
Young tableau of the desired shape and that φ, ψ are mutually inverse.

4 Additional bijections

Given two sets of cardinality k, there are k! distinct bijections between them. However,
for sets of combinatorial interest, there is often one (or perhaps a small number) of these
bijections that are understood to be the “best” or “most natural” ones. For example, one
might desire the bijection to preserve important weight functions on the sets or to preserve
the action of some group. While we find the bijection ψ of Section 3 attractive, we are not
yet certain what properties one most wants a bijection SYT(θ(n)) → Pn to preserve. In
this section, we describe without proof several additional such bijections for possible future
application.

Given a bijection κ : SYT(θ(n)) → Pn, one may obtain another κ⊤ by first transposing
each tableau T by reflecting across the main diagonal and then applying κ. These bijections
κ, κ⊤ are essentially the same up to convention choices. We now proceed to give another
bijection that, while similar in flavour to the bijection ψ, is fundamentally distinct.

4.1 Second bijection

Define a map ξ : SYT(θ(n)) → Pn as follows. Let T ∈ SYT(θ(n)) and let H be the entry in
the heart of T . We define ξ(T ) = p1p2 · · · p2n+2 by

pi =







































E, if i+ 1 ∈ arm(T ) and i+ 2 < H;

N, if i+ 1 ∈ leg(T ) and i+ 2 < H;

S, if i+ 1 ∈ arm(T ) and i+ 2 = H;

W, if i+ 1 ∈ leg(T ) and i+ 2 = H;

E, if i+ 2 ∈ arm(T ) and H < i+ 2;

N, if i+ 2 ∈ leg(T ) and H < i+ 2.

(5)

For example, if S = 1 2 4
3 6
5

is the tableau in the upper right of Figure 1, then ξ(S) =

ENEW, while if T = 1 3 6
2 4
5

is the rightmost tableau from the third row of Figure 1, then

ξ(T ) = NSNE.
We have the following.

Proposition 3. The map ξ : SYT(θ(n)) → Pn given in (5) is a bijection.
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Note that the backwards step of ψ(T ) is determined by the entry of the heart of T and
the position of 2, whereas the backwards step of ξ(T ) is determined by the entry of the heart
of T and the numerically previous entry. Of course, ξ⊤ yields yet another bijection.
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