

Counting Self-Dual Monotone Boolean Functions

Bartłomiej Pawelski and Andrzej Szepietowski Institute of Informatics University of Gdańsk Poland

> bartlomiej.pawelski@ug.edu.pl andrzej.szepietowski@ug.edu.pl

Abstract

Let D_n denote the set of monotone Boolean functions with n variables. The cardinality of D_n , denoted by d_n , is known as the n-th Dedekind number. Elements of D_n can be represented as strings of bits of length 2^n . For each $f \in D_n$, we have the dual function $f^* \in D_n$ which is obtained by reversing and negating all bits. An element $f \in D_n$ is self-dual if $f = f^*$. Let Λ_n denote the set of all self-dual monotone Boolean functions of n variables and let λ_n denote $|\Lambda_n|$. There is a natural action of the permutation group S_n on the set of Boolean functions by permutation of variables. The sets D_n and Λ_n are closed under this action. We let R_n and R_n denote the sets of all equivalence classes in R_n and R_n respectively. In this paper, we derive several algorithms for counting self-dual monotone Boolean functions and confirm the known result that R_n equals R_n

1 Introduction

Let B denote the set $\{0,1\}$ and B^n the set of n-element sequences of B. A Boolean function with n variables is a function from B^n into B. There is the order relation in B (namely: $0 \le 0, 0 \le 1, 1 \le 1$) and the partial order in B^n : for any two elements: $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n)$ in $B^n, x \le y$ if and only if $x_i \le y_i$ for all $1 \le i \le n$. A function $h: B^n \to B$ is monotone if $x \le y$ implies $h(x) \le h(y)$. Let D_n denote the set of monotone functions with n variables. The cardinality of D_n , denoted by d_n , is known as the n-th Dedekind number. We have the partial order in D_n defined by

 $g \le h$ if and only if $g(x) \le h(x)$ for all $x \in B^n$.

We represent an element $f \in D_n$ as a string of bits of length 2^n where the values of f(x) are listed in lexicographical order of x. The two elements of D_0 are represented as 0 and 1. For every $n \geq 1$, the set D_n can be represented as the set of all concatenations $g_0 \cdot g_1$, where $g_0, g_1 \in D_{n-1}$ and $g_0 \leq g_1$. For example, $D_1 = \{00, 01, 11\}$ and $D_2 = \{0000, 0001, 0011, 0101, 0111, 1111\}$.

For each $f \in D_n$, we have the dual $f^* \in D_n$, which is obtained by reversing and negating all bits. Formally, the dual of $f \in D_n$ is the function $f^* : B^n \to B$ defined by

$$f^*(x) = (f(x^c))^c,$$

where x^c is the negation of $x \in B^n$ and $(f(x^c))^c$ is the negation of $f(x^c) \in B$. For example, $1111^* = 0000$ and $0001^* = 0111$. An element $f \in D_n$ is self-dual if $f = f^*$. For example, 0101 and 0011 are self-dual in D_2 .

Let Λ_n be the set of all self-dual monotone Boolean functions of n variables, and let λ_n denote the cardinality of this set. The value λ_n is also known as the n-th Hosten-Morris number (A001206 in the On-Line Encyclopedia of Integer Sequences).

The first attempt to determine the values of λ_n was made in 1968 by Riviere [6], who found all values up to λ_5 . In 1972, Brouwer and Verbeek provided the values up to λ_7 [3]. The value of λ_8 was determined by Mills and Mills [5] in 1978.

The most recent known term, λ_9 , was obtained by Brouwer, Mills, Mills, and Verbeek [2] in 2013. The value of λ_n corresponds to the number of non-dominated coteries on n members [1, Section 1], and also corresponds to the number of maximal linked systems (see Section 2.1 and [2, Section 1]).

Any two Boolean functions are said to be *equivalent* if one can be transformed into the other by a permutation of the input variables (see Section 2.2). Let Q_n denote the set of all equivalence classes in Λ_n and let q_n denote $|Q_n|$. The values of q_n are described by the A008840 OEIS sequence.

In this paper, we derive several algorithms for counting self-dual monotone Boolean functions and we confirm the result of [2] that λ_9 equals 423,295,099,074,735,261,880. Furthermore, employing Burnside's lemma and techniques discussed in [8, 10], we calculate q_8 to be 6,001,501, which is the first-ever calculation of the value q_8 . We also show that the two sequences d_n and λ_n intertwine, or more precisely, we have

$$\lambda_1 \le d_0 \le \lambda_2 \le d_1 \le \dots \le \lambda_{n+1} \le d_n \le \lambda_{n+2} \le \dots$$

and we have the following estimates for the unknown value of λ_{10}

$$d_8 \le \lambda_{10} \le d_9.$$

n	λ_n	q_n
0	0	0
1	1	1
2	2	1
3	4	2
4	12	3
5	81	7
6	2,646	30
7	1,422,564	716
8	229,809,982,112	6,001,501
9	423,295,099,074,735,261,880	_

Table 1: Known values of λ_n (A001206) and q_n (A008840).

2 Preliminaries

A poset (partially ordered set) (S, \leq) consists of a set S (called the carrier) together with a binary relation (partial order) \leq which is reflexive, transitive, and antisymmetric. For example, B, B^n , and D_n are posets. Given two posets (S, \leq) and (T, \leq) , a function $f: S \to T$ is monotone, if $x \leq y$ implies $f(x) \leq f(y)$. We let T^S denote the poset of all monotone functions from S to T with the partial order defined by

$$f \leq g$$
 if and only if $f(x) \leq g(x)$ for all $x \in S$.

Notice that $D_n = B^{B^n}$ and $B^n = B^{A_n}$, where A_n is the antichain with the carrier $\{1, \ldots, n\}$. A set A is an antichain if any two distinct elements in A are incomparable. In this paper we use the following well-known lemma [10]:

Lemma 1. The poset D_{n+k} is isomorphic to the poset $D_n^{B^k}$ —the poset of monotone functions from B^k to D_n .

By \top we denote the maximal element in D_n , that is $\top = (1 ... 1)$, and by \bot the minimal element in D_n , that is $\bot = (0 ... 0)$. For two elements $f, g \in D_n$, by f|g we denote the bitwise or; and by f & g the bitwise and. Furthermore, let $\operatorname{re}(f,g)$ denote the number of elements in the interval [f,g], that is $|\{h \in D_n : f \leq h \leq g\}|$. Note that $\operatorname{re}(f,\top) = |\{h \in D_n : f \leq h\}|$ and $\operatorname{re}(\bot,g) = |\{h \in D_n : h \leq g\}|$. For $f \in D_n$, by $\ell(f)$ we denote the number of ones in f, also known as its Hamming weight. For example, $\ell(0000) = 0$ and $\ell(0101) = 2$. The next result is straightforward.

Lemma 2. For each $f, g \in D_n$, we have

1.
$$f^{**} = f$$

- 2. if $f \leq g$ then $g^* \leq f^*$
- 3. $(f|g)^* = f^* \& g^*$
- 4. $(f\&g)^* = f^*|g^*|$

2.1 Maximal linked system

Let $X = \{1, ..., n\}$ and $\mathcal{P}(X)$ be the power set of X. A family $\mathcal{W} \subseteq \mathcal{P}(X)$ is linked if for all A and B in \mathcal{W} , $A \cap B$ is not empty. A family $\mathcal{U} \subseteq \mathcal{P}(X)$ is a maximal linked system (mls) on X if \mathcal{U} is linked and for all \mathcal{W} with $\mathcal{U} \subseteq \mathcal{W} \subseteq \mathcal{P}(X)$, either $\mathcal{W} = \mathcal{U}$ or \mathcal{W} is not linked.

If \mathcal{U} is linked, then $\emptyset \notin \mathcal{U}$ and for each set $A \in \mathcal{P}(X)$, it is not possible that both A and its complement $A^c = X - A$ belong to \mathcal{U} .

For n = 0, $X = \emptyset$, $\mathcal{P}(X) = \{\emptyset\}$ and we have one mls; namely, the empty family. Notice that the set of self-dual functions Λ_0 is empty and $\lambda_0 = 0$.

Lemma 3. If $n \geq 1$ and a family $\mathcal{U} \subset \mathcal{P}(X)$ is a mls, then

- (L1) \mathcal{U} is an upset, i.e., if $A \subseteq B$ and $A \in \mathcal{U}$, then $B \in \mathcal{U}$.
- (L2) For every subset $A \in \mathcal{P}(X)$ exactly one of the two subsets A or A^c is in \mathcal{U} .

Proof. (L1) For each $C \in \mathcal{U}$, $A \cap C \neq \emptyset$ and $B \cap C \neq \emptyset$. Hence, either $B \in \mathcal{U}$ or \mathcal{U} is not maximal.

(L2) We have two cases:

Case 1. For every $B \in \mathcal{U}$, $A \cap B \neq \emptyset$. Then either $A \in \mathcal{U}$ or \mathcal{U} is not maximal.

Case 2. There is $B \in \mathcal{U}$ such that $B \cap A = \emptyset$. In this case we have that $B \subseteq A^c$ and, by (L1), $A^c \in \mathcal{U}$.

Lemma 4. If $n \geq 1$ and a family $\mathcal{U} \subseteq \mathcal{P}(X)$ satisfies conditions (L1) and (L2), then \mathcal{U} is an mls.

Proof. First, we prove that \mathcal{U} is linked. Suppose, for a contradiction, that there are two subsets $A, B \in \mathcal{U}$ with $A \cap B = \emptyset$. Then $B \subseteq A^c$ and $A^c \in \mathcal{U}$, a contradiction.

If \mathcal{U} satisfies condition (L2), then exactly half of the elements in $\mathcal{P}(X)$ belong to \mathcal{U} . On the other hand, if $|\mathcal{U}| > 2^{n-1}$ then \mathcal{U} contains a pair A, A^c and \mathcal{U} is not linked.

For n = 1, the family $\{\{1\}\}$ is the only mls on $X = \{1\}$.

For n = 2, we have two mls: $\{\{1\}, \{1, 2\}\}$ and $\{\{2\}, \{1, 2\}\}$.

Recall that $\mathcal{P}(X)$ is isomorphic to B^n by identifying a subset of X with its characteristic vector and any subset of $\mathcal{P}(X)$ can be represented by a function from B^n to B. For n=1, the mls $\{\{1\}\}$ can be represented as the string 01, which is the only self-dual function in Λ_1 . For n=2, the two mls can be represented as 0101 and 0011, and they form the set Λ_2 . For $n \geq 1$, the set of mls on $\{1, \ldots, n\}$ can be represented as the set of self-dual functions Λ_n [2, Section 1.1].

2.2 Permutations and equivalence relation

Let S_n denote the set of permutations on $\{1, \ldots, n\}$. Every permutation $\pi \in S_n$ defines a permutation on B^n as follows: for every $x = (x_1, \ldots, x_n) \in B^n$ let $\pi(x) = (x_{\pi(1)}, \ldots, x_{\pi(n)})$.

The permutation π also defines the function $f \circ \pi : B^n \to B$ for every function $f : B^n \to B$ by

$$(f \circ \pi)(x) = f(\pi(x))$$
 for $x \in B^n$.

By \sim we denote an equivalence relation on D_n . Namely, two functions $f, g \in D_n$ are equivalent, $f \sim g$, if there is a permutation $\pi \in S_n$ such that $f = g \circ \pi$. For a function $f \in D_n$, its equivalence class is the set $[f] = \{g \in D_n : g \sim f\}$. By R_n we denote the set of equivalence classes in D_n and by r_n we denote $|R_n|$. By $\gamma(f)$ we denote |f|. For the class [f], its representative is its minimal element (according to the lexicographical order in D_n). Sometimes, we identify the class $[f] \in R_n$ with its representative and treat [f] as an element in D_n . Let Q_n denote the set of all equivalence classes in Λ_n , and let q_n denote $|Q_n|$.

The following lemma is straightforward.

Lemma 5. For every function $f: B^n \to B$ and for every permutation $\pi \in S_n$

- 1. The function $f \circ \pi$ is monotone if f is monotone.
- 2. If $f \in D_n$, then $f^* \circ \pi = (f \circ \pi)^*$.
- 3. If $f \in \Lambda_n$, then for every equivalent $g \in [f]$ we have $g \in \Lambda_n$.

For n = 2, we have $d_2 = 6$ monotone functions,

$$D_2 = \{0000, 0001, 0011, 0101, 0111, 1111\}$$

and $r_2 = 5$ equivalence classes in D_2 ; namely

$$R_2 = \{\{0000\}, \{0001\}, \{0011, 0101\}, \{0111\}, \{1111\}\}.$$

Furthermore, there are two self-dual functions $\Lambda_2 = \{0011, 0101\}$ and they form one equivalence class. Hence $\lambda_2 = 2$ and $q_2 = 1$.

For n = 3, we have $d_3 = 20$ monotone functions and $r_3 = 10$ equivalence classes in D_3 . There are four self-dual functions

$$\Lambda_3 = \{01010101, 00110011, 00001111, 00010111\}$$

and they form two equivalence classes:

$$Q_3 = \{\{01010101, 00110011, 00001111\}, \{00010111\}\}.$$

Hence, $\lambda_3 = 4$ and $q_3 = 2$.

3 Counting functions from B to D_n

Let $n \geq 0$. By Lemma 1, the poset D_{n+1} is isomorphic to the poset D_n^B —the poset of monotone functions from $B = \{0, 1\}$ to D_n . Consider a monotone function $H : B \to D_n$. It can be represented as the concatenation

$$H = H(0) \cdot H(1)$$

with $H(0), H(1) \in D_n$ and $H(0) \leq H(1)$. The dual of H is

$$H^* = H(1)^* \cdot H(0)^*.$$

Recall that we identify each function in D_n with the sequence of bits. If $H \in D_{n+1}$ is self-dual then it is of the form $b \cdot b^*$ with $b \in D_n$ and $b \le b^*$. And vice versa, if $b \in D_n$ and $b \le b^*$, then the concatenation $b \cdot b^*$ is self-dual in D_{n+1} . Therefore, we have proved the following theorem.

Theorem 6. For every $n \geq 0$, the number of self-dual functions λ_{n+1} is equal to the number of elements $b \in D_n$ that satisfy $b \leq b^*$. In other words

$$\lambda_{n+1} = \sum_{\substack{b \in D_n \\ b \le b^*}} 1.$$

Furthermore,

$$\lambda_{n+1} = \sum_{\substack{b \in R_n \\ b \le b^*}} \gamma(b).$$

Here we identify each class $b \in R_n$ with its representative.

The following corollary is presented, in a different form, in [11]

Corollary 7. For every $n \geq 0$, we have $\lambda_{n+1} \leq d_n$.

The next result is straightforward.

Lemma 8. Let b be a function in D_n . Then

- $b \le b^*$, only if $\ell(b) \le 2^{n-1}$.
- if $\ell(b) = 2^{n-1}$ and $b \leq b^*$, then $b = b^*$, and b is self-dual in D_n .
- if b is self-dual, then $\ell(b) = 2^{n-1}$.
- $\ell(b^*) = 2^n \ell(b)$, hence,

$$|\{f \in D_n : \ell(f) < 2^{n-1}\}| = |\{f \in D_n : \ell(f) > 2^{n-1}\}|.$$

As a corollary we have the following theorem.

Theorem 9.

$$\lambda_{n+1} = \lambda_n + \sum_{\substack{b \in R_n \\ \ell(b) < 2^{n-1} \\ b \le b^*}} \gamma(b).$$
$$\lambda_{n+1} \le \lambda_n + \frac{1}{2}(d_n - \lambda_n) = \frac{1}{2}(d_n + \lambda_n).$$

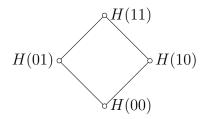
The second part of the theorem is presented, in a different form, in [11]. Notice that $\lambda_{n+1} = \frac{1}{2}(d_n + \lambda_n)$ for each $n \leq 3$.

4 Counting functions from B^2 to D_n

Let $n \geq 0$. By Lemma 1, the poset D_{n+2} is isomorphic to the poset $D_n^{B^2}$ —the poset of monotone functions from $B^2 = \{00, 01, 10, 11\}$ to D_n . Consider a monotone function $H: B^2 \to D_n$. It can be represented as the concatenation

$$H(00) \cdot H(01) \cdot H(10) \cdot H(11)$$

and as the graph below.



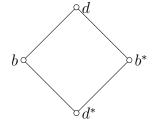
where the vertices represent the set of values $H(B^2)$ and the edges represent the partial order:

$$H(00) \le H(01) \le H(11)$$
 and $H(00) \le H(10) \le H(11)$.

Recall that we identify each function in D_n with the sequence of bits. The dual of H is represented by

$$H(11)^* \cdot H(10)^* \cdot H(01)^* \cdot H(00)^*.$$

If H is self-dual then $H(00) = H(11)^*$, $H(01) = H(10)^*$, $H(10) = H(01)^*$, and $H(11) = H(00)^*$ and we can represent H as the graph



where d denotes H(11) and b denotes H(01). Furthermore, d^* denotes H(00) and b^* denotes H(10). If H is self-dual then it is of the form $d^* \cdot b \cdot b^* \cdot d$ with $b, d \in D_n$ and $d \geq b|b^*$. And vice versa, if $b, d \in D_n$, and $d \geq b|b^*$, then, by Lemma 2, $d^* \leq b \& b^*$ and the concatenation $d^* \cdot b \cdot b^* \cdot d$ is self-dual in D_{n+2} . Hence, we have proved the following theorem.

Theorem 10. For every $n \ge 0$, the number of self-dual functions λ_{n+2} is equal to the number of pairs $b, d \in D_n$ which satisfy condition $d \ge b|b^*$. In other words

$$\lambda_{n+2} = \sum_{b \in D_n} \operatorname{re}(b|b^*, \top).$$

Furthermore, Lemma 5 implies

$$\lambda_{n+2} = \sum_{b \in R_n} \gamma(b) \cdot \operatorname{re}(b|b^*, \top).$$

Here we identify each class $b \in R_n$ with its representative.

Corollary 11. For every $n \geq 0$, we have $\lambda_{n+2} \geq d_n$.

By Colloraries 7 and 11, we have that

$$\lambda_1 \leq d_0 \leq \lambda_2 \leq d_1 \leq \cdots \leq \lambda_{n+1} \leq d_n \leq \lambda_{n+2} \leq \cdots$$

and we have the following estimates for the unknown value of λ_{10}

$$d_8 \leq \lambda_{10} \leq d_9$$
.

5 Counting functions from B^4 to D_n

Let $n \geq 0$. By Lemma 1, the poset D_{n+4} is isomorphic to the poset $D_n^{B^4}$ —the set of monotone functions from $B^4 = \{0000, 0001, \dots, 1111\}$ to D_n . Consider a monotone function $H: B^4 \to D_n$. It can be represented as the concatenation

$$H(0000) \cdot H(0001) \cdot H(0010) \cdot H(0011) \cdot H(0100) \cdot H(0101) \cdot H(0110) \cdot H(0111) \cdot H(1000) \cdot H(1001) \cdot H(1010) \cdot H(1011) \cdot H(1110) \cdot H(1101) \cdot H(1111).$$

and its dual as

$$H(1111)^* \cdot H(1110)^* \cdot H(1101)^* \cdot H(1100)^* \cdot H(1011)^* \cdot H(1010)^* \cdot H(1001)^* \cdot H(1000)^* \cdot H(0111)^* \cdot H(0110)^* \cdot H(0101)^* \cdot H(0010)^* \cdot H(0010)^* \cdot H(0000)^*.$$

If H is self-dual, then

$$H(0000) = H(1111)^*,$$
 $H(0001) = H(1110)^*,$
 $H(0010) = H(1101)^*,$ $H(0011) = H(1100)^*,$
 $H(0100) = H(1011)^*,$ $H(0101) = H(1010)^*,$
 $H(0110) = H(1000)^*.$

Recall that we identify each function in D_n with the sequence of bits. Similarly, as in Section 4 we can represent H as a graph. See Figure 1 where h represents H(1111), d represents H(0111), e represents H(1011), f represents H(1101), g represents H(1110), ..., and h^* represents H(0000).

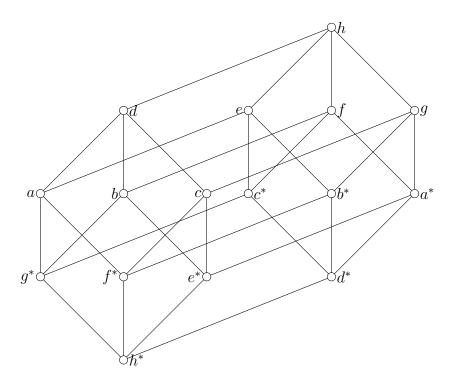


Figure 1: Structure of $H: B^4 \to D_n$ if H is self-dual. The graph represents the hypercube B^4 . The label at a vertex x represents the value $H(x) \in D_n$.

Theorem 12. For each $a, b, c \in D_n$, for each $h \in D_n$ such that $h \ge a|b|c|a^*|b^*|c^*$, for each $d, e, f, g \in D_n$ such that

$$a|b|c \le d \le h,$$

$$a|b^*|c^* \le e \le h,$$

$$b|a^*|c^* \le f \le h,$$

$$c|a^*|b^* \le g \le h,$$

the concatenation

$$h^* \cdot g^* \cdot f^* \cdot a \cdot e^* \cdot b \cdot c \cdot d \cdot d^* \cdot c^* \cdot b^* \cdot e \cdot a^* \cdot f \cdot g \cdot h$$

represents a self-dual function in D_{n+4} ; see Figure 1. And vice versa, each self-dual function in D_{n+4} is of the above form.

The proof is straightforward.

Theorem 13. The number of self-dual functions

$$\lambda_{n+4} = \sum_{\substack{a,b,c \in D_n \\ h \ge (a|b|c|a^*|b^*|c^*)}} \operatorname{re}(a|b|c,h) \cdot \operatorname{re}(a|b^*|c^*,h) \cdot \operatorname{re}(b|a^*|c^*,h) \cdot \operatorname{re}(c|a^*|b^*,h).$$

Theorem 14. For each $h \in D_n$ such that $h \ge h^*$,

for each $a, b, c \in D_n$, $h^* \le a, b, c \le h$, for each $d, e, f, g \in D_n$ such that

$$a|b|c \le d \le h,$$

$$a|b^*|c^* \le e \le h,$$

$$b|a^*|c^* \le f \le h,$$

$$c|a^*|b^* \le g \le h,$$

the concatenation

$$h^* \cdot g^* \cdot f^* \cdot a \cdot e^* \cdot b \cdot c \cdot d \cdot d^* \cdot c^* \cdot b^* \cdot e \cdot a^* \cdot f \cdot g \cdot h$$

represents a self-dual function in D_{n+4} ; see Figure 1. And vice versa, each self-dual function in D_{n+4} is of the above form.

Let

$$F(h) = \sum_{\substack{a,b,c \in D_n \\ h \ge a,b,c \ge h^*}} \operatorname{re}(a|b|c,h) \cdot \operatorname{re}(a|b^*|c^*,h) \cdot \operatorname{re}(b|a^*|c^*,h) \cdot \operatorname{re}(c|a^*|b^*,h).$$

Observe that F(h) is the number of self-dual functions $H \in D_n^{B^4}$, with $H(0000) = h^*$ and H(1111) = h. Therefore,

$$\lambda_{n+4} = \sum_{\substack{h \in D_n \\ h^* \le h}} F(h).$$

Furthermore, Lemma 5 implies that for any two elements $h_1 \sim h_2$ we have $F(h_1) = F(h_2)$. Hence, we have

$$\lambda_{n+4} = \sum_{\substack{h \in R_n \\ h \ge h^*}} \gamma(h) \cdot F(h).$$

Here again we identify the class $h \in R_n$ with its representative. Similarly as in Lemma 8 we can observe that $h \ge h^*$, only if $\ell(h) \ge 2^{n-1}$. Furthermore, if $\ell(h) = 2^{n-1}$ and $h \ge h^*$, then $h = h^*$, and we have only one self-dual function $H \in D_n^{B^4}$ with H(0000) = H(1111) = h. Hence,

$$\lambda_{n+4} = \lambda_n + \sum_{\substack{h \in R_n \\ h^* \le h \\ \ell(h) > 2^{n-1}}} \gamma(h) \cdot F(h). \tag{1}$$

6 Implementation

In this section we present three algorithms based on results from the previous sections. We implemented the algorithms in Rust and ran them on a 32-thread Xeon CPU.

Algorithm 1 Calculation of λ_{n+2}

```
Input: R_n (each class is represented by its minimal element) with re(x, \top) for all x \in R_n

Output: s = \lambda_{n+2}

1: Initialize s = 0,

2: for all b \in R_n do

3: s = s + \operatorname{re}(b|b^*, \top) \cdot \gamma(b)

4: end for
```

Algorithm 1 is based on Theorem 10. After loading the preprocessed data into main memory, λ_9 was computed in 15 seconds. However, preprocessing (the calculation of R_7 and its intervals) took approximately 2.5 hours.

Algorithm 2 Calculation of λ_{n+4} based on Theorem 13

```
Input: D_n; R_n (each class is represented by its minimal element); re(x,y) for all
(x,y) \in D_n \times D_n
     Output: s = \lambda_{n+4}
 1: Initialize s = 0,
 2: for all a \in R_n do
         for all b \in D_n do
 3:
              for all c \in D_n do
 4:
                   for all h \in D_n, h \ge (a|b|c|a^*|b^*|c^*) do
 5:
                        s = s + \operatorname{re}(a|b|c,h) \cdot \operatorname{re}(a|b^*|c^*,h) \cdot \operatorname{re}(b|a^*|c^*,h) \cdot \operatorname{re}(c|a^*|b^*,h) \cdot \gamma(a)
 6:
                   end for
 7:
              end for
 8:
         end for
10: end for
```

Using our implementation of the algorithm, we calculated λ_9 in 76 seconds, and the preprocessing was almost instantaneous. The calculation of λ_9 using our implementation of the algorithm lasted approximately 25 minutes. In all cases, we have obtained the following value:

```
\lambda_9 = 423295099074735261880,
```

which confirms the result of Brouwer et al. [2].

Algorithm 3 Calculation of λ_{n+4} based on Equation 1

```
Input: D_n; R_n (each class is represented by its minimal element); re(x,y) for all (x,y) \in
D_n \times D_n
     Output: s = \lambda_{n+4}
 1: Initialize s = \lambda_n,
 2: for all h \in R_n, h^* \le h, \ell(h) > 2^{n-1} do
          for all a \in D_n, h^* \le a \le h do
 3:
              for all b \in D_n, h^* \le b \le h do
 4:
                   for all c \in D_n, h^* \le c \le h do
 5:
                         s = s + \operatorname{re}(a|b|c,h) \cdot \operatorname{re}(a|b^*|c^*,h) \cdot \operatorname{re}(b|a^*|c^*,h) \cdot \operatorname{re}(c|a^*|b^*,h) \cdot \gamma(h)
 6:
                   end for
 7:
               end for
 8:
          end for
 9:
10: end for
```

Algorithms 2 and 3 differ in the order in which values of the functions are chosen. It should be noted that Algorithm 2 works much faster than Algorithm 3 due to a significantly smaller number of iterations, requiring only 76 seconds compared to 25 minutes of computation time.

7 Calculation of q_n

The number of inequivalent self-dual monotone Boolean functions (q_n) is listed on the OEIS $\underline{A008840}$ sequence. In order to calculate q_n for $n \leq 7$, we can use the following simple approach:

$$q_n = \sum_{\substack{a \in R_n \\ a = a^*}} 1.$$

For n=8, this direct approach becomes computationally infeasible. Instead, we apply Burnside's lemma to our specific problem. Recall that each permutation $\pi \in S_n$ can be represented as a product of disjoint cycles. The cycle type of π is defined as the tuple of lengths of its disjoint cycles arranged in increasing order. For example, the type of permutation $\pi = (12)(34)(567)$ is (2,2,3), and its total length is 7. In the sequel, we use a list of cycle types in S_n and we represent each cycle type by its index in the list, see the tables in Section 7.2.

To calculate q_8 we use the approach developed in [8, 9, 10].

$$q_n = \frac{1}{n!} \sum_{i=1}^k \mu_i \cdot |\Phi(\pi_i, \Lambda_n)| \tag{2}$$

where

• q_n is the number of equivalence classes in Λ_n ,

- k is the number of different cycle types in S_n ,
- π_i is a representative permutation of cycle type i,
- $\Phi(\pi_i, \Lambda_n)$ is the set of all elements in Λ_n which are fixed under π_i ,
- μ_i number of permutations $\pi \in S_n$ with cycle type i.

For n=1, we have $\lambda_1=q_1=1$. For n=2, we have two permutations: the identity e with $|\Phi(e,\Lambda_2)|=|\Lambda_2|=2$, and the inversion $\pi=(12)$ with three cycles when acting on B^2 , namely: $C_1=(00), C_2=(01,10),$ and $C_3=(11).$ The two elements 01 and 10 form a cycle, hence, if a function $f\in D_n$ is a fixed point of π , then f(01)=f(10). On the other hand, if f is self-dual, then it represents an mls on $\{1,2\}$, and $f(01)\neq f(10)$, because 01 and 10 represent subsets $\{1\}$ and $\{2\}$ in $\{1,2\}$ which are the complements of each other. Thus, the set of fixed points $\Phi((12),\Lambda_2)=\emptyset$. By Burnside's lemma, we have

$$q_2 = \frac{1}{2}(|\Phi(e, \Lambda_2)| + |\Phi((12), \Lambda_2)|) = \frac{1}{2}(2+0) = 1.$$

Indeed, there is one equivalence class in Λ_2 ; namely, $\{0101,0011\}$. We have just shown that $\Phi((12),\Lambda_2)=\emptyset$. Similarly, we can show that $\Phi(\pi,\Lambda_8)=\emptyset$, if $\pi=(12)(34)(56)(78)$. Indeed, for π , the two elements 01010101, $10101010 \in B^8$ form a cycle. Hence, if $f \in D_8$ is a fixed point of π , then f(01010101)=f(10101010). On the other side, if f is self-dual, then $f(01010101) \neq f(10101010)$, because 101010101 and 01010101 represent subsets of $\{1,\ldots,8\}$ which are the complements of each other.

Lemma 15. Suppose that n is even, and a permutation π , when acting on $\{1, \ldots, n\}$, is a product of disjoint cycles of even length. Then $\Phi(\pi, \Lambda_n) = \emptyset$.

Proof. If the permutation π is a product of disjoint cycles of even length, then there exist two elements $x, y \in B^n$ such that

- x and y represent subsets of $\{1,\ldots,n\}$ which are the complements of each other.
- $\pi(x) = y$ and $\pi(y) = x$, so x, y form a cycle in B^n .

Hence, if $f \in D_n$ is a fixed point of π , then f(x) = f(y). On the other side, if f is self-dual, then $f(x) \neq f(y)$.

Corollary 16. We have $\Phi(\pi, \Lambda_8) = \emptyset$ for each of the following permutations: (12345678), (12)(345678), (1234)(5678), (12)(34)(5678), and (12)(34)(56)(78).

For n=3, we have three cycle types:

- the identity e with $|\Phi(e, \Lambda_3)| = |\Lambda_3| = 4$;
- three inversions, with $|\Phi((12), \Lambda_3)| = 2$; and

• two cycles of length 3 with $|\Phi((123), \Lambda_3)| = 1$.

By Burnside's lemma, we have

$$q_3 = \frac{1}{6}(4+3\cdot 2+2\cdot 1) = 2.$$

Notice, that the element MAJ = 00010111 $\in D_3$ is self-dual, and is a fixed point for every permutation $\pi \in S_3$. Hence, for every $\pi \in S_3$, $\Phi(\pi, \Lambda_3) \neq \emptyset$. Similarly, we can show the following lemma:

Lemma 17. For each odd n and each permutation $\pi \in S_n$, we have $\Phi(\pi, \Lambda_n) \neq \emptyset$.

Proof. Consider the function MAJ $\in D_n$, which returns MAJ(x) = 1 if and only if $\ell(x) > n/2$. The function MAJ is self-dual, and is a fixed point for every permutation $\pi \in S_n$.

7.1 Algorithms counting fixed points in Λ_n

In order to count or generate fixed points of permutations in Λ_n we use Lemma 15 and two algorithms.

Algorithm 4 Generation of $\Phi(\pi, \Lambda_n)$

```
Input: \Phi(\pi, D_n)

Output: S = \Phi(\pi, \Lambda_n)

1: Initialize S = \emptyset

2: for all b \in \Phi(\pi, D_n) do

3: if b = b^* then

4: Add b to S

5: end if

6: end for
```

Algorithm 4 simply runs through the set of fixed points $\Phi(\pi, D_n)$ and selects self-dual functions. For example, there are five fixed points in

and only one of them is self-dual; namely, 00010111, so $|\Phi((123), \Lambda_3)| = 1$.

Algorithm 5 Calculation of $|\Phi(\pi, \Lambda_{n+2})|$

```
Input: \Phi(\pi, D_n)

Output: s = |\Phi(\pi, \Lambda_{n+2})|

1: Initialize s = 0,

2: for all b \in \Phi(\pi, D_n) do

3: Calculate up = |\{h \in \Phi(\pi, D_n) : h \ge (b|b^*)\}|

4: s = s + up

5: end for
```

Algorithm 5 is based on the following facts. Consider a permutation π acting on B^n and on D_n . We can say that π also acts on B^{n+2} and on D_{n+2} . By [10, Lemma 6], $\Phi(\pi, D_{n+2}) = \Phi(\pi, D_n)^{B^2}$. Every function $F \in \Phi(\pi, D_n)^{B^2}$ can be represented as the concatenation

$$F = F(00) \cdot F(01) \cdot F(10) \cdot F(11),$$

where F(00), F(01), F(10), $F(11) \in \Phi(\pi, D_n)$, and

$$F(00) \le F(01), F(10) \le F(11).$$

The dual of F can be represented as

$$F^* = F(11)^* \cdot F(10)^* \cdot F(01)^* \cdot F(00)^*.$$

If F is self-dual, then it is of the form

$$dbb^*d^*$$
.

where $b, d \in \Phi(\pi, D_n)$ and $d^* \ge b|b^*$. Notice that this implies that $d \le b \& b^*$. On the other hand, if $b, d \in \Phi(\pi, D_n)$ and $d^* \ge b|b^*$, then $dbb^*d^* \in \Phi(\pi, \Lambda_{n+2})$.

7.2 Result tables

In this section we present three tables which contain the values of $|\Phi(\pi_i, \Lambda_n)|$, for $n \in \{6, 7, 8\}$ and all permutations.

$\underline{}$ i	π_i	μ_i	$ \Phi(\pi_i, \Lambda_6) $
1	(1)	1	2646
2	(12)	15	372
3	(123)	40	54
4	(1234)	90	18
5	(12345)	144	6
6	(123456)	120	0
7	(12)(34)	45	130
8	(12)(345)	120	18
9	(12)(3456)	90	0
10	(123)(456)	40	18
_11	(12)(34)(56)	15	0

$$q_6 = \frac{1}{720} \sum_{i=1}^{11} \mu_i \cdot |\Phi(\pi_i, \Lambda_6)| = \frac{21600}{720} = 30.$$

Table 2: Values of $|\Phi(\pi_i, \Lambda_6)|$ and calculation of q_6 .

i	π_i	μ_i	$ \Phi(\pi_i, \Lambda_7) $
1	(1)	1	1422564
2	(12)	21	43556
3	(123)	70	1332
4	(1234)	210	216
5	(12345)	504	34
6	(123456)	840	12
7	(1234567)	720	3
8	(12)(34)	105	7212
9	(12)(345)	420	218
10	(12)(3456)	630	76
11	(12)(34567)	504	6
12	(123)(456)	280	210
13	(123)(4567)	420	6
14	(12)(34)(56)	105	1284
15	(12)(34)(567)	210	36

$$q_7 = \frac{1}{5040} \sum_{i=1}^{15} \mu_i \cdot |\Phi(\pi_i, \Lambda_7)| = \frac{3608640}{5040} = 716.$$

Table 3: Values of $|\Phi(\pi_i, \Lambda_7)|$ and calculation of q_7 .

i	π_i	μ_i	$ \Phi(\pi_i, \Lambda_8) $
1	(1)	1	229809982112
2	(12)	28	300991356
3	(123)	112	476120
4	(1234)	420	18984
5	(12345)	1344	662
6	(123456)	3360	296
7	(1234567)	5760	46
8	(12345678)	5040	0
9	(12)(34)	210	12716048
10	(12)(345)	1120	18384
11	(12)(3456)	2520	7952
12	(12)(34567)	4032	116
13	(12)(345678)	3360	0
14	(123)(456)	1120	21020
15	(123)(4567)	3360	120
16	(123)(45678)	2688	20
17	(1234)(5678)	1260	0
18	(12)(34)(56)	420	2230724
19	(12)(34)(567)	1680	3152
20	(12)(34)(5678)	1260	0
21	(12)(345)(678)	1120	1488
_22	(12)(34)(56)(78)	105	0

$$q_8 = \frac{1}{40320} \sum_{i=1}^{22} \mu_i \cdot |\Phi(\pi_i, \Lambda_8)| = \frac{241980137280}{40320} = 6001501.$$

Table 4: Values of $|\Phi(\pi_i, \Lambda_8)|$ and calculation of q_8 .

References

- [1] J. C. Bioch and T. Ibaraki, Generating and approximating nondominated coteries, *IEEE Trans. Parallel Distrib. Syst.* **6** (1995), 905–914.
- [2] A. E. Brouwer, C. F. Mills, W. H. Mills, and A. Verbeek, Counting families of mutually intersecting sets, *Electron. J. Combin.* **20** (2013), Article P8.
- [3] A. E. Brouwer and A. Verbeek, Counting families of mutually intersecting sets, Report ZN 41, Mathematical Centre, Amsterdam, 1972.
- [4] D. E. Loeb and A. R. Conway, Voting fairly: transitive maximal intersecting families of sets, *J. Combin. Theory Ser. A* **91** (2000), 386–410.
- [5] C. F. Mills and W. H. Mills, The calculation of $\lambda(8)$, preprint, 1979.
- [6] N. M. Riviere, Recursive formulas on free distributive lattices, J. Combin. Theory 5 (1968), 229–234.
- [7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Available at https://oeis.org.
- [8] B. Pawelski, On the number of inequivalent monotone Boolean functions of 8 variables, J. Integer Sequences 25 (2022), Article 22.7.7.
- [9] B. Pawelski, On the number of inequivalent monotone Boolean functions of 9 variables, *IEEE Trans. Inform. Theory* **70** (2024), 5358–5364.
- [10] A. Szepietowski, Fixes of permutations acting on monotone Boolean functions, *J. Integer Sequences* **25** (2022), Article 22.9.6.
- [11] M. Timotijević, Note on combinatorial structure of self-dual simplicial complexes, *Mat. Vesnik* **71** (2019), 104–122.

2020 Mathematics Subject Classification: Primary 06E30.

Keywords: monotone Boolean function, self-dual monotone Boolean function, Dedekind number, Hosten-Morris number.

(Concerned with sequences $\underline{A001206}$ and $\underline{A008840}$.)

Received February 26 2024; revised versions received December 11 2024; June 12 2025; October 22 2025. Published in *Journal of Integer Sequences*, October 31 2025.

Return to Journal of Integer Sequences home page.