
23 11

Article 25.6.5

Journal of Integer Sequences, Vol. 28 (2025),2

3

6

1

47

Counting Self-Dual Monotone Boolean Functions

Bart lomiej Pawelski and Andrzej Szepietowski
Institute of Informatics
University of Gdańsk

Poland
bartlomiej.pawelski@ug.edu.pl

andrzej.szepietowski@ug.edu.pl

Abstract

Let Dn denote the set of monotone Boolean functions with n variables. The car-
dinality of Dn, denoted by dn, is known as the n-th Dedekind number. Elements of
Dn can be represented as strings of bits of length 2n. For each f ∈ Dn, we have the
dual function f∗ ∈ Dn which is obtained by reversing and negating all bits. An ele-
ment f ∈ Dn is self-dual if f = f∗. Let Λn denote the set of all self-dual monotone
Boolean functions of n variables and let λn denote |Λn|. There is a natural action of
the permutation group Sn on the set of Boolean functions by permutation of variables.
The sets Dn and Λn are closed under this action. We let Rn and Qn denote the sets
of all equivalence classes in Dn and Λn, respectively. In this paper, we derive several
algorithms for counting self-dual monotone Boolean functions and confirm the known
result that λ9 equals 423,295,099,074,735,261,880. Furthermore, we calculate |Q8| to
be 6,001,501.

1 Introduction

Let B denote the set {0, 1} and Bn the set of n-element sequences of B. A Boolean function
with n variables is a function from Bn into B. There is the order relation in B (namely:
0 ≤ 0, 0 ≤ 1, 1 ≤ 1) and the partial order in Bn: for any two elements: x = (x1, . . . , xn),
y = (y1, . . . , yn) in Bn, x ≤ y if and only if xi ≤ yi for all 1 ≤ i ≤ n. A function h : Bn → B
is monotone if x ≤ y implies h(x) ≤ h(y). Let Dn denote the set of monotone functions with
n variables. The cardinality of Dn, denoted by dn, is known as the n-th Dedekind number.
We have the partial order in Dn defined by

g ≤ h if and only if g(x) ≤ h(x) for all x ∈ Bn.

1

mailto:bartlomiej.pawelski@ug.edu.pl
mailto:andrzej.szepietowski@ug.edu.pl

We represent an element f ∈ Dn as a string of bits of length 2n where the values of
f(x) are listed in lexicographical order of x. The two elements of D0 are represented
as 0 and 1. For every n ≥ 1, the set Dn can be represented as the set of all concate-
nations g0 · g1, where g0, g1 ∈ Dn−1 and g0 ≤ g1. For example, D1 = {00, 01, 11} and
D2 = {0000, 0001, 0011, 0101, 0111, 1111}.

For each f ∈ Dn, we have the dual f ∗ ∈ Dn, which is obtained by reversing and negating
all bits. Formally, the dual of f ∈ Dn is the function f ∗ : Bn → B defined by

f ∗(x) = (f(xc))c,

where xc is the negation of x ∈ Bn and (f(xc))c is the negation of f(xc) ∈ B. For example,
1111∗ = 0000 and 0001∗ = 0111. An element f ∈ Dn is self-dual if f = f ∗. For example,
0101 and 0011 are self-dual in D2.

Let Λn be the set of all self-dual monotone Boolean functions of n variables, and let λn

denote the cardinality of this set. The value λn is also known as the n-th Hosten-Morris
number (A001206 in the On-Line Encyclopedia of Integer Sequences).

The first attempt to determine the values of λn was made in 1968 by Riviere [6], who
found all values up to λ5. In 1972, Brouwer and Verbeek provided the values up to λ7 [3].
The value of λ8 was determined by Mills and Mills [5] in 1978.

The most recent known term, λ9, was obtained by Brouwer, Mills, Mills, and Verbeek
[2] in 2013. The value of λn corresponds to the number of non-dominated coteries on n
members [1, Section 1], and also corresponds to the number of maximal linked systems (see
Section 2.1 and [2, Section 1]).

Any two Boolean functions are said to be equivalent if one can be transformed into the
other by a permutation of the input variables (see Section 2.2). Let Qn denote the set of
all equivalence classes in Λn and let qn denote |Qn|. The values of qn are described by the
A008840 OEIS sequence.

In this paper, we derive several algorithms for counting self-dual monotone Boolean
functions and we confirm the result of [2] that λ9 equals 423,295,099,074,735,261,880. Fur-
thermore, employing Burnside’s lemma and techniques discussed in [8, 10], we calculate q8
to be 6,001,501, which is the first-ever calculation of the value q8. We also show that the
two sequences dn and λn intertwine, or more precisely, we have

λ1 ≤ d0 ≤ λ2 ≤ d1 ≤ · · · ≤ λn+1 ≤ dn ≤ λn+2 ≤ · · ·

and we have the following estimates for the unknown value of λ10

d8 ≤ λ10 ≤ d9.

2

https://oeis.org/A001206
https://oeis.org/A008840

n λn qn
0 0 0
1 1 1
2 2 1
3 4 2
4 12 3
5 81 7
6 2,646 30
7 1,422,564 716
8 229,809,982,112 6,001,501
9 423,295,099,074,735,261,880 –

Table 1: Known values of λn (A001206) and qn (A008840).

2 Preliminaries

A poset (partially ordered set) (S,≤) consists of a set S (called the carrier) together with
a binary relation (partial order) ≤ which is reflexive, transitive, and antisymmetric. For
example, B, Bn, and Dn are posets. Given two posets (S,≤) and (T,≤), a function f : S → T
is monotone, if x ≤ y implies f(x) ≤ f(y). We let T S denote the poset of all monotone
functions from S to T with the partial order defined by

f ≤ g if and only if f(x) ≤ g(x) for all x ∈ S.

Notice that Dn = BBn
and Bn = BAn , where An is the antichain with the carrier {1, . . . , n}.

A set A is an antichain if any two distinct elements in A are incomparable. In this paper we
use the following well-known lemma [10]:

Lemma 1. The poset Dn+k is isomorphic to the poset DBk

n —the poset of monotone functions
from Bk to Dn.

By ⊤ we denote the maximal element in Dn, that is ⊤ = (1 . . . 1), and by ⊥ the minimal
element in Dn, that is ⊥ = (0 . . . 0). For two elements f, g ∈ Dn, by f |g we denote the bitwise
or ; and by f&g the bitwise and. Furthermore, let re(f, g) denote the number of elements in
the interval [f, g], that is |{h ∈ Dn : f ≤ h ≤ g}|. Note that re(f,⊤) = |{h ∈ Dn : f ≤ h}|
and re(⊥, g) = |{h ∈ Dn : h ≤ g}|. For f ∈ Dn, by ℓ(f) we denote the number of ones in
f , also known as its Hamming weight. For example, ℓ(0000) = 0 and ℓ(0101) = 2. The next
result is straightforward.

Lemma 2. For each f, g ∈ Dn, we have

1. f ∗∗ = f

3

https://oeis.org/A001206
https://oeis.org/A008840

2. if f ≤ g then g∗ ≤ f ∗

3. (f |g)∗ = f ∗&g∗

4. (f&g)∗ = f ∗|g∗

2.1 Maximal linked system

Let X = {1, . . . , n} and P(X) be the power set of X. A family W ⊆ P(X) is linked if for all
A and B in W , A ∩ B is not empty. A family U ⊆ P(X) is a maximal linked system (mls)
on X if U is linked and for all W with U ⊆ W ⊆ P(X), either W = U or W is not linked.

If U is linked, then ∅ /∈ U and for each set A ∈ P(X), it is not possible that both A and
its complement Ac = X − A belong to U .

For n = 0, X = ∅, P(X) = {∅} and we have one mls; namely, the empty family. Notice
that the set of self-dual functions Λ0 is empty and λ0 = 0.

Lemma 3. If n ≥ 1 and a family U ⊂ P(X) is a mls, then

(L1) U is an upset, i.e., if A ⊆ B and A ∈ U , then B ∈ U .

(L2) For every subset A ∈ P(X) exactly one of the two subsets A or Ac is in U .

Proof. (L1) For each C ∈ U , A ∩ C ̸= ∅ and B ∩ C ̸= ∅. Hence, either B ∈ U or U is not
maximal.

(L2) We have two cases:
Case 1. For every B ∈ U , A ∩B ̸= ∅. Then either A ∈ U or U is not maximal.
Case 2. There is B ∈ U such that B ∩ A = ∅. In this case we have that B ⊆ Ac and, by

(L1), Ac ∈ U .

Lemma 4. If n ≥ 1 and a family U ⊆ P(X) satisfies conditions (L1) and (L2), then U is
an mls.

Proof. First, we prove that U is linked. Suppose, for a contradiction, that there are two
subsets A,B ∈ U with A ∩B = ∅. Then B ⊆ Ac and Ac ∈ U , a contradiction.

If U satisfies condition (L2), then exactly half of the elements in P(X) belong to U . On
the other hand, if |U| > 2n−1 then U contains a pair A,Ac and U is not linked.

For n = 1, the family {{1}} is the only mls on X = {1}.
For n = 2, we have two mls: {{1}, {1, 2}} and {{2}, {1, 2}}.
Recall that P(X) is isomorphic to Bn by identifying a subset of X with its characteristic

vector and any subset of P(X) can be represented by a function from Bn to B. For n = 1,
the mls {{1}} can be represented as the string 01, which is the only self-dual function in Λ1.
For n = 2, the two mls can be represented as 0101 and 0011, and they form the set Λ2. For
n ≥ 1, the set of mls on {1, . . . , n} can be represented as the set of self-dual functions Λn [2,
Section 1.1].

4

2.2 Permutations and equivalence relation

Let Sn denote the set of permutations on {1, . . . , n}. Every permutation π ∈ Sn defines a
permutation on Bn as follows: for every x = (x1, . . . , xn) ∈ Bn let π(x) = (xπ(1), . . . , xπ(n)).

The permutation π also defines the function f◦π : Bn → B for every function f : Bn → B
by

(f ◦ π)(x) = f(π(x)) for x ∈ Bn.

By ∼ we denote an equivalence relation on Dn. Namely, two functions f, g ∈ Dn are
equivalent, f ∼ g, if there is a permutation π ∈ Sn such that f = g ◦ π. For a function
f ∈ Dn, its equivalence class is the set [f] = {g ∈ Dn : g ∼ f}. By Rn we denote the set of
equivalence classes in Dn and by rn we denote |Rn|. By γ(f) we denote |[f]|. For the class
[f], its representative is its minimal element (according to the lexicographical order in Dn).
Sometimes, we identify the class [f] ∈ Rn with its representative and treat [f] as an element
in Dn. Let Qn denote the set of all equivalence classes in Λn, and let qn denote |Qn|.

The following lemma is straightforward.

Lemma 5. For every function f : Bn → B and for every permutation π ∈ Sn

1. The function f ◦ π is monotone if f is monotone.

2. If f ∈ Dn, then f ∗ ◦ π = (f ◦ π)∗.

3. If f ∈ Λn, then for every equivalent g ∈ [f] we have g ∈ Λn.

For n = 2, we have d2 = 6 monotone functions,

D2 = {0000, 0001, 0011, 0101, 0111, 1111}

and r2 = 5 equivalence classes in D2; namely

R2 = {{0000}, {0001}, {0011, 0101}, {0111}, {1111}}.

Furthermore, there are two self-dual functions Λ2 = {0011, 0101} and they form one equiv-
alence class. Hence λ2 = 2 and q2 = 1.

For n = 3, we have d3 = 20 monotone functions and r3 = 10 equivalence classes in D3.
There are four self-dual functions

Λ3 = {01010101, 00110011, 00001111, 00010111}

and they form two equivalence classes:

Q3 = {{01010101, 00110011, 00001111}, {00010111}}.

Hence, λ3 = 4 and q3 = 2.

5

3 Counting functions from B to Dn

Let n ≥ 0. By Lemma 1, the poset Dn+1 is isomorphic to the poset DB
n —the poset of

monotone functions from B = {0, 1} to Dn. Consider a monotone function H : B → Dn. It
can be represented as the concatenation

H = H(0) ·H(1)

with H(0), H(1) ∈ Dn and H(0) ≤ H(1). The dual of H is

H∗ = H(1)∗ ·H(0)∗.

Recall that we identify each function in Dn with the sequence of bits. If H ∈ Dn+1 is self-dual
then it is of the form b · b∗ with b ∈ Dn and b ≤ b∗. And vice versa, if b ∈ Dn and b ≤ b∗,
then the concatenation b · b∗ is self-dual in Dn+1. Therefore, we have proved the following
theorem.

Theorem 6. For every n ≥ 0, the number of self-dual functions λn+1 is equal to the number
of elements b ∈ Dn that satisfy b ≤ b∗. In other words

λn+1 =
∑
b∈Dn
b≤b∗

1.

Furthermore,

λn+1 =
∑
b∈Rn
b≤b∗

γ(b).

Here we identify each class b ∈ Rn with its representative.

The following corollary is presented, in a different form, in [11]

Corollary 7. For every n ≥ 0, we have λn+1 ≤ dn.

The next result is straightforward.

Lemma 8. Let b be a function in Dn. Then

• b ≤ b∗, only if ℓ(b) ≤ 2n−1.

• if ℓ(b) = 2n−1 and b ≤ b∗, then b = b∗, and b is self-dual in Dn.

• if b is self-dual, then ℓ(b) = 2n−1.

• ℓ(b∗) = 2n − ℓ(b), hence,

|{f ∈ Dn : ℓ(f) < 2n−1}| = |{f ∈ Dn : ℓ(f) > 2n−1}|.

6

As a corollary we have the following theorem.

Theorem 9.
λn+1 = λn +

∑
b∈Rn

ℓ(b)<2n−1

b≤b∗

γ(b).

λn+1 ≤ λn +
1

2
(dn − λn) =

1

2
(dn + λn).

The second part of the theorem is presented, in a different form, in [11]. Notice that
λn+1 = 1

2
(dn + λn) for each n ≤ 3.

4 Counting functions from B2 to Dn

Let n ≥ 0. By Lemma 1, the poset Dn+2 is isomorphic to the poset DB2

n —the poset of
monotone functions from B2 = {00, 01, 10, 11} to Dn. Consider a monotone function H :
B2 → Dn. It can be represented as the concatenation

H(00) ·H(01) ·H(10) ·H(11)

and as the graph below.

H(00)

H(01) H(10)

H(11)

where the vertices represent the set of values H(B2) and the edges represent the partial
order:

H(00) ≤ H(01) ≤ H(11) and H(00) ≤ H(10) ≤ H(11).

Recall that we identify each function in Dn with the sequence of bits. The dual of H is
represented by

H(11)∗ ·H(10)∗ ·H(01)∗ ·H(00)∗.

If H is self-dual then H(00) = H(11)∗, H(01) = H(10)∗, H(10) = H(01)∗, and H(11) =
H(00)∗ and we can represent H as the graph

d∗

b b∗

d

7

where d denotes H(11) and b denotes H(01). Furthermore, d∗ denotes H(00) and b∗ denotes
H(10). If H is self-dual then it is of the form d∗ · b · b∗ · d with b, d ∈ Dn and d ≥ b|b∗. And
vice versa, if b, d ∈ Dn, and d ≥ b|b∗, then, by Lemma 2, d∗ ≤ b&b∗ and the concatenation
d∗ · b · b∗ · d is self-dual in Dn+2. Hence, we have proved the following theorem.

Theorem 10. For every n ≥ 0, the number of self-dual functions λn+2 is equal to the number
of pairs b, d ∈ Dn which satisfy condition d ≥ b|b∗. In other words

λn+2 =
∑
b∈Dn

re(b|b∗,⊤).

Furthermore, Lemma 5 implies

λn+2 =
∑
b∈Rn

γ(b) · re(b|b∗,⊤).

Here we identify each class b ∈ Rn with its representative.

Corollary 11. For every n ≥ 0, we have λn+2 ≥ dn.

By Colloraries 7 and 11, we have that

λ1 ≤ d0 ≤ λ2 ≤ d1 ≤ · · · ≤ λn+1 ≤ dn ≤ λn+2 ≤ · · ·

and we have the following estimates for the unknown value of λ10

d8 ≤ λ10 ≤ d9.

5 Counting functions from B4 to Dn

Let n ≥ 0. By Lemma 1, the poset Dn+4 is isomorphic to the poset DB4

n —the set of
monotone functions from B4 = {0000, 0001, . . . , 1111} to Dn. Consider a monotone function
H : B4 → Dn. It can be represented as the concatenation

H(0000) ·H(0001) ·H(0010) ·H(0011) ·H(0100) ·H(0101) ·H(0110) ·H(0111) ·
H(1000) ·H(1001) ·H(1010) ·H(1011) ·H(1100) ·H(1101) ·H(1110) ·H(1111).

and its dual as

H(1111)∗ ·H(1110)∗ ·H(1101)∗ ·H(1100)∗ ·H(1011)∗ ·H(1010)∗ ·H(1001)∗ ·H(1000)∗ ·
H(0111)∗ ·H(0110)∗ ·H(0101)∗ ·H(0100)∗ ·H(0011)∗ ·H(0010)∗ ·H(0001)∗ ·H(0000)∗.

If H is self-dual, then

H(0000) = H(1111)∗, H(0001) = H(1110)∗,

H(0010) = H(1101)∗, H(0011) = H(1100)∗,

H(0100) = H(1011)∗, H(0101) = H(1010)∗,

H(0110) = H(1001)∗, H(0111) = H(1000)∗.

8

Recall that we identify each function in Dn with the sequence of bits. Similarly, as in Section
4 we can represent H as a graph. See Figure 1 where h represents H(1111), d represents
H(0111), e represents H(1011), f represents H(1101), g represents H(1110), . . . , and h∗

represents H(0000).

h∗

g∗ f ∗ e∗

a b c

d

d∗

c∗ b∗ a∗

e f g

h

Figure 1: Structure of H : B4 → Dn if H is self-dual. The graph represents the hypercube
B4. The label at a vertex x represents the value H(x) ∈ Dn.

Theorem 12. For each a, b, c ∈ Dn,
for each h ∈ Dn such that h ≥ a|b|c|a∗|b∗|c∗,
for each d, e, f, g ∈ Dn such that

a|b|c ≤ d ≤ h,

a|b∗|c∗ ≤ e ≤ h,

b|a∗|c∗ ≤ f ≤ h,

c|a∗|b∗ ≤ g ≤ h,

the concatenation

h∗ · g∗ · f ∗ · a · e∗ · b · c · d · d∗ · c∗ · b∗ · e · a∗ · f · g · h

represents a self-dual function in Dn+4; see Figure 1. And vice versa, each self-dual function
in Dn+4 is of the above form.

9

The proof is straightforward.

Theorem 13. The number of self-dual functions

λn+4 =
∑

a,b,c∈Dn

∑
h∈Dn

h≥(a|b|c|a∗|b∗|c∗)

re(a|b|c, h) · re(a|b∗|c∗, h) · re(b|a∗|c∗, h) · re(c|a∗|b∗, h).

Theorem 14. For each h ∈ Dn such that h ≥ h∗,
for each a, b, c ∈ Dn, h

∗ ≤ a, b, c ≤ h,
for each d, e, f, g ∈ Dn such that

a|b|c ≤ d ≤ h,

a|b∗|c∗ ≤ e ≤ h,

b|a∗|c∗ ≤ f ≤ h,

c|a∗|b∗ ≤ g ≤ h,

the concatenation

h∗ · g∗ · f ∗ · a · e∗ · b · c · d · d∗ · c∗ · b∗ · e · a∗ · f · g · h

represents a self-dual function in Dn+4; see Figure 1. And vice versa, each self-dual function
in Dn+4 is of the above form.

Let

F (h) =
∑

a,b,c∈Dn
h≥a,b,c≥h∗

re(a|b|c, h) · re(a|b∗|c∗, h) · re(b|a∗|c∗, h) · re(c|a∗|b∗, h).

Observe that F (h) is the number of self-dual functions H ∈ DB4

n , with H(0000) = h∗ and
H(1111) = h. Therefore,

λn+4 =
∑
h∈Dn
h∗≤h

F (h).

Furthermore, Lemma 5 implies that for any two elements h1 ∼ h2 we have F (h1) = F (h2).
Hence, we have

λn+4 =
∑
h∈Rn
h≥h∗

γ(h) · F (h).

Here again we identify the class h ∈ Rn with its representative. Similarly as in Lemma 8 we
can observe that h ≥ h∗, only if ℓ(h) ≥ 2n−1. Furthermore, if ℓ(h) = 2n−1 and h ≥ h∗, then
h = h∗, and we have only one self-dual function H ∈ DB4

n with H(0000) = H(1111) = h.
Hence,

λn+4 = λn +
∑
h∈Rn
h∗≤h

ℓ(h)>2n−1

γ(h) · F (h). (1)

10

6 Implementation

In this section we present three algorithms based on results from the previous sections. We
implemented the algorithms in Rust and ran them on a 32-thread Xeon CPU.

Algorithm 1 Calculation of λn+2

Input: Rn (each class is represented by its minimal element) with re(x,⊤) for all x ∈ Rn

Output: s = λn+2

1: Initialize s = 0,
2: for all b ∈ Rn do
3: s = s + re(b|b∗,⊤) · γ(b)
4: end for

Algorithm 1 is based on Theorem 10. After loading the preprocessed data into main
memory, λ9 was computed in 15 seconds. However, preprocessing (the calculation of R7 and
its intervals) took approximately 2.5 hours.

Algorithm 2 Calculation of λn+4 based on Theorem 13

Input: Dn; Rn (each class is represented by its minimal element); re(x, y) for all
(x, y) ∈ Dn ×Dn

Output: s = λn+4

1: Initialize s = 0,
2: for all a ∈ Rn do
3: for all b ∈ Dn do
4: for all c ∈ Dn do
5: for all h ∈ Dn, h ≥ (a|b|c|a∗|b∗|c∗) do
6: s = s + re(a|b|c, h) · re(a|b∗|c∗, h) · re(b|a∗|c∗, h) · re(c|a∗|b∗, h) · γ(a)
7: end for
8: end for
9: end for
10: end for

Using our implementation of the algorithm, we calculated λ9 in 76 seconds, and the
preprocessing was almost instantaneous. The calculation of λ9 using our implementation of
the algorithm lasted approximately 25 minutes. In all cases, we have obtained the following
value:

λ9 = 423295099074735261880,

which confirms the result of Brouwer et al. [2].

11

Algorithm 3 Calculation of λn+4 based on Equation 1

Input: Dn; Rn (each class is represented by its minimal element); re(x, y) for all (x, y) ∈
Dn ×Dn

Output: s = λn+4

1: Initialize s = λn,
2: for all h ∈ Rn, h

∗ ≤ h, ℓ(h) > 2n−1 do
3: for all a ∈ Dn, h

∗ ≤ a ≤ h do
4: for all b ∈ Dn, h

∗ ≤ b ≤ h do
5: for all c ∈ Dn, h

∗ ≤ c ≤ h do
6: s = s + re(a|b|c, h) · re(a|b∗|c∗, h) · re(b|a∗|c∗, h) · re(c|a∗|b∗, h) · γ(h)
7: end for
8: end for
9: end for
10: end for

Algorithms 2 and 3 differ in the order in which values of the functions are chosen. It should
be noted that Algorithm 2 works much faster than Algorithm 3 due to a significantly smaller
number of iterations, requiring only 76 seconds compared to 25 minutes of computation time.

7 Calculation of qn

The number of inequivalent self-dual monotone Boolean functions (qn) is listed on the OEIS
A008840 sequence. In order to calculate qn for n ≤ 7, we can use the following simple
approach:

qn =
∑
a∈Rn
a=a∗

1.

For n = 8, this direct approach becomes computationally infeasible. Instead, we apply
Burnside’s lemma to our specific problem. Recall that each permutation π ∈ Sn can be
represented as a product of disjoint cycles. The cycle type of π is defined as the tuple
of lengths of its disjoint cycles arranged in increasing order. For example, the type of
permutation π = (12)(34)(567) is (2, 2, 3), and its total length is 7. In the sequel, we use
a list of cycle types in Sn and we represent each cycle type by its index in the list, see the
tables in Section 7.2.

To calculate q8 we use the approach developed in [8, 9, 10].

qn =
1

n!

k∑
i=1

µi · |Φ(πi,Λn)| (2)

where

• qn is the number of equivalence classes in Λn,

12

https://oeis.org/A008840

• k is the number of different cycle types in Sn,

• πi is a representative permutation of cycle type i,

• Φ(πi,Λn) is the set of all elements in Λn which are fixed under πi,

• µi number of permutations π ∈ Sn with cycle type i.

For n = 1, we have λ1 = q1 = 1. For n = 2, we have two permutations: the identity e
with |Φ(e,Λ2)| = |Λ2| = 2, and the inversion π = (12) with three cycles when acting on B2,
namely: C1 = (00), C2 = (01, 10), and C3 = (11). The two elements 01 and 10 form a cycle,
hence, if a function f ∈ Dn is a fixed point of π, then f(01) = f(10). On the other hand,
if f is self-dual, then it represents an mls on {1, 2}, and f(01) ̸= f(10), because 01 and 10
represent subsets {1} and {2} in {1, 2} which are the complements of each other. Thus, the
set of fixed points Φ((12),Λ2) = ∅. By Burnside’s lemma, we have

q2 =
1

2
(|Φ(e,Λ2)| + |Φ((12),Λ2)|) =

1

2
(2 + 0) = 1.

Indeed, there is one equivalence class in Λ2; namely, {0101, 0011}. We have just shown that
Φ((12),Λ2) = ∅. Similarly, we can show that Φ(π,Λ8) = ∅, if π = (12)(34)(56)(78). Indeed,
for π, the two elements 01010101, 10101010 ∈ B8 form a cycle. Hence, if f ∈ D8 is a
fixed point of π, then f(01010101) = f(10101010). On the other side, if f is self-dual, then
f(01010101) ̸= f(10101010), because 101010101 and 01010101 represent subsets of {1, . . . , 8}
which are the complements of each other.

Lemma 15. Suppose that n is even, and a permutation π, when acting on {1, . . . , n}, is a
product of disjoint cycles of even length. Then Φ(π,Λn) = ∅.

Proof. If the permutation π is a product of disjoint cycles of even length, then there exist
two elements x, y ∈ Bn such that

• x and y represent subsets of {1, . . . , n} which are the complements of each other.

• π(x) = y and π(y) = x, so x, y form a cycle in Bn.

Hence, if f ∈ Dn is a fixed point of π, then f(x) = f(y). On the other side, if f is self-dual,
then f(x) ̸= f(y).

Corollary 16. We have Φ(π,Λ8) = ∅ for each of the following permutations: (12345678),
(12)(345678), (1234)(5678), (12)(34)(5678), and (12)(34)(56)(78).

For n = 3, we have three cycle types:

• the identity e with |Φ(e,Λ3)| = |Λ3| = 4;

• three inversions, with |Φ((12),Λ3)| = 2; and

13

• two cycles of length 3 with |Φ((123),Λ3)| = 1.

By Burnside’s lemma, we have

q3 =
1

6
(4 + 3 · 2 + 2 · 1) = 2.

Notice, that the element MAJ = 00010111 ∈ D3 is self-dual, and is a fixed point for every
permutation π ∈ S3. Hence, for every π ∈ S3, Φ(π,Λ3) ̸= ∅. Similarly, we can show the
following lemma:

Lemma 17. For each odd n and each permutation π ∈ Sn, we have Φ(π,Λn) ̸= ∅.
Proof. Consider the function MAJ ∈ Dn, which returns MAJ(x) = 1 if and only if ℓ(x) >
n/2. The function MAJ is self-dual, and is a fixed point for every permutation π ∈ Sn.

7.1 Algorithms counting fixed points in Λn

In order to count or generate fixed points of permutations in Λn we use Lemma 15 and two
algorithms.

Algorithm 4 Generation of Φ(π,Λn)

Input: Φ(π,Dn)
Output: S = Φ(π,Λn)

1: Initialize S = ∅
2: for all b ∈ Φ(π,Dn) do
3: if b = b∗ then
4: Add b to S
5: end if
6: end for

Algorithm 4 simply runs through the set of fixed points Φ(π,Dn) and selects self-dual
functions. For example, there are five fixed points in

Φ((123), D3) = {00000000, 00000001, 00010111, 01111111, 11111111}

and only one of them is self-dual; namely, 00010111, so |Φ((123),Λ3)| = 1.

Algorithm 5 Calculation of |Φ(π,Λn+2)|
Input: Φ(π,Dn)
Output: s = |Φ(π,Λn+2)|

1: Initialize s = 0,
2: for all b ∈ Φ(π,Dn) do
3: Calculate up = |{h ∈ Φ(π,Dn) : h ≥ (b|b∗)}|
4: s = s + up
5: end for

14

Algorithm 5 is based on the following facts. Consider a permutation π acting on Bn and
on Dn. We can say that π also acts on Bn+2 and on Dn+2. By [10, Lemma 6], Φ(π,Dn+2) =
Φ(π,Dn)B

2
. Every function F ∈ Φ(π,Dn)B

2
can be represented as the concatenation

F = F (00) · F (01) · F (10) · F (11),

where F (00), F (01), F (10), F (11) ∈ Φ(π,Dn), and

F (00) ≤ F (01), F (10) ≤ F (11).

The dual of F can be represented as

F ∗ = F (11)∗ · F (10)∗ · F (01)∗ · F (00)∗.

If F is self-dual, then it is of the form

dbb∗d∗,

where b, d ∈ Φ(π,Dn) and d∗ ≥ b|b∗. Notice that this implies that d ≤ b&b∗. On the other
hand, if b, d ∈ Φ(π,Dn) and d∗ ≥ b|b∗, then dbb∗d∗ ∈ Φ(π,Λn+2).

7.2 Result tables

In this section we present three tables which contain the values of |Φ(πi,Λn)|, for n ∈ {6, 7, 8}
and all permutations.

i πi µi |Φ(πi,Λ6)|
1 (1) 1 2646
2 (12) 15 372
3 (123) 40 54
4 (1234) 90 18
5 (12345) 144 6
6 (123456) 120 0
7 (12)(34) 45 130
8 (12)(345) 120 18
9 (12)(3456) 90 0

10 (123)(456) 40 18
11 (12)(34)(56) 15 0

q6 =
1

720

11∑
i=1

µi · |Φ(πi,Λ6)| =
21600

720
= 30.

Table 2: Values of |Φ(πi,Λ6)| and calculation of q6.

15

i πi µi |Φ(πi,Λ7)|
1 (1) 1 1422564
2 (12) 21 43556
3 (123) 70 1332
4 (1234) 210 216
5 (12345) 504 34
6 (123456) 840 12
7 (1234567) 720 3
8 (12)(34) 105 7212
9 (12)(345) 420 218

10 (12)(3456) 630 76
11 (12)(34567) 504 6
12 (123)(456) 280 210
13 (123)(4567) 420 6
14 (12)(34)(56) 105 1284
15 (12)(34)(567) 210 36

q7 =
1

5040

15∑
i=1

µi · |Φ(πi,Λ7)| =
3608640

5040
= 716.

Table 3: Values of |Φ(πi,Λ7)| and calculation of q7.

i πi µi |Φ(πi,Λ8)|
1 (1) 1 229809982112
2 (12) 28 300991356
3 (123) 112 476120
4 (1234) 420 18984
5 (12345) 1344 662
6 (123456) 3360 296
7 (1234567) 5760 46
8 (12345678) 5040 0
9 (12)(34) 210 12716048

10 (12)(345) 1120 18384
11 (12)(3456) 2520 7952
12 (12)(34567) 4032 116
13 (12)(345678) 3360 0
14 (123)(456) 1120 21020
15 (123)(4567) 3360 120
16 (123)(45678) 2688 20
17 (1234)(5678) 1260 0
18 (12)(34)(56) 420 2230724
19 (12)(34)(567) 1680 3152
20 (12)(34)(5678) 1260 0
21 (12)(345)(678) 1120 1488
22 (12)(34)(56)(78) 105 0

q8 =
1

40320

22∑
i=1

µi · |Φ(πi,Λ8)| =
241980137280

40320
= 6001501.

Table 4: Values of |Φ(πi,Λ8)| and calculation of q8.

16

References

[1] J. C. Bioch and T. Ibaraki, Generating and approximating nondominated coteries, IEEE
Trans. Parallel Distrib. Syst. 6 (1995), 905–914.

[2] A. E. Brouwer, C. F. Mills, W. H. Mills, and A. Verbeek, Counting families of mutually
intersecting sets, Electron. J. Combin. 20 (2013), Article P8.

[3] A. E. Brouwer and A. Verbeek, Counting families of mutually intersecting sets, Report
ZN 41, Mathematical Centre, Amsterdam, 1972.

[4] D. E. Loeb and A. R. Conway, Voting fairly: transitive maximal intersecting families of
sets, J. Combin. Theory Ser. A 91 (2000), 386–410.

[5] C. F. Mills and W. H. Mills, The calculation of λ(8), preprint, 1979.

[6] N. M. Riviere, Recursive formulas on free distributive lattices, J. Combin. Theory 5
(1968), 229–234.

[7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Available at https:

//oeis.org.

[8] B. Pawelski, On the number of inequivalent monotone Boolean functions of 8 variables,
J. Integer Sequences 25 (2022), Article 22.7.7.

[9] B. Pawelski, On the number of inequivalent monotone Boolean functions of 9 variables,
IEEE Trans. Inform. Theory 70 (2024), 5358–5364.

[10] A. Szepietowski, Fixes of permutations acting on monotone Boolean functions, J. Integer
Sequences 25 (2022), Article 22.9.6.

[11] M. Timotijević, Note on combinatorial structure of self-dual simplicial complexes, Mat.
Vesnik 71 (2019), 104–122.

2020 Mathematics Subject Classification: Primary 06E30.

Keywords : monotone Boolean function, self-dual monotone Boolean function, Dedekind
number, Hosten-Morris number.

(Concerned with sequences A001206 and A008840.)

Received February 26 2024; revised versions received December 11 2024; June 12 2025;
October 22 2025. Published in Journal of Integer Sequences, October 31 2025.

Return to Journal of Integer Sequences home page.

17

https://oeis.org
https://oeis.org
https://cs.uwaterloo.ca/journals/JIS/VOL25/Pawelski/pawelski7.html
https://cs.uwaterloo.ca/journals/JIS/VOL25/Szepietowski/szep7.html
https://oeis.org/A001206
https://oeis.org/A008840
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Preliminaries
	Maximal linked system
	Permutations and equivalence relation

	Counting functions from B to D(n)
	Counting functions from B2 to D(n)
	Counting functions from B4 to D(n)
	Implementation
	Calculation of q(n)
	Algorithms counting fixed points in Lambda(n)
	Result tables

