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Abstract

Let T2 be the set of sums of two positive triangular numbers. If a multiplicative
function f satisfies f(a + b) = f(a) + f(b) for all a, b ∈ T2, then f is the identity
function provided that f(n) 6= 0 for some n 6= 1, 3, 5.

1 Introduction

A function f : N → C is called multiplicative if f(1) = 1 and f(mn) = f(m) f(n) for all
relatively prime integers m and n.

In 1992 Spiro showed that if a multiplicative function f satisfies the condition

f(p+ q) = f(p) + f(q)

for all primes p, q and f(p0) 6= 0 for some prime p0, then f is the identity function [11]. She
called this property additive uniqueness.

Since her paper, many mathematicians have studied the additive uniqueness of various
sets. Fang, Dubickas, and Šarka [4, 3] obtained the same result with the extended condition

f(p1 + p2 + · · ·+ pk) = f(p1) + f(p2) + · · ·+ f(pk)

with k ≥ 3.
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Chung [1] found all multiplicative functions satisfying

f(m2 + n2) = f(m2) + f(n2)

for all m,n ∈ N. In this case, the function f is not determined uniquely. Later, the author
[7] showed that if the condition is changed to

f(a2
1
+ a2

2
+ · · ·+ a2

k
) = f(a2

1
) + f(a2

2
) + · · ·+ f(a2

k
)

with k ≥ 3, then f is the identity function.
Let T be the set of positive triangular numbers. That is,

T =

{

n(n+ 1)

2
|n = 1, 2, . . .

}

= {1, 3, 6, 10, 15, 21, 28, 36, 45, . . .} .

Chung and Phong [2] showed that T is an additive uniqueness set for multiplicative functions.
The author and his colleagues [6] showed that the set

P =

{

n(3n− 1)

2
|n ∈ Z, n 6= 0

}

= {1, 2, 5, 7, 12, 15, 22, 26, 35, 40, . . . }

of positive generalized pentagonal numbers is an additive uniqueness set for multiplicative
functions. Also, the condition for the additive uniqueness of the sets T and P can be extended
as was done for the set of primes and the set of squares [8, 5, 10].

The author [9] found all multiplicative functions f satisfying the condition

f(a2 + b2 + c2 + d2) = f(a2 + b2) + f(c2 + d2)

for all positive integers a, b, c, and d.
Now we consider the problem of replacing squares with triangular numbers in the previous

condition. Let T2 be the set of sums of two elements of T . That is,

T2 = {2, 4, 6, 7, 9, 11, 12, 13, 16, 18, 20, 21, 22, 24, 25, 27, 29, 30, . . .} .

Then the following holds.

Theorem 1. If a multiplicative function f satisfies the condition

f(a+ b) = f(a) + f(b)

for all a, b ∈ T2, then f is one of the following:

1. f(n) = n, the identity function,

2. f(n) = 0 for all n 6= 1, 3, 5 and f(3)f(5) = 0.
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2 Proof

We use induction. First, we compute some values of f(n). Second, we represent f(n) as a
sum of f(a) + f(b) with a, b ∈ T2 for sufficiently large n.

Lemma 2. If f(2) 6= 0, then f(n) = n for n ≤ 21.

Proof. It is enough to consider powers of primes. Note that f(4) = f(2) + f(2) = 2f(2).
Since

f(2) f(3) = f(6)

= f(2 + 4) = f(2) + f(4) = 3f(2),

we obtain that f(3) = 3.
Then we can obtain f(7) = 7, since

f(2) f(7) = f(14)

= f(2 + 12) = f(2) + f(3) f(4) = 7 f(2).

Also, we obtain f(2) = 2 and f(4) = 4, since

f(2) f(7) = f(14)

= f(7) + f(7) = 2 f(7).

Then f(5) = 5 from f(2) f(5) = f(2) f(3) + f(4) and

f(8) = f(4) + f(4) = 8, f(9) = f(2) + f(7) = 9,

f(11) = f(4) + f(7) = 11, f(13) = f(4) + f(9) = 13,

f(16) = f(7) + f(9) = 16, f(17) = f(4) + f(13) = 17,

f(19) = f(7) + f(3) f(4) = 19.

Hence f(n) = n for n ≤ 21.

Lemma 3. If f(2) = 0 and f(3) 6= 0, then f(n) = 0 for all 4 ≤ n ≤ 21.

Proof. Cleary, f(4) = f(2) + f(2) = 0 and f(8) = f(4) + f(4) = 0. We obtain f(7) = 0,
since

f(7) + f(7) = f(14) = f(2) f(7) = 0.

Then f(11) = f(9) = 0, since

f(4) + f(7) = f(11) = f(2) + f(9).

Also, f(5) = f(13) = 0, since

f(3) f(5) = f(15) = f(2) f(3) + f(9) = f(2) + f(13).
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We obtain f(16) = 0, since
f(16) = f(7) + f(9).

Then f(17) = f(19) = 0, since

f(17) = f(4) + f(13) and f(19) = f(7) + f(3) f(4).

Hence f(n) = 0 for all 4 ≤ n ≤ 21.

Lemma 4. If f(2) = 0 and f(5) 6= 0, then f(n) = 0 for all 2 ≤ n ≤ 21 except n = 5.

Proof. The proof is almost identical to the proof of Lemma 3.
We obtain f(2) = f(4) = f(8) = 0, since

f(4) = f(2) + f(2) and f(8) = f(4) + f(4).

Also, f(7) = f(9) = f(11) = 0, since

f(7) + f(7) = f(2) f(7) and f(4) + f(7) = f(11) = f(2) + f(9).

Then f(3) = f(13) = 0, since

f(3) f(5) = f(15) = f(2) f(3) + f(9) = f(2) + f(13).

We obtain f(16) = f(17) = f(19) = 0, since

f(16) = f(7) + f(9), f(17) = f(4) + f(13) and f(19) = f(7) + f(3) f(4).

Hence f(n) = 0 for all 2 ≤ n ≤ 21 and n 6= 5.

Lemma 5. If f(2) = f(3) = f(5) = 0, then f(n) = 0 for all 2 ≤ n ≤ 21.

Proof. We can derive f(13) = 0 from f(3) f(5) = f(2) + f(13).
It is obvious that f(n) = 0 for other 4 ≤ n ≤ 21 by the same methods as the proofs of

Lemmas 3 and 4.

Now we prove Theorem 1. Note that 21 ∈ T and

21 = 6 + 15 = 1 + 10 + 10.

We know that every positive number can be represented as a sum of three triangular numbers
including 0 by Fermat’s polygonal number theorem or Gauss’s Eureka theorem. So, if n > 21,
then n is a sum of four positive triangular numbers. Because, if n− 21 = a+ b+ c for some
triangular numbers a ≥ b ≥ c ≥ 0, then

n =











a+ b+ c+ 21 if a ≥ b ≥ c ≥ 1,

a+ b+ 10 + 11 if a ≥ b ≥ 1 and c = 0,

a+ 1 + 10 + 10 if a ≥ 1 and b = c = 0.

Hence, Theorem 1 can be proved by induction according to the values of f(2), f(3), and
f(5).

Since 3 /∈ T2, information about f(3) is always from f(3) f(n) with 3 ∤ n. Thus, when
f(2) = 0 and f(3) 6= 0, we can set f(3) to an arbitrary number. So can f(5), if f(2) = 0
and f(5) 6= 0.
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[3] A. Dubickas and P. Šarka, On multiplicative functions which are additive on sums of
primes, Aequationes Math. 86 (2013), 81–89.

[4] J.-H. Fang, A characterization of the identity function with equation f(p + q + r) =
f(p) + f(q) + f(r), Combinatorica 31 (2011), 697–701.

[5] E. Hasanalizade, Multiplicative functions k-additive on generalized pentagonal numbers,
Integers 22 (2022), #A43.

[6] B. Kim, J. Y. Kim, C. G. Lee, and P.-S. Park, Multiplicative functions additive on
generalized pentagonal numbers, C. R. Math. Acad. Sci. Paris 356 (2018), 125–128.

[7] P.-S. Park, On k-additive uniqueness of the set of squares for multiplicative functions,
Aequationes Math. 92 (2018), 487–495.

[8] P.-S. Park, Multiplicative functions which are additive on triangular numbers, Bull.
Korean Math. Soc. 58 (2021), 603–608.

[9] P.-S. Park, Multiplicative functions which are additive on sums of two nonzero squares,
Integers 22, (2022), #A87.

[10] P.-S. Park, The 3-additive uniqueness of generalized pentagonal numbers for multiplica-
tive functions, J. Integer Sequences 26 (2023), Article 23.5.7.

[11] C. A. Spiro, Additive uniqueness sets for arithmetic functions, J. Number Theory 42

(1992), 232–246.

2020 Mathematics Subject Classification: Primary 11N64.
Keywords: additive uniqueness, multiplicative function, sum of two positive triangular num-
bers.

5

https://cs.uwaterloo.ca/journals/JIS/VOL26/Park/park14.html


(Concerned with sequence A051533.)

Received December 31 2024; revised versions received August 14 2025; September 1 2025.
Published in Journal of Integer Sequences, September 8 2025.

Return to Journal of Integer Sequences home page.

6

https://oeis.org/A051533
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Proof
	Acknowledgment

