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Abstract

We present identities for permutations with fixed points. The formulas are based

on successive derivations or integrations of the determinant of a particular matrix.

1 Introduction

The number of permutations with fixed points can be obtained by induction [1]. It is of
interest for combinatorial interpretations of relations for the number of derangements [3].
For instance, the number of derangements can be interpreted as the sum of the values of
the largest fixed points of all non-derangements of length n − 1 [2]. In the same paper,
Deutsch and Elizalde [2] showed that the analogous sum for the smallest fixed points equals
the number of permutations of length n with at least two fixed points. In this short article,
we derive identities for the fixed-point statistics over the symmetric group.
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Definition 1. Let us consider, for x ∈ R and a natural number n ≥ 2, the n× n matrix

Mx =















x 1 · · · 1 1
1 x · · · 1 1
...

...
. . .

...
...

1 1 · · · x 1
1 1 · · · 1 x















.

The characteristic polynomial of the matrix −M0 is

χ−M0
(X) = det(XIn +M0).

Hence, since χ−M0
(1) = 0, it follows that 1 is an eigenvalue, the corresponding eigenspace

being
E1 = ker(−M0 − In) = ker(M0 + In).

We have
x = (x1, · · · , xn) ∈ E1 ⇐⇒ x1 + x2 + · · ·+ xn = 0,

which is a hyperplane of dimension n − 1. This implies that the multiplicity of 1 is n − 1.
In addition, the sum of all eigenvalues is equal to the trace of the matrix −M0, i.e., 0, and
therefore 1− n is also an eigenvalue. We have

x = (x1, · · · , xn) ∈ E1−n ⇐⇒ ∀i ∈ [1, n], (n− 1)xi =
n
∑

k=1,k 6=i

xk

⇐⇒ x1 = x2 = · · · = xn

⇐⇒ x = span{(1, 1, · · · , 1)},

and the multiplicity of 1− n is 1. Thus

det Mx = det(xIn +M0)

= (x− 1 + n)(x− 1)n−1. (1)

By the Leibniz formula [4], the determinant of the matrix Mx gives

det Mx =
∑

σ∈Sn

ǫ(σ)
n
∏

i=1

(m(x))σ(i),i,

where ǫ(σ) is the signature of the permutation σ ∈ Sn and

(m(x))σ(i),i =

{

1, if σ(i) 6= i;

x, if σ(i) = i,
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yielding

det Mx =
∑

σ∈Sn

ǫ(σ)
∏

i∈fix(σ)

x

=
∑

σ∈Sn

ǫ(σ)xfix(σ), (2)

where fix(σ) is the number of fixed points of σ.

2 First relation by successive derivatives of the deter-

minant

Theorem 2. Let x ∈ R and n be a natural number. We have

∑

σ∈Sn

ǫ(σ)fix(σ) (fix(σ)− 1) · · · (fix(σ)− k + 1) xfix(σ)−k = (x− 1)n−k−1n!(x+ n− k − 1)

(n− k)!
.

(3)

Proof. By differentiating Eq. (2) k times, for k ≥ 1, one gets

(det Mx)
(k) =

∑

σ∈Sn

ǫ(σ)fix(σ) (fix(σ)− 1) · · · (fix(σ)− k + 1) xfix(σ)−k. (4)

The Leibniz formula for the multiple derivative of a product gives, using Eq. (1):

(det Mx)
(k) =

k
∑

p=0

(

k

p

)

(x− 1 + n)(p)
(

(x− 1)n−1
)(k−p)

and

(x+ 1− n)(p) =











x− 1 + n, if p = 0;

1, if p = 1;

0, otherwise,

and thus

(det Mx)
(k) = (x− 1 + n)

(

(x− 1)n−1
)(k)

+ k
(

(x− 1)n−1
)(k−1)

= (x− 1)n−k−1 (n− 1)!

(n− k − 1)!

(

x− 1 + n+
k(x− 1)

n− k

)

= (x− 1)n−k−1n!(x+ n− k − 1)

(n− k)!
, (5)

which, combined with Eq. (4), completes the proof.
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For x = 1, according to Eq. (5), one has

(det M1)
(k) = n! δk,n−1,

where δi,j is the usual Kronecker delta symbol. Setting k = n− 1 in Eq. (4) yields

∑

σ∈Sn

ǫ(σ)fix(σ) (fix(σ)− 1) (fix(σ)− 2) · · · (fix(σ)− n+ 2) = n!.

As another example, setting x = 2 in Eq. (3) gives

∑

σ∈Sn

ǫ(σ)fix(σ) (fix(σ)− 1) (fix(σ)− 2) · · · (fix(σ)− k + 1) 2fix(σ)−k =
n!(n− k + 1)

(n− k)!
.

3 Second identity by successive integrations of the de-

terminant

Theorem 3. For k ∈ N
∗ we have

∑

σ∈Sn

ǫ(σ)
(fix(σ))!

(fix(σ) + k)!
= (−1)n+1 (n

2 + (k − 1)n− (k − 1))

(k − 1)!(n+ k − 1)(n+ k)
. (6)

Proof. The left-hand side of Eq. (6) is obtained by successive integrations of

∑

σ∈Sn

ǫ(σ)xfix(σ).

According to Eq. (2), it is therefore equal to Pn,k(1) with, for k ≥ 2:

Pn,k(x) =

∫ x

0

(
∫ xk−1

0

(
∫ xk−2

0

· · ·

(
∫ x2

0

(
∫ x1

0

det(Mu)du

)

dx1

)

· · ·

)

dxk−2

)

dxk−1, (7)

or also

Pn,k(x) =

∫ x

0

Pn,k−1(u)du.

Since det(Mx) = (x− 1)n + n(x− 1)n−1, one has in particular

Pn,1(x) =

∫ x

0

det(Mu)du = (−1)n+1 n

n+ 1
+

(x− 1)n+1

n+ 1
+ (x− 1)n, (8)

as well as

Pn,2(x) =

∫ x

0

(
∫ x1

0

det(Mu)du

)

dx1 =

∫ x

0

Pn,1(u)du
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yielding

Pn,2(x) = (−1)n+1 nx

(n+ 1)
+

(−1)n+1

(n+ 1)(n+ 2)
+

(−1)n

(n+ 1)
+

(x− 1)n+2

(n+ 1)(n+ 2)
+

(x− 1)n+1

(n+ 1)
. (9)

Applying the same procedure, the polynomial for k = 3 gives

Pn,3(x) =

∫ x

0

(
∫ x1

0

(
∫ x2

0

det(Mu)du

)

dx1

)

dx2 =

∫ x

0

Pn,2(u)du

leading to

Pn,3(x) = (−1)n+1 nx2

2(n+ 1)

+ (−1)n+1 x

(n+ 1)(n+ 2)
+ (−1)n

x

(n+ 1)

+
(−1)n

(n+ 1)(n+ 2)(n+ 3)
+

(−1)n+1

(n+ 1)(n+ 2)

+
(x− 1)n+3

(n+ 1)(n+ 2)(n+ 3)
+

(x− 1)n+2

(n+ 1)(n+ 3)
. (10)

Setting k = 1, 2 and 3 in Eqs. (8), (9) and (10) gives (all the terms proportional to powers
of x− 1 vanish):

Pn,1(1) = (−1)n+1 n

(n+ 1)
,

Pn,2(1) = (−1)n+1 n

(n+ 1)
+

(−1)n+1

(n+ 1)(n+ 2)
+

(−1)n

(n+ 1)
,

and

Pn,3(1) = (−1)n+1 n

2(n+ 1)

+
(−1)n+1

(n+ 1)(n+ 2)
+

(−1)n

(n+ 1)

+
(−1)n

(n+ 1)(n+ 2)(n+ 3)
+

(−1)n+1

(n+ 1)(n+ 2)
.

Thus, for any value of k ≥ 2, we have

Pn,k(1) =
(−1)n+1n

(n+ 1)(k − 1)!
−

k
∑

j=2

(−1)n+j

(k − j)!

(

1
∏n+j

l=n+1 l
−

1
∏n+j−1

l=n+1 l

)

,

with
k
∑

j=2

1

(k − j)!

(−1)n+j

∏n+j

l=n+1 l
=

k
∑

j=2

(−1)n+j

(k − j)!

n!

(n+ j)!
.
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Let us set

Sn(k) =
k
∑

j=2

(−1)n+j

(k − j)!(n+ j)!
,

so that we can write

Pn,k(1) =
(−1)n+1n

(n+ 1)(k − 1)!
− n!Sn(k)− n!Sn−1(k). (11)

Let us now assume that k ≥ 2. We have

Sn(k) =
k
∑

j=2

(−1)n+j

(k − j)!(n+ j)!

=
1

(n+ k)!

k
∑

j=2

(−1)n+j(n+ k)!

(k − j)!(n+ j)!
.

The latter quantity is equal to

Sn(k) =
1

(n+ k)!

k
∑

j=2

(

n+ k

n+ j

)

(−1)n+j

=
1

(n+ k)!

n+k
∑

m=n+2

(

n+ k

m

)

(−1)m

=
1

(n+ k)!

(

n+k
∑

m=0

(−1)m
(

n+ k

m

)

−
n+1
∑

m=0

(−1)m
(

n+ k

m

)

)

= −
1

(n+ k)!

n+1
∑

m=0

(−1)m
(

n+ k

m

)

= −
Tn(k)

(n+ k)!
,

with

Tn(k) =
n+1
∑

m=0

(

n+ k

m

)

(−1)m.

Since
(

n+ k

m

)

=

(

n+ k − 1

m

)

+

(

n+ k − 1

m− 1

)

,
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we get

Tn(k) =
n+1
∑

m=1

(−1)m
(

n+ k − 1

m

)

+
n+1
∑

m=1

(−1)m
(

n+ k − 1

m− 1

)

+ 1

=
n+1
∑

m=1

(−1)m
(

n+ k − 1

m

)

+
n
∑

m=0

(−1)m+1

(

n+ k − 1

m

)

+ 1

= (−1)n+1

(

n+ k − 1

n+ 1

)

− 1 + 1

= (−1)n−1

(

n+ k − 1

n+ 1

)

.

We therefore obtain

Sn(k) =
(−1)n(n+ k − 1)!

(n+ 1)!(k − 2)!(n+ k)!

=
(−1)n

(n+ 1)!(k − 2)!(n+ k)
,

which, combined with Eq. (11), yields

Pn,k(1) =
(−1)n+1n

(n+ 1)(k − 1)!
− n!

(−1)n

(n+ 1)!(k − 2)!(n+ k)
− n!

(−1)n+1

n!(k − 2)!(n− 1 + k)

= (−1)n+1 (n
2 + (k − 1)n− (k − 1))

(k − 1)!(n+ k − 1)(n+ k)
,

which completes the proof.

For k = 1, Eq. (6) becomes

∑

σ∈Sn

ǫ(σ)

(fix(σ) + 1)
= (−1)n+1 n

(n+ 1)
,

while for k = 2 one has

∑

σ∈Sn

ǫ(σ)

(fix(σ) + 1)(fix(σ) + 2)
= (−1)n+1 (n+ φ)(n+ 1− φ)

(n+ 1)(n+ 2)

= (−1)n+1 (n+ φ)(n− 1/φ)

(n+ 1)(n+ 2)
,

where φ is the golden ratio, and in the k = 3 case:

∑

σ∈Sn

ǫ(σ)

(fix(σ) + 1)(fix(σ) + 2)(fix(σ) + 3)
= (−1)n+1 ((n+ 1)2 − 3)

2(n+ 2)(n+ 3)
.
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Here also, as in the first section, we have set x = 1, but of course, further sum rules can be
obtained by taking different values of x in Eq. (7) and using

Pn,k(x) =
∑

σ∈Sn

ǫ(σ)
(fix(σ))!

(fix(σ) + k)!
xfix(σ)+k.

4 Conclusion

We introduced two families of identities concerning permutations with fixed points, obtained
respectively through successive differentiation and repeated integration of the determinant
of a specific matrix. Beyond these results, the methods presented here may lead to the
derivation of further sum rules.
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