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Abstract

This paper introduces the simplicial d-polytopic numbers defined on Lucas se-
quences. We establish basic identities and find ¢-identities. Furthermore, we find
generating functions for the simplicial d-Lucas-polytopic numbers and for the squares
of the Lucas-triangular numbers. Finally, we compute sums of reciprocals of Lucas se-
quences and Lucas-triangular numbers. We introduce an analogue of the zeta function
defined on Lucas sequences.

1 Introduction

There is growing research on analogue sequences of numbers defined in terms of Lucas
sequences, including Catalan numbers [1, 5], Bernoulli and Euler polynomials [7], Eulerian
numbers [10], among others. In this paper, we define simplicial d-polytopic numbers on
Lucas sequences. The advantage of doing so is that we obtain, for free, analogs of Fibonacci,
Pell, Jacobsthal, and Mersenne sequences, among others.

The simplicial polytopic numbers [3] are a family of sequences of figurate numbers cor-
responding to the d-dimensional simplex for each dimension d, where d is a non-negative
integer. For d ranging from 1 to 5, we have the following simplicial polytopic numbers,
respectively: non-negative numbers N, triangular numbers 7;,, tetrahedral numbers Te,,
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pentachoron numbers P, and hexateron numbers H,. A list of the above sets of numbers is
as follows:

N =(0,1,2,3,4,5,6,7,8,9,...),

T = (0,1,3,6,10, 15,21, 28, 36, 45, 55, 66, . . .),
Te = (0, 1,4, 10, 20, 35, 56, 84, 120, 165, . ...),

P =(0,1,5,15,35,70, 126,210, 330, 495, 715, . . ),

H = (0,1,6,21,56, 126, 252, 462, 792, 1287, . ...).

The n'" simplicial d-polytopic numbers P¢ are given by the formula

+d—1 n(
pd— (" _n
n ( d ) -

where 29 = z(z + 1)(x +2)--- (x + d — 1) is the rising factorial. The generating function
of the simplicial d-polytopic numbers is

n=1

In this paper, the n-th simplicial d-Lucas-polytopic number is defined by

{n+d_1} o {n}s,t{n—i_l}s,t'”{n—i_d_ 1}s,t
d ), {d}.,! |

where {n};, is the Lucas analogue of the positive integer n. We determine basic identities
for simplicial Lucas polytopic numbers, especially for Lucas-triangular and Lucas-tetrahedral
numbers. These sequences are part of the On-Line Encyclopedia of Integer Sequences [13].

Some known g¢-identities are found, [12, 14]. We establish generating functions for the sim-
n+d— 1}

plicial d-Lucas-polytopic numbers { and for the sequence {ngl}z .- Finally, we intro-

duce the Lucas-zeta function ((2) and ﬁnd some values for (;+(1). In addition, we calculate
reciprocal sums of Lucas sequences and Lucas-triangular numbers.

2 Preliminaries
The Lucas sequences [11] on the parameters s, ¢ are defined by

{n+ 2}S’t =s{n+ 1} +t{n}s,

with initial values {0},, = 0 and {1},, = 1, where s # 0 and ¢t # 0. Below are some
important specializations of Lucas sequences.

1. If s=2,t = —1, then {”}2,—1 = n are the positive integers.
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2. If s=1,t =1, then {n}, ; = F, are the Fibonacci numbers

F,=(0,1,1,2,3,5,8,13,21,34,55,...).

3. If s=2,t =1, then {n},, = P,, where P, are the Pell numbers

P, =(0,1,2,5,12,29,70,169,408. . .).

4. If s = 1,t =2, then {n}, , = J,,, where J, are the Jacobsthal numbers

J. = (0,1,1,3,5,11,21,43,85,171,...).

5. If s =3,t = —2, then {n}3’_2 = M, where M,, = 2" — 1 are the Mersenne numbers

M, = (0,1,3,7,15,31,63, 127,255, ...).

6. If s=p+q,t = —pgq, then {n} n], , where [n]  are the (p,¢)-numbers

p+q,—pq [ 9,9’

[n]p,q = (0,1, [Q]p,qv 3lp.q: [4lp.g> [Blp.gs [6lp.s [Tlpgs [Blpg - - -)-
If p =1, we obtain the g-numbers [n], =1+ ¢+ CH@ e+

7. If s =2t,t = —1, then {n},, | = U,_1(t), where U,(t) are the Chebyshev polynomials
of the second kind, with U_;(¢) = 0.

The Lucas constant is the ratio toward which adjacent terms in a Lucas sequence tend. This
is the only positive zero of 22 — sz —t = 0. We let ¢, denote this constant, where

s+ /s2+ 4t
2

Sos,t -

and

, t s —/s?+ 4t

Psp =S~ Pst = — S S
st,t

denote the reciprocal of ¢, ;. Some specializations of the constants ¢, and ¢, , are

1. If s=2and ¢t = —1, then ¢ _; =1 and 90/2,—1 =1L

1—
2

1+v5
2

=

2. Ifs=1andt=1, then ;1 = ¢ = and ¢} | = ¢’ =
3. Ifs:Qandtzl,therupM:1+\/§andg0'2’1:1—\/5.
4. If s=1and t =2, then ;5 =2 and ¢}, = —1.

5. If s=3 and t = =2, then 3 o =2 and 3 _, = 1.
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6. If s=p+qandt=—pq, then ¢, 4 p, = p and SO;JJrq,—pq =4

7. If s =2t and t = —1, then @y _; = Y21 and ¢, | = V=L

The Lucasnomial coefficients are defined by

{Z} - {k}s,t{!?isf!k}s,t!’

where {n} ! = {1} {2}, ,---{n},,. The Lucasnomial coefficients satisfy the following
Pascal recurrence relationships. For 1 < k <n — 1 we have

n+1 L fnt1-k) ) T
= 1
{ k }s,t gp&t{k}s,t " Sos’t k - 1 S,t’ ( )
— /(k) n n+1—k n 2
R T N )

A proof of the above identities was provided by Corcino [2].
Set s,t € R, with s # 0 and ¢t # 0. If s*> + 4t # 0, we define the Lucas-derivative D, of
the function f(x) as

flps,pz)—f(@h 1) if ¢ 7& ();

Dst - W’
D)t {f’(O), if =0,

provided f(z) is differentiable at z = 0. If s* + 4t = 0, with ¢ < 0, we define the Lucas-
derivative of the function f(z) as

(Di2i\/i,tf)($) = f’(:l:zx/%x)
The Lucas-derivative Dy, fulfills the following properties.
e Linearity:
Dsi(af + Bg) = aDsf + BDs,g.
e Product rules:

Dii(f(2)g(x)) = f(psaw) Dsag(@) + 9(¢ 1) Do f (),

and
Dyi(f(2)g(x)) = f(¢,2)Dsrg(x) + g(@s2) Dyt f ().

e Quotient rules:

f(:L‘) g(SOS,tx)DS,tf(I) - f(%OS,tx)DS,tg(m)
Ds’t( ) 9(@s12)g(£} 1)

Y

and

f(x) 9(ps ) Dy f () — f(p 1) Dsrg()
Dt ( ) 9(ps1)g (@) 1) '



Define the n-th Lucas-derivative of the function f(x) recursively as

D3, f(x) = Dsy(DY, f ().

3 d-Lucas-polytopic numbers

3.1 Definition and basic properties

Definition 1. The n-th simplicial d-Lucas-polytopic number is defined by

{n +d— 1} _ {n}s,t{n + 1}s,t o {n+d— 1}5,1&
d s.t {d}s,t! .

The Lucas analogues of the triangular numbers, tetrahedral numbers, pentachoron numbers,
and hexateron numbers are

1
TSt:{Tn(s,t):{n+ } :nZO},
’ 2 st
2
Tes, = Ten(s,t):{njL } :n >0,
3 st
3
Ps,t: Pn(svt):{n+ } TLZO 5
4 s,t
4
H&t:{Hn(s,t):{n; } :nZO}.
s,t

From the Pascal recurrence in Eqgs. (1) and (2) we have
n+d g n+d—1 mn+d—1
— " 3
{ d }Si Sos,t{ d }SJ + 905715{ d _ 1 }s’t7 ( )

a fn+d—1 n [n—d—1
= ) 4
sos,t{ J }S’t + sos,t{ i1, (4)

It is a well-known fact that the sum of the first n terms of a sequence of d-polytopic numbers
is the n-th term of a sequence of (d + 1)-polytopic numbers, i.e,

n

d __ d+1
> pd=pitt,
k=1

We then obtain the Lucas analogue of the above formula.




Theorem 2. For alln > 1, the sum of simplicial d-Lucas-polytopic numbers is

n+d B - (d+1)(n—k) s(k—1) [k +d—1
{d—i—l}&t _ZSOS Spst d S7t7

k=1

n+d B & (1) (n—k) p—1 |k +d—1
{d +1 }s,t =2 ¢k A R A

k=1

Proof. The proof is by induction on n. When n = 1, then {gi}}st = {Z}St. For n = 2, it

follows that
d+ 2 . an d , [d+1
{d + 1}s,t a 908:7& d s,t i SO&t d s,t.

Suppose the statement is true for n and we prove the statement for n + 1. We have

n+d+1 g fn+d 4o n+d
d + 1 ot - ()Os,t d + 1 o ()0371‘ d ot
y[k+d-1 n+d
d (n—k) n
—wﬁilzs@( AT 1){ . } +<p;,t{ y }
s,t st
= iwﬁf@“)("ﬂk)@sf ”{lHZ_ 1} +90§?t{n§d}

s,t s,t

k=1
n+1
B - (d+1)(n+17k ih—1) R +d—1
- Z Sos,t s ,t d :
— s,t
k=1 >

The proof is reached.

From Theorem 2 we obtain the following known result about g-binomial coefficients:

n+d &< pa[ktd=1] & gmen [FHd—1
LzHL_Zq [ d L_Zq d

k=1 k=1
4 Some specializations

4.1 Lucas-triangular numbers

Some specializations of Lucas-triangular numbers are

1
{";r } = F,F,1 = (0,1,2,6,15,40,104,273, .. ),
1,1
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1 1
} — ZP,P,1 = (0,1,5,30,174,1015,5915, .. ),
} = JuJnsr = (0,1,2,6,15,55, 231,903, 3655, . ...),

1 1
e R CasE
2 f,, 3
— (0,1,7,35, 155, 651, 2667, 10795, 43435, 174251, . . .).

The {"gl}ll—numbers are known as golden rectangle numbers, (A001654 in [13]). The
{”'ZH}Q ,-humbers may be called Pell triangles, (A084158 in [13]). The {”;1}1 ,-humbers are
known as Jacobsthal oblong numbers, (A084175 in [13]). The {”;1}3 _,-humbers are the

Gaussian binomial coefficients [Z]q for ¢ = 2, (A006095 in [13]).

From Egs. (3) and (4), and Theorem 2, we obtain

n+2 n+1 n
{ 9 } = 903,15{ 9 } + gof%t{n + 1}s,t’
s,t
n+2 n+1 n
{ 2 } = (IOISZ,t{ 2 } —I— (Ips,t{n + ]'}S,t?
s,t s,t

n+1 " (k) (ko1
{ 9 } = Z 905,(t )90;(,1& ){k}sﬂfa
st

k=1
n+1 - 2(n—k —
{ 9 } = Z QO;t( )Soi,t l{k}s,t'
st k=1
From the above identities, we obtain the identity of Warnaar [14]

n+1f " 1—qF (n—k) _ - kfll—qk
{ 2 ] 721—61(1 =24 1—q’
q k=1

k=1

Theorem 3. For alln € N,
1. The Lucas analogue of the identity T, + T,,_1 = n? is

Vs, ey, e

2. Another Lucas analogue of the identity T, + T,_; = n® is

/(n—l){n + 1} n—i—l{n} . <n>s,t 2
905, + 905, - {n}s )
' 2 s,t ' 2 st {2}s,t !

where <n>5,t = Spg,t + Spls??t-
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3. The Lucas analogue of the alternating sum squares T, = > _ (—1)"*k? is
"3 e
st k=1

Proof. We have

{n + 1} _ {n}s,t{n + 1}s,t
2 s,t {2}s,t
_ {n}s,t(s{n}s,t +t{n — 1}s,t)
{2},
{n}it {n}s,t{n - 1}s,t
- S o {2}s,t

n
={n}?, + t{2} :
s,t
Statement 2 is proved as follows:

gpn—g—l{n} 4 ,(?1){71 + 1} _ Son;i-l {”}s,t{n - ]‘}s,t n g0/(?71) {”}s,t{n + 1}s,t

o2y, K 2 ) > {2}s,t K {2}s,t
B {n}s,t
- {2},
B {n}s,t
- {2},
B <n>s,t
- {2},

By iterating statement (1), we obtain statement (3). O

(i n -1}, + o5 {n+1},,)

{2n}5,t

{”}it

If we set s =1+ ¢, and t = —¢q in the previous theorem, then
n+2 n+1 1— g\ ?

_ -1 5

]l ®

n n+1 1+ qg"
R St
q q

and

2 2 l+q 77
By iterating Eq. (5), we obtain a result due to Schlosser [12]:

n _21_ 1L _ i(_Q)n_k(ll__qqk>2-

k=1
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Theorem 4. For alln € N,

21° 1? n+2},, +t{n},
{n+ } —t2{n+ } _ <{ },t { },t){n+1}§t
2 st 2 st s ,

Proof. From Theorem 3, we have that
S ()
{n { }jt{n—+1}it+—{n—+1}it
s o
A P IR NSRRI [CRR Y
—¢ { 1}&t+»(t{n}&t+ljn_%2}&t){n—+1}§r

The remainder of the proof follows straightforwardly.

+ 2t +{n+ 1};{t

}.-
} {n}, dn+ 13,
s

+
2
n +
2
n +
2
n +
2

Eq. (6) is the Lucas analogue of the identity
T2, —T7=n’.

n

From Warnaar [14] we have
= — — .
2 ’ 2 g 1—g¢q 1—gq
Theorem 5. For alln € N,

itz(n—k) {k + 1}s,t + t{k - 1}s,t {k}g _Jn+ 1 2
S s,t - 2 S’t'

k=1

Proof.

2 2 2 2
n+1 _ n+1 _pln 4 n 4 n—1
2 s,t 2 s,t 2 s,t 2 st 2 s

(6)



_ ({n +1},, +t{n— 1}s,t) ), + 8 ({n}s,t +i{n - Q}S,t) 1P

S

R = [V
_ z”: 2k ({k: + 1}, +t{k - 1}s,t) [,

k=1

S

Eq. (7) can be written as

12k

k 1k N\ 2 n
n— 905 t— Psit Pst — Pst n—
E 2k ( >< — ) - § :tQ( & [k]soQ,w’Q[k]i,sa’ - {
905 t gos,t Ps,t Ps,t =1

Eq. (7) is the Lucas analogue of the identity
n n 2
Sk = (k)
k=1 k=1

Corollary 6. For alln € N, we have

1. The Fibonacci analogue of the sum of cubes:

n

D (Fop+ Fea)FY = F2FL,.
k=1

2. The Pell analogue of the sum of cubes:

. 1
> (Poi+ Pea) P = §P3P3+1‘
k=1

3. The Jacobsthal analogue of the sum of cubes:
24 (o1 + 2T 1) T3 = J2T2,,.

4. The Mersenne analogue of the sum of cubes:

zn:zw—k(zk +1)(2F - 1) = %(2” — 1)%(2" T —1)%

5. The g-identity of Warnaar [14]:
- (n—k) 1—q 1—q" 2_ n+1]°
2 - -
— ¢? 1—gq 2 .

10
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4.2 Lucas-tetrahedral numbers

Some specializations of Lucas-tetrahedral numbers are
n—+ 2 1
{ 3 } - QFnFn-l—an—ﬁ—Q
1,1
= (0,1, 3,15,60,260,1092, 4641, 19635, . . .),

n -+ 2 1
= —P, P, P,
{ 3 }271 10 +14 2

= (1,12, 174, 2436, 34307, 482664, . ..),

n -+ 2 1
—Jndns1dn
("3 e

= (0,1, 5,55,385,3311, 25585, 208335, . . .),
1

{n ;r 2}3,2 =@ - DET -nET -1

= (0,1,15,155, 1395, 11811, 97155, ... .).

The sequences {"3°} |, {"3°},, and {"}?}, , correspond to A001655, A099930, and
A006096, respectively, in [13]. The sequence {";2}1 , has not been previously investigated.
From Egs. (3) and (4), and Theorem 2,

n —i— 31 n+2 Lo In +2
- (ps,t 3 ot (ps,t 2 S7t7
n —i— 3 n —i— 2 n | +2
- + Sps,t 2 9
s,t s,t
{n—i—Q} (n—Fk) /(k—l){k+1}
Spst 2 )
— s,t
{n + 3} zn: {k -+ 1}
fo= 2 s,t
Theorem 7. For alln > 0,

n -+ 3 n -+ 2 n -+ 2
= st 1 . 9
{ ! } { ! }S,ﬁ{“ }{ , } (9)
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Proof. We have

{n + 3} _ {n+ l}s,t{n + 2}s,t{n + 3}5,15
3 ) {3}5,15!
{n+ 1}s,t{n + 2}s,t
I ET
{n+ 1}s,t{n + 2}s,t
S B

n+ 2 n+ 2
:{n—i—l}st{ } +st{ } :
7 2 st 3 st

The above theorem is Prop. 2.2 given by Sagan and Savage [1]. Eq. (9) is the Lucas
analogue of the identity

(s{n+ 2}s,t +t{n+ 1}s,t)

(s> + ){n +1},, + st{n},,)

]

Te,1 +2Te, = (n+ 1) 1.
If we choose s =1+ ¢ and t = —¢q in Eq. (9), we obtain

n+3 n -+ 2 1—¢"'[n+2
l 5 ] :—(1+q)q[ 5 } T 5 |-
q q —4a q

5 Generating functions

Theorem 8. For alln > 1,

Dﬁ,w( 1 ): {n},! (10)

l—x (‘P?ﬂ?; Q>n+1’
where (a;q)n = [[1—o(1 — aq®) is the q-shifted factorial.
Proof. Note that

5 ( 1 ) B 1 {1
P\l -z (1= pspz)(1 = 90;,#75) (@s,e; q)2

Suppose that Eq. (10) is true for n and let us prove by induction for n 4+ 1. As

D%s@’(spg,tx; QD1 = —{n+ 1}5,t(90g,t90;,t$5 Q)n;

12



then

1 1
n+1 o n
DWP’ (1 _ x) - D%‘P'D%s@’ (E)

_ D ( {n}s,t! >
o (Sog,tx; Q)n-‘rl

- _{n}S,t!D@,Ap’(@?,tx§Q)n—H
a (SOZ,;AQ?; Q)n+1(90?,t90;,t$; @1
B {n+ 1}s,t!(90?,t90;,tx; Un
B (SOZ,;Flﬂ (])n+1(80?,t90;,t$; Qnt1

B {n+ 1}5,:5!
(1 = (@s2@)™ @) (02F @5 q)nsa
{n+ 1}S7t!

a (SOZ,F@‘])nJrQ'
The proof is completed.
Theorem 9. For all d € N,

i {n +d— 1} o x
d st (Spgl,ﬂ?; q)d+1 .

n=1

Proof. From Theorem 8,

x _ T ( 1 )
(i qam {d},,! P \1—x

- (5 7)

{d}st'
{d+ n}st
{d}s t' ; {”}571:'

n+d—1 n
N ; { d }s,tz '

13
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Theorem 10. The generating function of the squares of the Lucas-triangular numbers is

0 TL+1 2 .
;{ 2 }s,tx

x4+ ({4} pss — 92)7% = {3},,03 0”4+ ({3}, .00 02 — {4},,90 .02 )2
(1 —8z)(1 — @x)(pt 33 q)a '

Proof. From Eq. (8),

n=1 k=1
2 n—
- Z[k] P%p" [k]wp’xk Z Ry
k=1 n=k

|
(]
&
©
v
G\
)
N
€ N
76\
8
B
¢
~
N
8
~—
3

T
=T t2x($D¢,@/)2<$D¢27¢/2> { - x}

T+ ({4}s,t908,t - ‘Pg,t)xQ - {3}3,#?,#5#3 + ({3}s,t90§,t905ft - {4}5,%0?,1590/5?,’15)354
(1 —#22)(1 — o) (5,75 q)a '

The g-analogue of the previous theorem is

S [n+117 @+ (d], - D2® - [3],¢°2° + (3] ,¢° — [4] ¢*)2"
2 { 2 LCE B (1= ¢?x)(1 = ¢*z)(z;9)a '

n=1

6 Sum of reciprocals

The Lucas-zeta function, or (s, t)-zeta function, is the function defined by

=1 1 1 1
st(2) = —=1+—=+ + + -
Goal2) ; {n}?, st (24+1)F  (s3+2st)*

Egami [4] and Navas [9] independently studied the zeta function ¢;,(z). Landau [8] studied
the problem of evaluating ¢; ;(1). The function (s;(z) is convergent when z > 0 and when

14



either ¢,; > 1 and 0 < |g| < 1 or ¢,, > 1 and [q] > 1. Take z = o + 4. Then (,(z)
converges when R(z) > 0. Some specializations of (,,(1) are

[e.e]

1 1 1 1 1
1) =(p(1) = — =14+14+=-4+=-+4+ =4+ =+ -- = 3.359885666243 . . .
G =Gl = g =1t f g pe g |
=1 1 1 1 1
1) = 1) = — =1 — + — - = 1.81781609195402.. . .
Coa(1) = Cp(1) ;P Tttty tgg b = LSITSIE09195402. ...
¢ (1)_C<1)_°° ! 1+1+1+1—|—1+1+ = 2.67186147
L2 A _nzlJn_ 375 11 21 o
(3.2(1) =¢ (1)—i L —1+1+1+1+1+ = 1.57511520737327
S TN _nan 37715 " 31 T
1 1 1 1
Gt ZU M T T Ty T T T B
Witht#O,cosnk—fl, and k=1,2,.
Theorem 11.
oo tn
Z = Vst 44t (wst/t) (‘Pst/t)
{2n},,
TL:1 S,
where L(q) = >, % is the Lambert function.
Proof. Take into account that
£ ~——( (/)" (/)"
2+4t< S, _ S
{Qn}st - (Spg%t/t)n - ((pst/tQ)
and sum for all n > 1. O]
Theorem 12.
s2+4
. 0 12 \2
Z {2’)7, — 1}51 4 2(()05,1) )
where O5(q) =>"° q(”H/Q) .
Proof.
i 1 B s2+4 i 2(90;2,1)n_1/2
n=1 {2n - ]'}s,l 2 n=1 + @;271 -l

L+ (9
52 +4 i 2(p)
- 4 1+ ((PIQ )2(171

a=—00

s2+4 P

- - 4 92(90571)2‘
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Theorem 13.

_ n,., Pt
Z {n}st{n+1}st = ear— (18I0, <1+ t >’ (11)

where

lnstl—x Z{n}
s,t

1s a Lucas analogue of the logarithm function.

Proof. Suppose that 0 < |g| < 1, and ¢ = ¢ /s, and set a, = 1/{n}, {n+1}, . As

. Qpyr . { }s t . I—q" 1
lim —— = lim ——— = lim ——F%— = —,
n—oo Uy n—00 {Tl + 2} it n=0o0 Yoy — gps,tqn Ps,t

then the series in the left-hand of Eq. (11) is convergent only if |p,4| > 1. If |¢| > 1, then
the series in the left-hand of Eq. (11) is convergent only if |¢/ ;| > 1. By partial fractions

1 A N B A B
{n}s,t{n + 1}s,t {n}s,t {n+ 1}s,t {n}s,t Ps t{n}st + ©oy 7

where A = (—p,,/t)" and B = (—¢,,;/t)""!. Then

- (_Sps,t/t)n t(_gos,t/t)n-i_l
Z{n}st{nﬂ}st Z( e, {n+1}st)

n=1

S St
S 2 mz ~¢se/t)

— (70871: — (1 —|— t) 1n37t (]_ 90;7t> .

The function Ing (1 — z) is convergent for all & € (—|ps4|, [@st])-
Some specializations of Theorem 13 are

=1 1++5 (3+\/5>
Z = —21I1F 3
:1FnFn+1 2 2
=1

=1++v2—2Inp(2+ V2),
) PnPn—H
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=1
=2—3In;(2
Z ‘]TLJ’/H-l 3 HJ( )7

n=1
)

941
TR

n=1

where Inp = Iny 1, Inp = Iny 3, In; = Iny 9, and Inpy; = Ing 9. A very important remark is
that Iny,(0) is finite.
Corollary 14.
i (—t)™ s+ Vs 4t
n=1 {n}s,t{n + 1}s,t 2 ‘

Proof. 1If t = —1 in the previous theorem, then

1
DB R
Note that {n}, | = (i/v/t)"*{n},,, where s = ia/V/t. Then
~ 1 ~ 1
; {ny n+13, ; (i/vV1)Hn}, An+ 1},
-~ (—t)™ i
Y Z {nt fnt 1}, Vi
The proof is completed. O

Some specializations of Corollary 14 are

i (=)™ 1+5
= FoFpn 2
(=D
=1+4+V2
2 pp, TV
S
n—1 Jan+1
[ee] 2n
=2.
MnMnJrl
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